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RATIONAL PERIOD FUNCTIONS FOR THE MODULAR
GROUP AND REAL QUADRATIC FIELDS

BY
YounGgJu CHOIE

0. Introduction

Automorphic integrals with rational period functions, being generalization
of automorphic forms on the discrete subgroup of SL(2, R), share properties
similar to those of forms. Examples are furnished by the Eichler integrals—
automorphic integrals of negative integer weight with polynomial period
functions—which have been the object of much attention in recent years [4],
[5], [6], [9], [12], [15], [17], [19]. The questional naturally arises whether there
exist automorphic integrals with rational period functions which are not
polynomials. M. Knopp [13] has constructed modular integrals of weight 2k
(k odd) which differ from Eichler integrals. In [14] it has been shown that the
poles of any rational period function, g ,.(z), for the modular group I'(1)
must lie in Q(YN), N € Z*. However, the only previously known quadratic
fields containing poles of gy ,(z) for T'(1) were Q(V5), Q(V3), and Q(V21),
and these examples were known only for odd k.

The main object of this paper is the construction of g, ,,(z) for I'(1) with k
any integer (even or odd), having poles in an arbitrary real quadratic field,
Q(/N). We have developed three distinct new methods to achieve this goal.
First, we have constructed gr,,(z) for I'(1) by using the coset decomposition
of IT'’(1), the commutator subgroup of I'(1). Since I'’(1) is a free group, the
necessary and sufficient conditions for the existence of a rational period
function g ,,(z) of a modular integral on I'/(1) reduce to a single condition
on rational period functions for I'(1). Then rational period functions of a
modular integral on I'(1) can be constructed by showing how to satisfy the
above condition. This construction can be generalized to incorporate the class
of Hecke group. By use of an operator of Bogo-Kuyk [1], g7 ,,(z) for I'(1) can
be constructed from those on the Hecke groups for A = y2 and V3.

The second method entails the use of Pell’s equation to construct gy ,,(2).
This construction gives qr,,(z) for I'(1) and any integer k with poles in an
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arbitrary real quadratic fields. Also, we show that the collection {gr ,,} 5 of
rational period function with poles in the real quadratic field Q(VN ) is infinite
dimensional over C. Finally, we generalize the method by M. Knopp [13] to
construct rational period functions. The appended tables list a number of
specific examples of g7 ,.(2).

1. Definitions

Let 5# be the complex upper half plane and let I' be a Fuchsian group
acting on #.

Let F(z) be a meromorphic function in S# satisfying the transformation
formula

(1.1) (cz +d) *F(Mz) = F(z) + qu(2),

where k is a rational integer and for each element M = (: ;) e, qy(z)is
a rational function of z. Assume also that F is meromorphic in the local
uniformizing variable at each parabolic cusp of a fundamental region for I
Then F is called an automorphic integral of weight 2k for T', with rational
period functions q,,(z). In the case when I' = I'(1), the modular group, we call
F a modular integral of weight 2k. (Note that if ¢,,(z) = 0 for each M € T,
then F is simply an automorphic form of weight 2k for T'.)

2. Rational period functions

The Hecke group G(A,), A, = cos(w/n), is the group of all linear fractional
transformations generated by the two transformations

Sn=(1 A") and T=(0 _1),

0 1 1 0
which satisfy the relations
(1.2) T?=(8,T)" = (TS,)" =1
(Note. We identify I = —1I as linear fractional transformations.)

As is well known [5], the Hecke group G(A,) is the free product of (T') and
(TS,)

Since the Hecke group G(A,) is generated by S, and T, the condition (1.1)
is equivalent to

(1.3) F(z+\,) = F(z) + g5(2),
Z—2kF(—- %) =F(z) + q,\”(z),

with ¢g, ¢, . rational function in z. Since a rational function F satisfies (1.3)
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trivially, we impose the further restriction that F be periodic with period A,
that is, that g5 = 0. Then (1.3) can be written as

(1.4) F(z+\,) =F(z), z‘”‘F(—%) = F(z) + gy, ,(2).
If we introduce the customary notation for the stroke operator,

F|_y M = (cz + d) *F(Mz), M=(z 2)

the condition (1.1) becomes F|_, M = F + q,;, M € G()\,), and from this
follows the (cocycle) condition

Gmm, = Ay | -2 Mo + gy, for My, M, € G(A,), keZ
Also (1.4) becomes
(1.5) Fl_uS,=F,F|_T=F+gq,,.

For convenience, I shall write F|M instead of F|_, M throughout
Suppose now that g,  (z) is a rational function as in (1.5), for some F
meromorphic in J#. Then the defining relations (1.2) in G(A,) imply that

(1.6) a, AT+ 4y, ,=0
an, J(ST)" "+ gy I(S,T)" 2+ - +q, I(S,T) +q, =0,

are necessary conditions upon g,  for the existence of F meromorphic in J#
such that (1.5) holds. On the other hand, Knopp has shown, through the use of
Eichler’s “generalized Poincaré series” (see [12]), that (1.6) is in fact sufficient
for the existence of such a function F, and that moreover F can be taken
holomorphic in J#. Since any two integrals with the same period function
differ by a form we conclude that the collection of “distinct” automorphic
integrals with rational period functions is in 1-1 correspondence with the
collection of rational period functions ¢,

Now, we consider a rational perlod functlon g, , satisfying the two
relations in (1.6) for g\ = g, 7

dart  rlT=0,
a7l (S,T)" "+ - +g5 7= 0.
These two identities yield the further one
A7 dr=a S+ d(ST)S, + - +ay 7I(S,T)" 7S,

The following theorem is given by M. Knopp [14].
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THEOREM 1. (a) If Z, is a finite pole of any rational function satisfying
(1.6) for N =1, then there is a squarefree positive integer N such that Z, €
Q(/N).

(b) If the finite pole Z, is in Q, then Z;, = 0.

Proof. See [14].

The following is a straightforward generalization of Theorem 1 given by H.
Meier and G. Rosenberger [7).

COROLLARY 2. If Z, € C is a pole of any rational function satisfying (1.6)
then there is a positive number N € Z[N*] such that Z, € Q(/N,\) or Z, €
AQ(N) for N, = A\.

3. Construction of an automorphic integral for the Hecke group from
an automorphic integral for the commutator subgroup of the
Hecke group

We state the following result without proof.

THEOREM 3 (Nielsen). Let G be a free product of n cyclic group c; of order
m; generated by elements a; (1 < i < I). Then the commutator group G' is a free
group of index m = mym, ... m, in G and the rank of G’ is

enfore g2}

G’ is generated by the commutators [al, a?), where1 < i <j<land 0 <p <
m;, 0 < ¢ < m,. The factor group G/G’ is isomorphic to the direct product of the

cyclic groups ¢y, ¢,, ..., ¢,
Let us introduce some notation.

Notation. G’(A\,) is the commutator subgroup of G(A,). In particular,
G'(A;) = I'(1) is the commutator subgroup of G(A,) = T'(1). Let g, denote
the rational period function of an automorphic integral f, of weight 2k (k is
an integer) on G(A,); ie, f) |T =f\ + 4, , In the case n = 3, we shall
write g, = gr. If we do not spe01fy n, we shall write A, = A, .= 1
fx, and G()\ ) = G(N).

