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RATIONAL PERIOD FUNCTIONS FOR THE MODULAR
GROUP AND REAL QUADRATIC FIELDS

BY

YOUNGJU CHOIE

0. Introduction

Automorphic integrals with rational period functions, being generalization
of automorphic forms on the discrete subgroup of SL(2, R), share properties
similar to those of forms. Examples are furnished by the Eichler integrals--
automorphic integrals of negative integer weight with polynomial period
functions--which have been the object of much attention in recent years [4],
[5], [6], [9], [12], [15], [17], [19]. The questional naturally arises whether there
exist automorphic integrals with rational period functions which are not
polynomials. M. Knopp [13] has constructed modular integrals of weight 2k
(k odd) which differ from Eichler integrals. In [14] it has been shown that the
poles of any rational period function, qr,2k(z), for the modular group I’(1)
must lie in Q(Vr-), N Z/. However, the only previously known quadratic
fields containing poles of qr,2k(z) for F(1) were Q(v-), Q(v/--), and Q(vt ),
and these examples were known only for odd k.
The main object of this paper is the construction of qr,2(z) for F(1) with k

any integer (even or odd), having poles in an arbitrary real quadratic field,
Q(qr-). We have developed three distinct new methods to achieve this goal.
First, we have constructed qr,2k(Z) for F(1) by using the coset decomposition
of I"(1), the commutator subgroup of I’(1). Since I"(1) is a free group, the
necessary and sufficient conditions for the existence of a rational period
function qr,2k(Z) of a modular integral on F’(1) reduce to a single condition
on rational period functions for I’(1). Then rational period functions of a
modular integral on F(1) can be constructed by showing how to satisfy the
above condition. This construction can be generalized to incorporate the class
of Hecke group. By use of an operator of Bogo-Kuyk [1], qr,2k(z) for I’(1) can
be constructed from those on the Hecke groups for , v- and vc-.
The second method entails the use of Pell’s equation to construct qr,2(z).

This construction gives qr,2k(z) for I’(1) and any integer k with poles in an
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arbitrary real quadratic fields. Also, we show that the collection (qr,2k)u of
rational period function with poles in the real quadratic field Q(vr-) is infinite
dimensional over C. Finally, we generalize the method by M. Knopp [13] to
construct rational period functions. The appended tables list a number of
specific examples of qr, 2k(Z)"

I. Definitions

Let be the complex upper half plane and let F be a Fuchsian group
acting on ’.

Let F(z) be a meromorphic function in satisfying the transformation
formula

(1.1) (cz + d)-2’F(Mz) F(z) + qM(z),

where k is a rational integer and for each element M
d

F, qt(z) is
a rational function of z. Assume also that F is meromorphic in the local
uniformizing variable at each parabolic cusp of a fundamental region for F.
Then F is called an automorphic integral of weight 2k for F, with rational
period functions qt(z). In the case when F F(1), the modular group, we call
F a modular integral of weight 2k. (Note that if qt(z) 0 for each M F,
then F is simply an automorphic form of weight 2k for F.)

2. Rational period functions

The Hecke group G(,), , cos(r/n), is the group of all linear fractional
transformations generated by the two transformations

1

which satisfy the relations

(1.2) T2

and T=( 0 -1)1 0

(SnT) n-- (Tgn) n--- I.

(Note. We identify I -I as linear fractional transformations.)
As is well known [5], the Hecke group G(k,) is the free product of (T) and

(TS,).
Since the Hecke group G(X) is generated by S and T, the condition (1.1)

is equivalent to

(1.3) F(z + 2,,) F(z) + qs.(Z),

(l)=F(z)+ (z)Z 2kF - qx.,r

with qs., qx.,T rational function in z. Since a rational function F satisfies (1.3)
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trivially, we impose the further restriction that F be periodic with period
that is, that qs. 0. Then (1.3) can be written as

( 1) =F(z)+ (z)F( z + X,, ) F( z ) z-2’F 7 qx., .
If we introduce the customary notation for the stroke operator,

F 2kM ( cz + d ) 2kF( Mz ), (* *)M= c d

the condition (1.1) becomes F _2km F + qM, M G(A.), and from this
follows the (cocycle) condition

qmlm_ qmll-2,M2 + q2 for Mx, M2 G(,,), k Z.