We construct automorphic integrals of weight 2k with rational period
functions on the commensurable Hecke groups G(A) (A = 1,v2,V3) from
those on G’(A). Since G’()A) is a free group by Theorem 3, the two conditions
in (1.6) for the rational period function reduce to only one condition and
consequently we can obtain automorphic integrals with rational period func-
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tions on G’(A). From these we construct automorphic integrals on G(A) itself
by summing over cosets of G(A)/G’(A). Applying an appropriate operator
(the Bogo-Kuyk operator [1]) from G(A) (A = v2,V3) to I'(1), we then obtain
further rational period functions for I'(1).

(a) The case A = 1. Construction of modular integrals with rational period
functions for I'(1) from modular integrals with rational period functions for
Q).

Note. By Theorem 3, I'(1) is generated by (a,, b;) where

(1.8) a, = S*TS, b, = STS>.

Construction. Let f be an automorphic integral of weight 2k, k € Z, with
rational period functions of I(1): f is a meromorphic function on ¢
satisfying the condition (1.1), that is, fiM = f + q,,;, where M € I'"(1), and
g, is a rational function. Further, f is meromorphic in the local uniformizing
parameter at each cusp of a fundamental region for I''(1). Since I'(1) is
generated by a,, b; in (1.8), the condition (1.1) is equivalent to

(1.9) flav=f+4q,, flby=f+q,.

Since I'"(1) is a free group, there is no element of finite order.
Now, consider the full group I'(1). We know that I'(1) = 23=0 I(1)S7. Let
us define the function

5
=X ns’,
j=0

J

where f is the given automorphic integral on I'(1). First note that the
function / is meromorphic in J#. At the cusps of a fundamental region for the
modular group the behavior of f is determined by the behavior of f at the
cusps of a fundamental region for the commutator subgroup of the modular
group. Also, we have

®

5
Y 187 + f|8¢ (since S¢ € T'(1))

Jj=1

(1.10) fis

J

Jj=1

5 5
AS7+ (f+4qg) = L 1S+ gg
=1
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where g is a rational period function of f.
(ii)
AT = fI(TS73) - 3 + fI(STS™*)S* + f|(S*TS %) S°
+f1(S*T) + fI(S*TS1)S + f|(S°TS~?)S?
(since TS~3, STS 4, S2°TS ™5, S°T, S*TS 1, S°TS~% € I'(1))
=[f+ qrs-31IS° + [+ o5 JIS* + [/ + goors5]1S°
+f+ gor] + [f + gsors IS + [f + gosrs2]IS?.

But 7S™2 = bja;t, STS 4= 5,575, S*TS™° = a,5™% by (1.8), which im-
plies that

(1.11)
AT =[f+ @uupr|IS> + [/ + Gus5-6]IS* + [f + qus5-6]IS®

7+ quor] + [+ dso IS + [+ gseq 157
5

= Z f1S7 + ‘Ib,a;‘|S3 t Gt quS""|S4 + ggop1|S + ‘1(115‘6|S5
j=0

+qs"a1“|S2~
If we put gg = g in (1.10), (i) becomes
(1.12) fTS=f~+ ‘156=f~+ gs-
If we put
qblaf1|S3 t Qe t Qp,s-61S* + gsop1|S + o 56| S° + G, 1187 = G
in (1.11), (ii) becomes
(113) AT =f+ 45,118 + qupr + dselS* + goep|S + qu5-61S”
+qS(’a1"1|S2 =f~+ qT,

where qs, Gr are rational functions. Since any rational f trivially satisfies
(1 12) we 1mpose the further restriction that f be a periodic function, that is,
f(z + 1) = f(z). This implies ds = gg¢ = 0 in (1.12). Then f is a modular
integral with a rational period function on I'(1). For §, satisfies the two
relations in (1.6) if §g = gg = 0.

Now applying the consistency condition

9, = A\ My + gy, for My, M, € (1),
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especially g,,|M~! = —q,,-1, we see that (for S® = a;b7%a;'b,) g =g =0
is equivalent to

q,,\b1 'ay by — g, |b7 'ay by — g, |a7 by + g, = 0.

Thus,
(1.14) 9oy = 4albr = @5, — ‘Ib1|b1_1a1b1,
or
Qo = 40| TS TS = g, — q,,|S°TSTS>.
Furthermore,
(115)  Gr=du + 4u|S7" = 4| T — q,|S7'T

+q, |87+ ‘Ib,IS_3 — 45|87 — ¢,|1S7°T.
For, from (1.13),
4r= ‘Ib,a;1|S3 + gapr t ‘Ibls—6|S4 + ggspr1|S + ‘Ials—‘SlS5 + ‘Is6a;1|S2
= —q,1a7 'S’ + ¢, 1a7'S? + ¢, b7 — gy, 16T + ¢, 1S}
—qa1|af1S2 + ‘IbJS—2 ~ q3,|b7'S  (since gge = 0)
= —qu|T+ 487> + 44 — 4, |ST°T + q,|S™}
—qqlar'S? + ¢,|S7% — q,,|b1'S,
because (1.14) implies that
9178’ + q,,1a7'S% + q,,|b7" — gy, |b1"
= —q,|T+ q,|S7> + q, — 4, |S°T.

On the basis of the above construction, we state the following theorem.

THEOREM 4. If we have any two rational functions q,, q, that satisfy the
single relation

4o, — 4, \TS7'TS = q, — q,, |S~°TSTS?
in (1.14), then
Gr = 4o, + 94157 = 4o 1T = 4,|S7'T + 4,|S7°
=4, |S7T = ,,|S7°T + q,,|1S

in (1.15) is a rational period function.
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Proof. From the above construction, g, in (1.15) satisfies the two relations
in (1.6).

Later, we shall see the direct application of Theorem 4 (Theorem 8).

This method can be generalized to construct automorphic integrals with
rational period functions for G(A) from automorphic integrals with rational
period functions for G'(A).

(b) The case A = V2. Construction of automorphic integrals with rational

period functions for G(y2) from automorphic integrals with rational period
functions for G'(v2).

Note. By Theorem 3, G'(v2) is generated by (a,, b,, c,) where

(1.16) a, = S,TS;'T, b, = TS;'TS,, c,= S,TSTS,, Si= ((1) ‘/15)

Construction. Let f, be an automorphic integral of weight 2k, k € Z, with
rational period functions on G’(y2); f, is a meromorphic function on #
satisfying the condition (1.1), that is, f,|M = f, + q, 5, where M € G'(V2),
and ¢, j, is a rational function. Further, f, is meromorphic in the local
uniformizing parameter at each cusp of a fundamental region for G'(y2).
Since G’(V2) is generated by a,, b,, ¢, given in (1.16) the condition (1.1) is
equivalent to

(117) flay=fit 424, Hlba=hHht+ a2, hLlea=hH+ .,

Since G’(¥2) is a free group, there is no element of finite order.
Now, consider the full group G(v2). We know that

G(V2) =

LBJ G’(ﬁ)&{) U

Jj=0

U ez )Tsz).

j=0
Let us define the function

3

=X (£IS{ + £ITS]),

Jj=0

where f, is the above automorphic integral with rational period functions on
G'(/2). )

First note that the function f, is meromorphic on 5. At the cusps of a
fundamental region for the Hecke group G(v2) the behavior of f, is deter-
mined by the behavior of f, at the cusps of a fundamental region for the
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corresponding commutator subgroup G’(v2). And we have

®

3
(1.18) fHlSe= X (f2|SAi +f2|TS«{) + gy 54+ Gy rsirl T
j=0
since S§, TS;T € G'(y2).

(i1
LIT = £ T + f|S,TST T\ TS, + £, SIS *T| TS}
+HIS{TSTTITS + f + HITS, TS Sy + ol TSITS |83
+HITSITS |3,
Since, by (1.16), we know that
SIS T = a,, S}TS;’T = ayc;'a,,
SITS;3T = Sfc;'a,, Si=ax;'h,,
the above implies that
(119) LT =Ff+ 43, 0| TSe + @3, aye10,| TSE + @3, 58710,| TS2
+q5, 451184 + 4, az_lczaz'llsdz + q,, a;'czs;4|S43-
If we put q; 4,51, + 92,0557 | T = G5, 5, 1n (1.18) and
92,0, TS4 + 45, azc{laleS‘iz + 9, stc; a2|TS4 + 43, 451154
+q2,a{1c'zaz_1|s42 + q,, a;lczs;4|s4 =415
then (1.18) and (1.19) become
(1.20) AISi=fi+ 4, S = Hi+a, ares'by T 2, a51cpp511 T
(1.21)
LIT=f+ Gy =f+ 42,4, TSs + 42,a2c;1a2|TS4 t ga, s3c51a leSf
43, 451188 + 92, 05100051158 + G2, a51eysi41 S

Both §, 5, and §, r are rational functions. Since any rational function £
trivially satisfies Q. 20), we impose the further restriction that /, be a periodic
function, that is, f2(z +V2) = fz(z) This is equivalent to

4o, 5, = 9, ayesthy T 42, axtep | T = 0

in (1.20). Then f, is an automorphic integral with a rational period function
on G(v2), for g, satisfies the two relations in (1.6) if §, 5, = 0.
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Applying the consistency condition
92, mm, = 92, | My + 43y, for My, M, € G'(V2),

we see that, since S} = a,c; 'b, and TS;T = a;'c,b; %, §, 5, = 0 is equivalent
to

(1.22) 9, a2|T~S‘4TS43 4>, aleS: + 42,5, ~ 9, b2|S4-lTS4
+45,6,185 TSy — 45, ,| TS, TS; = 0.

Also, with (1.22), §, 7 in (1.21) becomes
(123) Go,7= 1,0| TSs = 4, 0,| TSST + 43, | (TS,)'T = 43,1 (TS,)*
+42,0,| TS? = 42, 0,| TSIT + @3, 4,| TS3
=3, )| (TS4)*Su + 43, ,|(TS,)°
— ¢, (TS4)2T - ‘12,c2|S4_1T + 43, (TS4)ZS4~
On the basis of the above construction, we may state the following theorem.

THEOREM 5. If we have any three rational functions q, ., 45 1, 9>, ., Such
that

42, 0,| TSATS — 43, 4,| TS}
+ 45,5, = 92,5,15 'TSy + ¢, c2|S4—1TS4 = 42,,|TSTS; = 0
in (1.22), then §, r in (1.23) is a rational period function for G(2).
Proof. §, r satisfies the two relations in (1.6) from the construction.

(c) The case A = 3. Construction of automorphic integrals with rational
period functions on G(¥3) from those on G’(V/3).

Note. By Theorem 3, G’(V3) is generated by (a,, b, ¢;, d;, e,), where
(124)  a, = STST'T, by = TSC'TSs, ¢y = (ST)H(S'T),

dy = (TST)(TS,), €3 = (ST)(85T)° for S = ((1) ‘/13_)

Construction. Let f; be an automorphic integral of weight 2k, k € Z, with
rational period functions on G’(¥3); f; is a meromorphic function in ¢
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satisfying the condition (1.1), that is, f;|M = f3 + g3, p> Where M € G'(V3),
and g, », is a rational function. Further f; is meromorphlc in the local
un1formlzmg parameter at each cusp of a fundamental region for G'(Y3).
Since G'(V3) is generated by a,, bs, ¢5, ds, e; defined in (1.24), the condition
(1.1) is equivalent to
(1.25) flas=fi + 93, a, Llby =1+ q3, b,

Hles=fit s, flds=fi+4q;,,

Lles=f+ 93, e,

Since G'(V3) is a free group, there is no element of finite order.
Now, consider the full group G(v3). We know that

6 - | Uowms

U 6/(/3)Ts/
j=0

for Sg = ((1) ﬁ)

Let us define the following function f; such that

5

f; = Z (fslssj +f3|T56j)a

Jj=0

where f, is an automorphic integral with rational period functions on G'(3).
First note that the function is meromorphic in 5. At the cusps of a
fundamental region for the Hecke group G(v3) the behavior of f; is deter-
mined by the behavior of f; at the cusps of a fundamental region for the
corresponding commutator subgroup G’(Y3). Furthermore, we have

@
5

(1.26) AlSs= % (f3|S6j +f3|TS6j) + g3 58 + 43 1557l T
j=0

since S¢, TSST € G'(V3).
(i)
~ 5 . o . 5 . . .
HIT=HIT+ X fISITSTITSE + f; + X f5| TS{TSs 7| SY.
j=1 Jj=1
Since, by (1.24), we know that
SeTSg'T = a;, SETSg*T = ascy'a,,
STSg 3T = ascylescylay, SETSg AT = S&by 'escs 'as,

SeTSs °T = S8by 'TS °T,
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the above implies that
(1.27) fng =f+ qS,a3|TS6 + q3,a;c§‘1a3|TS62 + ‘13,a3c;1e3c;1a3|T363
+‘I3,sgb;1e3c;‘a,|TS64 + 43, sép;i7ssorl TS + 43, 451156
+‘13,a;‘c3a;‘|S62 + q3,a3_lc3e3_lc‘3a§"|S63
+‘I3,a;‘c;e;‘b3sg6|Sg + ‘I3,ngTb,sg°|Ses-
If we let
OG,s8t 43,7557l T = 4
and
g3, r= q3,a3lTS6 + ‘Ia,a,c3"¢z,|TS¢52 + ‘13,a3c;1e3c3—1a3|TSs3 + q3,S§b3‘1e3c3‘1a3|TSé
+q3, 5855750571 TSE + 43, 051186 + @3, a510,051 158 + @3, a5cre5 00052156
+‘I3,a;1c3e;1b3s6-°|s64 + q3,115‘2Tb3S6’6|S65’
then (1.26) and (1.27) become
(1.28) f;IS6=f;+‘73,s6=f§+qa,sg+qs,mgﬂT
=f+ 93, aycilesds by T 93, a5tesestazpst] T
and
(1.29)
BT =fi+ @5, 1= s + 03,0\ TS + 43, 0,050, TSE
43, arertereitay| TS6 + 43, stb1ereria)| TSe + 4, sepyizsyor! TSE
+Q3,a;1|S6 + q3,a;1c3a;‘|S62 + q3,a;1c3e;1c,a;1|S63
43, a5 c,e510,555156 + @3, 1587,5061 56 -

Since any rational function f; trivially satisfies (1.28), we impose the further
restriction that f; be a period function, that is fy(z + V3) = f;(z). This is
equivalent to g; ¢ =0 in (1.28). Then f; is an automorphic integral with
rational period function on G(v3). For G, r satisfies the two relations in (1.6)
if g, 5, = 0.