Also (1.4) becomes

(1.5) F _2kSn F, F _2kT F + qx.,T

For convenience, I shall write FIM instead of F _2kM throughout.
Suppose now that qx, T(z) is a rational function as in (1.5), for some F

meromorphic in 0’. The/the defining relations (1.2) in G(,n) imply that

(1.6) qx,,l T + qx,, 0

qx., rI(S,,T) ,,-x + qx., I(S,,T) n--2
._[_ ....+. qx., Tl(gnT) + qx., O,

are necessary conditions upon qx, for the existence of F meromorphic in 0’
such that (1.5) holds. On the other’aand, Knopp has shown, through the use of
Eichler’s "generalized Poincar6 series" (see [12]), that (1.6) is in fact sufficient
for the existence of such a function F, and that moreover F can be taken
holomorphic in ’. Since any two integrals with the same period function
differ by a form we conclude that the collection of "distinct" automorphic
integrals with rational period functions is in 1-1 correspondence with the
collection of rational period functions qx,,.
Now, we consider a rational period function qx,, satisfying the two

relations in (1.6) for qx,, qx, r:
qx, r + qx, r[ T 0,

qx,rl(SnT) -1+ +qx, T

These two identities yield the further one

(1.7) qx,r= qx,7lSn + qx, rI(ST)S + +qx, Tl(SnT)n-2Sn
The following theorem is given by M. Knopp [14].
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THEOREM 1. (a) If Zo is a finite pole of any rational function satisfying
(1.6) for X 1, then there is a squarefree positive integer N such that Zo

(b) If the finite pole Zo is in Q, then Zo O.

Proof See [14].

The following is a straightforward generalization of Theorem 1 given by H.
Meier and G. Rosenberger [7].

COROLLARY 2. If Zo C is a pole of any rational function satisfying (1.6)
then there is a positive number N Z[X2] such that Zo Q(/-, ,) or zo
xO(X2) for X, X.

3. Construction of an automorphic integral for the Hecke group from
an automorphic integral for the commutator subgroup of the

Hecke group

We state the following result without proof.

THEOREM 3 (Nielsen). Let G be a free product of n cyclic group c of order
m generated by elements a (1 < < l). Then the commutator group G’ is a free
group of index m mlm 2... m in G and the rank of G’ is

l+m -1+ 1-

G’ is generated by the commutators ai, a], where 1 < < j < and 0 < tt <
m i, 0 < q < mj. The factor group G/G’ is isomorphic to the direct product of the
cyclic groups c1, c2,..., ct.

Let us introduce some notation.

Notation. G’(,,) is the commutator subgroup of G(k,). In particular,
G’()3) F’(1) is the commutator subgroup of G()3) F(1). Let qx, denote
the rational period function of an automorphic integral fx, of weight 2k (k is
an integer) on G(,,); i.e., fx, T fx, + qx,,T- In the case n 3, we shall
write qx3 T

qr. If we do not specify n, we shall write ), ), qx, qx, r,

fx. and i(,,)= G().

We construct automorphic integrals of weight 2k with rational period
functions on the commensurable Hecke groups G(A) (A 1, -, v/-) from
those on G’(A). Since G’(A) is a free group by Theorem 3, the two conditions
in (1.6) for the rational period function reduce to only one condition and
consequently we can obtain automorphic integrals with rational period func-
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tions on G’(X). From these we construct automorphic integrals on G(X) itself
by summing over cosets of G(X)/G’(X). Applying an appropriate operator
(the Bogo-Kuyk operator [11) from G()t) (X V-, v-) to F(1), we then obtain
further rational period functions for F(1).

(a) The case X 1. Construction of modular integrals with rational period
functions for F(1) from modular integrals with rational period functions for
r’(1).

Note. By Theorem 3, F’(1) is generated by (at, bl) where

S2TS, b STS2(1.8) a

Construction. Let f be an automorphic integral of weight 2k, k Z, with
rational period functions of F’(1): f is a meromorphic function on
satisfying the condition (1.1), that is, flM f + q, where M F’(1), and
qt is a rational function. Further, f is meromorphic in the local uniformizing
parameter at each cusp of a fundamental region for F’(1). Since F’(1) is
generated by at, bt in (1.8), the condition (1.1) is equivalent to

(1.9) Ylal f + qal’ fib1 f + %1"