Applying the consistency condition on gs ua, = g3 4, |Ms + g3, for
M, M, € G'(Y3), we see that (with S& = ascile,d;'b,, TSET =
ay'ces'dyby ') Gy 5, = 0 is equivalent to
(1.30)

Gs,s, = 93,0, TS6TSS — 43, 0,1 TS¢ + 3,5, — 435,156 'TSs

_ _ 2
+qy o |(TSs)’S2 = G5, | TSeTSE + G5, 4,186 ' TSs — g3, 4,1(S¢'T ) 8¢
_ 2
+45..,1(S5T) 82 - g5,.,1(TSg)’S2=0.
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Furthermore, §; 7 in (1.29) becomes
(1.31)

G5, 7= 45,0, TSs = 43,0\ TST + 43,0, | (TSe)’T = 3,4, (TS5)°
+43,0,|TS¢ = 43, 0,| TSET + 43,4,|TSE — 43, 4,| TET
+q3,a3|(TS6)2S6T - q3,a3|(TS6)2S6
+43, 5,18 ' = 43,5,18 'T — q3,5,|186 *T + 43,1;3‘(36—1T)2
+45, 5,186 > = 3,5, 86 TS
+43, 6,1 (TSe)” = 45,61 (TSe)'T + 45, |(TSe)’T = 43, |(TS)’
+q3,c3|(TS6)2S6 - q3,c3|(TS6)2S6T
+q3,4,18 'TSs ' = q3,4,|86 'TSg'T

3 3
+45,,1(TSs)” — 43,,1(TSs)’T.
On the basis of the above construction, we may state the following theorem.

THEOREM 6. If we have any rational period functions g ., 93,
43, ¢y 93, dy 93, Satisfying condition (1.30), say,

93,0, TSeTSE = 43, 4,| TS + G3,5, = 43, 5,156 ' TS
3 -
+5,,1(TSs) 8¢~ q3,c3'TS6TS65 + 93,4, 'TSs

1\ 2 2
—‘13,43|(Se 'T)"s¢ + ‘13,e3l(56 'T)"s¢
~3,,1(TS6)’S¢ = 0,

then g, 1 in (1.31) is a rational period function on G(/3).

Proof. §, r in (1.31) satisfies the two relations in (1.6) from the construc-
tions.

We have found a relation between rational period functions of automorphic
integrals on G(A,) and those on G’(A,), for n = 3,4, 6. Now, by applying an
appropriate operator from G(A,) (n = 4,6) to I'(1), we can get more examples
of rational period functions on I'(1). We note that the pairwise commensura-
bility of the Hecke groups G(A,) (n = 3,4,6) permits the construction of
modular integrals with rational period functions for G(v2) and G(y3). This is
demonstrated by the following lemma which uses a construction introduced by
Bogo and Kuyk [1].
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LEMMA 7. Let F be an automorphic integral for G(\) where X = V2 or V3
of weight 2k with generating period function q, r = q,. Then

Nl izt
F(z) = KR(Az) + A7 ) Fx(“‘)\_‘)
=0

is a modular integral with generating period function q, 1 = q, where

a1 = aa(Az) + X Hgy(2/A) + >‘_2k‘1>\(z x 1) +(1- ﬂ‘”‘%(%)

ifA=V2

and

0 = ¢x(Az) + A7, (2/N) + A‘qux(z X 1) + 7\‘2’%( S l)

+(z+ 1)-“%(2’;21) - z)—quk(lk_zz) if A=y3 .

Remark. A. Parson and K. Rosen [18] used this lemma to get the examples
of rational period functions with poles in Q(y3), Q(V21).

Proof of Lemma 7. See [18].

4. An application of Theorem 4: Examples of quadratic fields
containing poles of rational period functions (pole-matching method)

Let us go back to Theorem 4. If we have two rational functions g, = ¢
qs, = 4, such that

a’

4, — q.M = q, — q,|N where M = TS™'TS, N = S™*TS,
then
qT = qa - qalT + qals_l - qals_lT + qb|S_2
—q,|STT + ¢,|S7% — q,|S7°T

satisfies the relations in (1.6): Now, if ¢, has a pole at the point «, then g,|M
has a pole at M~'a. On the other hand, if g, has the pole B8, g,|M has a pole
N~18. In order to satisfy the relation,

4.~ 9.1M = q, — q,|N,

these poles should be matched. By applying this idea we get the following
theorem.
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THEOREM 8. Given a quadratic field

where F, is the Fibonacci sequence, Fy =0, F\, F, =1, F; =12,..., then there
exists a nontrivial rational period function qr of modular integral with weight 2k,
k odd with poles in K. To prove this theorem, we need the following lemmata.

LEMMA 9 (James and Knopp [10], [11]). Let M € SL(2, R) be hyperbolic.
Then a nonconstant meromorphic function r(z) on the complex plane satisfies
r|_, M = r|M = r if and only if

r(z)=A(z — o)) *(z — a,) 7"
where A € C and wy, a, are the real fixed points of M or
r(z) =A4(z - a) "
where A € C and ay, 00 are the fixed points of M.
Remark. Let us consider the relation (1.14):
9a = 9uM = g, — 4| N for g, = G, Gy, = qp-

In particular, suppose g, has only one pole a, g, has only one pole 8, and
poles match in the following way:

« B for M = TS™'TS, N = (S7*TS).

||

M N8

Then claim that the ¢, in (1.15) is a constant multiple of the example in
Theorem 1 [13].

For, we have the relation ¢, — ¢q,|M = g, — ¢,|N and, by the pole match-
ing, g, = q,|M and g, = ¢,|N. Lemma 9 implies that
g.=a(z—a) “(z-a)"
g =co(z—B) (2= B) ",

where ¢;, ¢, € C, a, o’ are the fixed points and B, 8’ are the fixed points of N.
We get the rational function ¢ from g,, g, by (1.15). A calculation shows that
qr is the same as the rational function in Theorem 1 [13].
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LEmMMA 10. Let

M=TS‘1TS=(} ;) N=S“‘TS=(_4 _5);

then

F2m—1 F2m )
F2m F2m+1

) M" = (

F2m+1F2m+F22m—l “2F2m+1F2m

m-—1 m
(2) MH" (NTH) (M) =
_2F2m——1F2m F2m+1F2m+F22m—1

where F, is the Fibonacci sequence, Fy = 0, F, = 1, F, = 1,... . Thus the fixed
points of (M~ H)""Y(N~Yym(M~1) are

F, 2
44/ 2L ome Z*.
( F, 2m-—1
Proof. Since it can be proved by induction on m, we omit it.

LeMMmA 11. Forme Z™,

(a) B Py =~ BBy > By forl<ism-—1,
1By = BisBopy > By forl<i<m-—1.

(b) FsBom — FiaFomi1 > By for 0<i<m—1,

FiiiFom = FiFypi1 > By forl<i<m-—1.
Proof. (a). This becomes
Ffi1Fymi1 = FiiaFyp1 > By forl<ism—1
because F?F,, ., — F2F,,,_, = F,, > F,,_, for m > 1. Now, since

F2m+1F22i+1 - F2m—1F2%+2 - b,
= F2m+1kF2%+1 - F2m—1(F2i+3F2i+1 - 1) = F
= [F2m+lF2i+1 - F2m—1F2i+3]F2i+1
it is enough to show that

F2m+lF2i+l - F2m—1F2i+3 > 0 fOI'l < i <m-— 1.
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But

Frmi1Brivr = By 1Fiss
=[Bp+ Bl Biv1 — Bpi[ Biia + Byl
=FE,Fyii1 = By Fiin
= (Bt Bp2) Fivr — F2m—1(F2i+1 + Fy)
=Fp o — By By
= F2m—2(F2i + Fy) = (Bpoyt Bp3) By
=Fpabhi1 = B s By
= (Bym-s + Fom-a) Bicy = Fypy(Fyiy + Fyy)
=Fpabri = By 3by

=B 2iF5i2iv3 = Bmogiv1Fricgien
=Fyp9iFs = (Fypogi + s 1)

(b) Because it is similar to (a), we omit the proof. Now, we return to the
proof of Theorem 8.

Proof of Theorem 8. The relation (1.14),
90— 9alM = g, — 4| N,

suggests the following: If g, has poles at {a,}, i =1,..., m, then gq,|M has
poles at {M~'a,;}, i =1,...,m. And if g, has poles at {B;}, j=1,...,n,
then g,|N has poles at {N~'8,}, j =1,..., n. Because of the relation (1.14)
they should match each other. In particular, we consider the following pole
matching scheme:

(1.32)

o a; Q3 T Qy, lBl BZ o '\ Bm
> < Y ~ N

M, My M -+ MW, NB NB --- NIB,.

where an arrow indicates that they are the same. Here the { «;} are the poles of
q, and the { 8;} are the poles of g,. In particular, let

g, =n(z) +nr(z)+ - +r,(z) and q, = u,(z) + uy(z) + -+ +u,(z)

where r,(z), u;(z),1 <i < m, are rational functions that have the form
A, (z — 1,)™%(z — 17)7, for some I, € Q(YN), I/ is the algebraic conjugate of
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[,in Q(YN), and 4, € C is a constant. Since ¢, has poles at {a;},1 < i < m,
we choose

r(z) =4,(z - a,-)_k(z - a})—k for 4; € C.
Also, since g, has poles at 8, 1 < j < m, we choose

u;(z) = B;(z - ,Bj)—k(z - Bj’)_k for B, € C.
Then the relation (1.14),

9.~ qa|M =4, — qblN’

becomes

n+rn+--tr,—nM-nM----—-r,|M

=u +tu,+--- +u, —uy|N—u,)N= .- —u,|N

m|
for

m

m
9, = Zri’ qp = Zui'
1

1

By the above pole-matching scheme (1.32), we can assume that

n=nM,rn=n|M,....1,_ 1=r1,|M,
r,= —u|N, u, = uy|N,...,u, [N,
u, = —n|M.
This implies that
(133) o= nl(M7)" (N (MY,

If we apply Lemma 9 and Lemma 10 (2), then we get the explicit formula
r(z):

—k —k
Fm Fm
(1.34) rl(z)=A1(z— szﬁ) (z+ f;—;ﬁ)

without loss of generality put 4; = 1. Also we have the equation (1.14),

92— 9.M = q, — q,|N.
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By the relation (1.33), g in (1.15) is

(1.35)
m—1 i m—1 ;
ar = Z "1|(M—1) + Z r1|(M_1) st
i=0 i=0
m—1 ; m—1 ;
- Z r1|(M‘1) T- Z ’1|(M_1) ST
i=0 i=0
m
_qym—1 AN Y
- X nl(M )" (NY)S?
i=1
m . m B ;
= Y al(M )" TN S+ YoM )T (N ST
i=1 i=1

+ 3 Al TN s,

i=1

(This g, satisfies the two relations in (1.6).) It remains to show that ¢, in
(1.35) is not zero.
First, let us simplify (1.35). We know that

(1.36)
(N1 = (STTS*S™ITS*... S7ITS*) = [S2(STS2STS?... STS?)S?]

i factors i factors

= S"2(M)'S? (since M = STS? = TS™'TS, N = ST*TS).
By (1.33) and (1.36), we know that

Al(M)" (NS
= r,|MN"(N-1)'s—2
= n|ST(M™Y)" ™" = 1,|ST(S"'TSTSTST... S~'TST)
=r|S(M)™'T.
Therefore
m m m—1

Y al(M )" NS 2= Y n|S(M)"'T= Y n|SMT.
i=1 i=1 j=0
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So (1.35) becomes

m—1 X m—1 X
(1.37) gr=n+ L nl(M) = ¥ n|(MYH)T
i=1 i=0
m-—1 ; m—1 ;
+ Z nl(M~1) s~ - Z "1|(M_1) N
i=0 i=0
m—1 ‘ m—1 )
+ Y n|SMi— Y n|SM'T
i=0 i=0
m—1 m—1 )
+ Y n|SMTS™'T - Y r|SMTS .
i=0 i=0

To prove that g, is not identically zero, it is enough to show through r, is
never cancelled in (1.37).

Since
’ F, m
rl(z) = (Z - ———"I?z jll

L= (‘; b) e SL(2, R)

—k 7 —k
2m+1
z+ ) F2H
( F2m——1 )

by (1.34), for

d

we consider Table (1.38). Now, I claim that », in (1.37) is never cancelled.
Since, in (1.34),

-k —k
_ F, 2m+1 F, 2m+1
O Sl
the coefficient of r,(z) equals 1. The worst possibility is the following: For s at
least one of the coefficients of the terms in (1.37),

{nl(M=Y)', n|(M™Y)'T, | T, n|(M7)'s 7,
nl(M™Y)'S™IT, n|S(M)', n|S(M)'T, r,|SM'TS T, r,| SM'TS " }
forsome0 <i<m-—1,

is 1 or —1, and the poles are matched. Table (1.38) shows that this would
imply

(1.39) F2F,,_,— F:_ F,.1= tF,,_, forsomel<i<m-—1,



or
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Table (1.38)

rll(f, Z)

2m—1

Coefficient [a2 - 02(%)]

rll(M_l)'
l<ism-1I

Rl(MY'T
l1<l<m-1

n|T

nl(M1)'s™
0<i<sm-1

’1|(M_1)is_lT

O<i<m-1
rn|SM!

0<is<m-1
rn|SM'T

O<i<m-1
n|SMTS™!'T
0<i<m-1
rn|SMTS ™!
O0<i<m-1

2 2
F2i+1F2m—l - F2iF2m+1

Fim—l

2 2
Eii1Fm-1 — FiFm
FZm—l

2 2
F2i+2F2m—1 — F2i+1F2m+1

F2m—1

2 2
F2i+1F2m—1 - F2iF2m+l

F2m——l

2 2
F2m—1F2i+2 - F2m+1F2i+1

F‘Zm—l

2 2
F25+3F2m—1 - F2i+2F2m+1
F2m—1

2 2
F2m—1F2i+2 _ F2i+1F2m+1

F2m—1

2
Bi+1F2m—1

2 Y _

Fivobpy — BB = £ 6,4
2 2 _

BB — BB = £ 5,

But, by Lemma 11, we know that

(1.40)

2 _ g2 = —
F2i+2F2m—1 F2i+1F2m—l - F2m—1

inthecase m=1and i = 0, or

2 _ 2 =
F2i+1F2m—1 inF2m+1"F2

m—1

in the case i = 0 and all m.

515
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Then, from the Table (1.38), (1.40) implies that the coefficients of
{n1(M=)°s~1, r|SM°)
equal (1)~* for every m, and the coefficient of
{nI(M~)°s7IT, 1| S(M)°T, r,|S(M)°TS )
equals (—1)* for m = 1. The simple calculation shows that
{rn1S7Y, n|S, n|S™'T, ry|ST, r,|STS '}

is different from r(z), for k odd, by looking at poles. Therefore, r, in (1.37) is
never cancelled for every m, so g is a nontrivial function, q, # 0.
The proof is complete.

5. Some generalizations

(A) A generalization of Theorem 4.
We generalize Theorem 4 to all of the Hecke groups. If g, g, satisfy (1.14),

4, — 4,/ TST'TS = g, — q,|S™*TSTS?,
then
Gr=1qs= 9T+ q,IS7" = q,IS7'T + q,|S™>
—qp|STT + q,|S7° — q,|S°T

is a rational period function of a modular integral with weight 2k on (1).
This can be generalized to all of the Hecke groups.

THEOREM 12. If we have any rational functions h, g such that, for

S, = (1 A”), A, = 2005%,

0 1
we have
(1.41) h — h|TS;'TS, = g — g|S, *TS,TS?
then
(1.42) 4pr=h—h|T+h|S; ' = h|S;'T

+g|8, 2 — g|S, T + g|S,* — gIS,°T

is a rational period function of an automorphic integral with weight 2k on the
Hecke group

G(N,), N\, = 2003%, n>3.
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Proof. According to §2, it is enough to check the two relations in (1.6). The
condition g, 7|T + g, r = 0 is obvious from the form of g,  in (1.42).
On the other hand,

T 4,175’ (with X - %1)
- § B(TS,)' - % HIT(TS,)’

n—1 n—1
+ X kIS, TS, - X kIS, 'T(TS,)’
0 0

n—1 n—1

+ X 8IS, TS, - X glS,*T(TS,)’
0 0
n—1 n—1

Y gl (Ts,) - X glS;*1(Ts,)’
0 0
n—1 . n—1 )
(since Y h|(TS,) = Y h|S'T(TS,)
0 0
n—1 ) n—1 )
and Y, g|S,%(TS,) = ¥ gISn"3T(TSn)')
0 0

n n—1

-1
- [h|T(Ts,,)' + Y h|S;N(TS,)™!
0 0

n—1 n—1
— ¥ gl (TS,) P+ X g|s,:’(Ts,,)‘“]
0 0

n—1

Y [-nrT(TS)" + BS;1(TS,)"*

—g|S;2T(TS,) ™ + g18,%(TS,) ] = 0.

This holds because (1.44) implies that

n—1 )
> [n1S;4(TS,) = hIT - g157X(TS,) + g15;,(7S,)’]I(TS,)’
0

n—1
= ¥ [rs;U(TS,) - BT - g1S7°T(TS,)” + g15;,%(TS,)*||(TS,)’ = 0.
0

The proof is complete.
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Remark. In particular, if h|TS, 'TS, = h, g|S, *TS,TS? = g then g,  in
(1.42) is a constant multiple of the examples in Theorem 2. 4 [21}, for A = V2
(n=4)and A = V3 (n = 6).

Note. We give some explicit examples of g,  that arise from (1.42).
The relation (1.41) is
h — h|TS;'TS, = g — g|S; TS, TS?.

For instance, if we choose h = —g|S, TS, TS?, and g = —h|TS, 'TS,, then
the relation (1.41) is satisfied. Furthermore, since

h = —g|S;73TS,TS? = h|TS, TS, *TS,TS?,
Lemma 9 implies that

2 3
h = h|TS; TS, TS, TS2 = h| ( 1+ 24 4x )

A2N) ANt -2N +1
if and only if

( 1-A+ x‘+1)_k( 1—>\2—\/>\4+1)_k
h=c|z - X z— X

Without loss of generality assume ¢ = 1.
(a) The case A = 1. A simple calculation shows that the g, of (1.42) is

V2
+2(z-1+v2) “z-1-v2)"

+2(z+1+v2) “z+1-v2)7"

for k odd.
Note that ¢, = 0 for k even.
(b) The case A = V2. A simple calculation shows that 44,7 in (1.42) is

( _ i;_fl‘p_)"‘(z_ —_fz_z—_ﬁo_)'k

qa,7=2|z
-k ~k
+2_k+1(z_ —ﬁ:,/m) (z_ -\/2_4—\/10)

+2|z

( _ ﬁzﬁﬁ)"‘(z_ ﬁ;ﬁﬁ)‘k
+2_k+1(z_ ﬁﬂﬁ)"‘(z_ ﬁ—“M)“k

for k odd.
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Note that g, = 0 for k even.
(c) The case A = 3. A simple calculation shows that g, r in (1.42) is

+\|z

( _ "5’;‘5‘7)_"(2— 5—3‘/56)“"
-(—3)_"(2— »/51;»/35)"‘(2_ ﬁ—gﬁﬁ)“k

)

_(_1)—k(z -3 + \/375) ( —ﬁ;\@_ﬁ)_k
e BB

_(_1)-k(z 23 + \/370_) ( _2E—M)—k

for k even or odd.

Remark. Theorem 5 and Theorem 6 can also be generalized to all of the
Hecke groups as Theorem 12.

(B) A generalization of Knopp’s construction [13].

M. Knopp [13] initiated the study of rational period functions of modular
integrals which differ from the period functions of Eichler integrals.

Here, we generalize M. Knopp’s construction of [13].

THEOREM 13. Let G(A,), A, = 2cosw/n withn € Z, n > 3, be the Hecke
group. Let f be a rational function such that

Alsi, ] = fsirs; 't =,
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where, as before

(1 A} ~_ (0 —1) B .
S"_(o 1),T—(1 o ) 1=l...ez".

Then if k is an odd integer, the nontrivial function
-1 ' -1 i . ! .
(1.43) Gur= LATS,T— LAS,T— LATS;+ L fIS,
i=0 i=0 i=1 i=1

is the generating period function of some automorphic integral of weight 2k for
G(A)).

Note. When n=3 and /=1, ¢, in (1.43) is an example by M. Knopp
[13].

Remark. Since

AI2+1 A

SITS-IT =
nen ALl 1

) and f|S!TS,'T = f,

f has poles in Q(yA%/* + 4, \,) by Lemma 9. Furthermore, g, ; is obtained
from f by subjecting the variable z to linear fractional transformations, so we
conclude that these {g, r} have poles in Q(yA%I> + 4, \,).

Proof of Theorem 13. Define r = f|T — f, again a rational function. Since
T? = I, we have r|T + r = 0. Now,

-1 i I /
Gur= LrIST— XrlS, with ) =3,
0 1 i=0 0

and since (7'S,)" = I, it follows that

n—1 -1 i '

Y 4, 71(TS,) = L rIS;(TS,)" " = Erisi(Ts,)"

0 0 1

-1

l
+ Y r|SitNTS,)" 7 = LrlSi(TS,)"
0 1

-1 ]
+ oo+ Y r|SIT = Yor|SE
0 1

= 0 (since the sum telescapes).
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On the other hand,
4o, 7| T + 4,7 =T = ITS, + fIS; = ATS,T + f — [+ IS;T = fIT = 0,

since f|TS! = f|S!T. So this q,, 7 satisfies the two relations in (2.6).
Now, I claim that g, , is nontrivial, for k odd, i.e., g,  # 0. To show this,
let us consider the following. From (1.43),

-1

i
Gu 7= Y r|ISIT — Y r|S! wherer = f|T — f.
0 1

Since f = f|S/TS, 'T, Lemma 9 implies that

A+ (A0 + 4 )_k( R CET N

2 2

= —c|z —

for k odd. Without loss of generality assume ¢ = 1. Note that r(z) = 0 for k
even. So,

(1.44)
-1 -1

/ l
Gur= LrIST—YrISi=r+ Y r|ST— Yr|S;
0 1 1 1

-k
o li:l(iz)\z . 1)"‘(2 =M A (M) + 4 )

- 21 + N1 - i2A2)

0

X

2(1 + N - i2R2)

—k
( —2iN, + A0 = (A1) + 4 )
,

2

—k
( —2iN, + A0 — (A1) + 4 )
Xz —

2

—k
! ( —2iN, + N, ]+ \/(A,,l)2+4)
+ Z z —
1

Now, we claim that r(z) in (1.44) is never cancelled. Since the coefficients of
(—ZXir|S}))in g, r equal 1 from (1.44) the worst case is that the coefficients of
(+Z5° 1 r|SIT), (iN, — iN2] — 1)k, equal 17 % = 1 for k odd, and the poles of
Y41 7|SIT are matched to those of X! r|S;.
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Table A
Examples g, r in Theorem 13 for odd k
(a) Thecase A =1

! Poles of g,

=1 i{liz‘/g}

[=2 i{liﬂ,iﬁ,i—%}
D) () 1)

145
I=4 +(2+V5), £(1+/5), +{ },iﬁ,ix/—

(b) Thecase A =2

! poles of g,

- s[4

=2 (V2 £V3,+/3, ¢

T
PR ()
I=4 +{2/2 £ 3), i{ﬁ+3},i%,i3,
+(/2 +3)

(¢) Thecase A =3
! Poles of g,
[=1 i{—ﬁziﬁ}
[=2 i{ﬁi4},i%,i2
R

=4 +{2/3 £/13}, +
+{/3 £/13)
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Now, compare coefficients. Suppose i2A%, — iA4] — 1 =1 for some 0 < i <
I — 1 so that iA2(i — [) = 2, for some 0 < i </ — 1. This implies that i(i —
I)=2and N2, =1 or A2, =2 and i(i — I) = 1. These are impossible since
0 <i< /-1 Thus g, r is a nontrivial rational period function of an auto-
morphic integral with weight 2k (k odd).

The proof is complete.

In Table A, I gave a few explicit examples, obtained from Theorem 13, of
rational period functions on G(A).

6. Rational period functions with poles in arbitrary real quadratic fields

1. Existence of rational period functions for modular integrals of weight 2k, k
even or odd, and with poles in an arbitrary real quadratic field Q(YN), N € Z*.

(a) Construction of the rational period function.

In this section we once again construct rational functions satisfying the two
relations in (1.6); an argument involving Pell’s equation shows that these
rational period functions can be constructed with poles in arbitrarily chosen
real quadratic fields Q(YN), N € Z*, and with k even or odd.

THEOREM 14. Let g be a nonconstant meromorphic function such that

g|—2kS;£T = 8|S;{T =8

where

and | > 4. If k is an integer (odd or even),

-1 -1
(1.45) Gur= 2 8ISI— X gISIT
i=1 i=1

is a nontrivial rational period function of an automorphic integral of weight 2k

for G(\,).

Remark. By Lemma 9,

-k
M+ R12 -4 )

(1.46) g(z) =glS,T=c- (z— 5

( NI — =4 )"‘
Xz —

2
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Without loss of generality assume ¢ = 1. Therefore, g, ;(z) has poles in

0N V(M0) - 4).

Proof. The proof is given in two steps.

Step 1. To demonstrate that g, , generates a period function for an
automorphic integral it suffices to show that g,  satisfies the two relations in
(1.6).

® 4, 7|T+ q,r=0is trivial by a construction of g, 7.

(i) Since (S,T)" =1, and g|S'T = g,

n—1
2 4,.71(S,T)'
0

n—1 n—1
with ) = )
i=0 0
-1 ' 1 -1 ) .
= 2 gISi(S,T)" = X gISiT(S,T)"
1 1

-1 -1
+ L gISi(S,T)" 7 = L alISiT(s,T)"
1 1

-1 -1
+ oo+ Y glSi(S,T) — X gIST(S,T)
1 1

-1 ' -1 )
+ ) glSi— X glSiT
1 1

= gIS7'TS; " — g| TSt + gISL (TS, )
—gl(TS; 1)+« +g|SIT— g|S,T+ IS/ — g
= (glsi778,7t - gI(T8,1)°) + (8ISt 4(T8,)
—gl(Ts;1))) + -+ +(gI(SiT) - g)

+(g|Si7t - g|TS; V) =0.

Therefore, g,  is a rational period function of an automorphic integral of
weight 2k.
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Step 2. It remains to show that g,  is nontrivial, that is, that g, r # 0. To
show this, let us consider the followmg From (1.45) and (1.46), we have

(1.47)

-1
4ur(2) = L gISi— X gIST
i=1

i=1

l‘_[.l( A — 20N, + (RIF— 4 )"‘
.o

2

i=1

( A= 20N, — R4 )_"
Xz —

2

- If(m\%, +1-i1)7" (z A 20N ¥ N - 4

2(—i%2 + i1 — 1)

i=1

( A = 20\, — K174 )_k
Xz —

2(—i22 + N - 1)

Since the coefficients of (X!Z1 g|S)) in 4,7 equal 1 from (1.47), the worst case
is that for some 1 <i < —1, the coefficients of (Z/Z1 g|SiT), (i2A2 + 1 —
i)k, equal 1 and the poles of X!z} g|SiT) are matched to those of
(21-1 g | S )

Now compare coefficients. Suppose (i2A2, + 1 — iA%])~* = 1. There are two
possibilities:

(1) %A%, = iN] for k odd or even. This is impossible for 1 <i < /— 1.

) 1}\21 — N 2 = i\ 2 (I — i) = 2 for k even. This implies either i(/ — 1)
=2, A2 =1or 1(1—-1)-— 1, A3, =2 for i,l € Z*. These hold only for / = 3,
i=1, )\,,=1; 1=3,i=2, A,,=1;andl=2,i=1, A, =2

Thus, g, r is a nontrivial rational period function of an automorphic
integral with weight 2k (k odd or even), whenever / > 4.

The proof is complete.

Remark. In Theorem 14 g, ; is nontrivial if k is odd for /=3, A = 1.
Furthermore, this is the same example as given in Knopp’s Theorem 1 [13].

COROLLARY 15. Let g be a nonconstant meromorphic function such that
g|S>™T = g, where m € Z*. If k is an integer (odd or even), then

2m—1 2m—1

> glSi— X oglsiT
i=1

i=1
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is a nontrivial rational period function of an automorphic integral of weight 2k

for G(N). The poles of this q, 1 are in Q(VN'm?* — 1, X).
Proof. This is the case / = 2m of Theorem 14.

(b) Theorem on Pell’s equation and corollary.

Now, we state the following well-known theorem without proof. With this
theorem and Theorem 14 we show the existence of a rational period function
of modular integral with weight 2k (k even or odd), that has poles in an
arbitrary quadratic field Q(YN), N € Z™.

THEOREM 16. (1) Let D be a positive integer which is not a perfect square.
Then the equation x> — Dy? =1 has an infinity of integer solutions (x, y).
Furthermore, if (x,, y,) is a minimal integer solution of x* — Dy* =1, then
(x,,, y,) is also a solution of x* — Dy* = 1 where (x, + y,yD) = (x; + y,yD)",
neZ".

(2) Let D be a square free positive integer. If (x,, y,) is the minimal positive
integer solution of the equation

x?—Dyt=4

then every integer solution (x,, y,) satisfies the equation

x, + y,VD (xl + yWD
2

2 = ),nEZ+

and every (x,, y,) of the type

xn+yn‘/—‘D— _ (xl+y1‘[5)n
2 N 2

satisfies the equation x*> — Dy? = 4.

(3) Let B=x,+yV/D, x, 5, € Z".

If the norm of B, (NB) is 1, then N(2B) = 4. This implies the existence of a
solution of the equation x*> — y’D = 4,

We may state the following results.

COROLLARY 17. There exist nontrivial rational period functions of modular
integrals of weight 2k, k odd or even, with poles in an arbitrary real quadratic
field Q(VN), N € Z*.

Proof. This is an immediate result of Corollary 15 and Theorem 16.
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COROLLARY 18. The collection {qyr ,, )} of rational period functions with
poles in the real quadratic field Q(VN) is infinite dimensional over C.

Proof. In Theorem 14 with A = 1 we construct g, # 0 such that

-1 ) -1 )
ar= Y gls'— X g|S'T
i=1 i=1

with

g=g|8T=c-|z— z— 5

z+m)‘k( 1—‘/17—_4)”‘
Ll Lt L—yi-4)

Let N be square free such that /2 — 4 = Nm? Theorem 16 implies that this
has infinitely many integer solutions (/, m). The location of the poles of g
implies that for each N we get infinitely many linearly independent g

Note. If I,m are even integers, then (/)2 — 1= Nm’ with [ =2/,
m=2m'.

2. Existence of a rational period function for an automorphic integral of weight
2k, k even or odd, on the Hecke groups G(\) with poles in Q(‘/IT , \), where p
is square free, A = V2 ,V3.

Now, we shall show the existence of rational period functions with poles at
Q(/p, N), p is a positive square free, on the Hecke group G(v2), G(V3).

Leutbecher [16] has shown that of the Hecke groups only those for n = 4
and 6 are commensurable with the modular group. The commensurability of
these groups permits construction of automorphic integrals for G(v2) and
G(V3) from modular integrals. This construction is described in the following
theorem [8], [18].

THEOREM 19 [18]. Let F, be a modular integral of weight 2k, k € Z, with
generating period function q; = q. Then

Fy(z) = N*F,(Az) + Fi(z/\)

is an automorphic integral for G(\) where A = V2 or V3. The corresponding
generating period function q, = q, is

ar = N*q(Az) + q(z/N).

Remark. 1t should be pointed out that the definition of F,(z) is precisely

that used by Hecke in his original construction of automorphic forms on
G(/2) and G(¥3) from modular forms [8].
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Table B
Explicit form of g, r in Theorem 14, k odd, even
(a) Thecase A =1

) Poles of g,
1 1+v3
=4 ili3’i3’ RS
(1£3) (P52
3+421 +/21
S SRS ECOTC

=6 +(2 £ 222}, £{1 £ 22}, £2/2,

i{1i72\/2_}’i{112\5}

) 2 {245)
.

(b) The case A = V2

! Poles of ¢,

L R S +{—ﬁ;ﬁ}

I=5 {3‘/_“”‘/_} {t/_izv/zg}’i{\/fi‘%}
(%5

1=6 i{ZV/Ei\/l—i}’i{\/ii\/ﬁ},im),i%,
o

(¢) Thecase A = ‘/5

! Polesofqn,r

I=4  +(3 £yIT}, +VII, + ‘/_ {ﬁigfﬁ}

e e e

i{ﬁ %4‘/7“1}

=6 +{2/3 £V26}, £{V3 +V26}, V26, +
I S

‘/_
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(d) Thecase A = 1—%‘/—5

! Poles of g,
+ 7+2f} (T +25) +

+5 + 7+2f}
11 + 3y5

+2¢§

H

\
It
v
H

H

>

3+3/5 + 134+50¢'} 1+5+ 134+5o¢"}

H

H

20 + 8/5 32 + 12/5

§1+W+ 134+50,/—}
v

I
=
H+

L4 5 s \/50+18\/_}

’ i

50 + 18[ }

H

1+Y5 + 50+1&/’} i }
+2/5 + 50+18\/‘}’i{5(:+‘/£8£/m}

H+

(15"
=
{
{3+3f+ 134+50\/—}’
s
{
-

13 + 5/5 22 + 8/5

COROLLARY 20. There exist nontrivial rational period functions of integrals
of weight 2k, k odd or even, with poles in Q(‘/})_ , \) on the Hecke groups G(\),
where p is a square free positive integer, A = V2 ,V3 .

Proof. This is an immediate result of Corollary 18 and Theorem 19.

7. Conclusion

The number theoretical significance of the Eichler integral of negative
integer weight with a polynomial period is well known. For instance, the
coefficients of the period polynomial are closely related with the values of an
L-function at a certain integer points (see [16], [18]).

In this article, we construct a rational period function of a modular integral
of weight 2k (any integer k) with poles in an arbitrary real quadratic field
Q(/N), N € Z*. Since all the examples that we construct are closely related
to the kth power of binary quadratic forms, we may expect to obtain
additional interesting number theoretical results. For instance, the existence of
rational period functions is connected with the class number problem for real
quadratic fields (see [3]).

In Table B, we give a few explicit examples, obtained from Theorem 14, of a
rational period function on G(M).
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