Since F’(1) is a free group, there is no element of finite order.
Now, consider the full group F(1). We know that F(1) E}=0 F’(1)SJ. Let

us define the function

j=O

where f is the given automorphic integral on F’(1). First note that the
function f is meromorphic in of’. At the cusps of a fundamental region for the
modular group the behavior of f is determined by the behavior of f at the
cusps of a fundamental region for the commutator subgroup of the modular
group. Also, we have

(i)

5

(1.10) f’lS E f[ Sj + f[ $6 (since S6 r’(1))
j=l

5 5

E fl Sy + (f + qs6) E flS + qs
j=l j=l
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where qs is a rational period function of f.

jZ- fI(TS-3) S / f[(STS-4)S4 -t- fI(STS-5)S
/fI(S3T) / fI(S4TS-X)s -I- fI(SSTS-2)S2

(since 7"S -3, STS-4, S2TS-5, S3T, S4TS -1, SsTS-2 F’(1))
If / qrs-]l $3 / If / qSTS-4][S4 -I- [f + qss-]l S5

+ f + qs3r + f + QSaTS-a ][ S -1- f + qS57S-2 ]1S 2.

But TS-3= bla-1, STS-4= blS-6, S2TS-5= alS-6 by (1.8), which im-
plies that

(1.11)
i= If q- qbla{1][S3-[ If q- qbls-6]]S4 + If + qais-6]]S

+ [f + qaab{ 1] q- [f + qs6b{][S + [f + qs6a{][S 2

5_, flS + qba{lS + qaxb; -[- qbxS-.6[S4 -1- qS6bFxlS -1- qals_6lS
j=o

-[- qs6a{ [S 2.

If we put qs S in (1.10), (i) becomes

(1.12) f’lS -1- qs j7-k S
If we put

q,aFllS3 -+- qaab{ q- qbas-6]S4 q- qs6bFllS -I- qals-6[S q- qs6a;-]S2: q,

in (1.11), (ii) becomes

(1.13) fT= f-+ q,a;,IS + qalb{X q- qb,s-6[S4 at- qS6b{llS -1- qals-6[S
-[- qs6a{ $2 J-[- qT,

where q’s, qr are rational functions. Since any rational f trivially satisfies
(1.12) we impose the further restriction that f be a periodic function, that is,
f(z + 1)= f(z). This implies qs qs 0 in (1.12). Then f is a modular
integral with a rational period function on F(1). For qr satisfies the two
relations in (1.6) if s qs =- O.
NOW applying the consistency condition

q qlM + q for M, M r’(1),
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especially qlM- -q-, we see that (for S6 ab{la{b) s qs =- 0
is equivalent to

qallb{la{lbl qblb{la{Ibl qaala{bl + qb O.

Thus,

(1.14) qa qallbl qbl qbllbfalbl
or

THEOREM 4.
single relation

qa qal TS-1TS qbl qbl S-3TSTS2"

qa- qal ITS-TS qbl- qbl[ S-3TSTS2

in (1.14), then

r qal + qax S-1 qall T qa S-1T + qbx S-3

-qIS--T- qIS-3T + q[S-
in (1.15) is a rational period function.

Furthermore,

(1.15) r qa + qal S-1- qalT- qalS-1T
/qxlS-2 + qlS-3- qIS-2T qIS-3T.

For, from (1.13),

T qbxa?] $3 + qalb + qblS-6[ S4 -[- qS6bFX[ S "+" qas-6[ S5 -+" qs6a{[ $2

-qax[alS + qla{lS + qa[b qb[b + qax[S--qaxla{S + qlx[S-: qlb{1S (since qs6 O)

-qal[T + ql S-3 + q- q6IS-3T + qall S-

-qa[a{S2 + qx[S-- qlblS,

because (1.14) implies that

qal[a{S + qb[a{S + qaxlb q/,llb-1

-qa[T + qlS-3 + qa- qIS-3T.

On the basis of the above construction, we state the following theorem.

If we have any two rational functions qal, q that satisfy the



502 YOUNGJU CHOIE

Proof.
in (1.6).

From the above construction, r in (1.15) satisfies the two relations

Later, we shall see the direct application of Theorem 4 (Theorem 8).
This method can be generalized to construct automorphic integrals with

rational period functions for G(X) from automorphic integrals with rational
period functions for G’(,).

(b) The case v/-. Construction of automorphic integrals with rational
period functions for G(v/-) from automorphic integrals with rational period
functions for G’(V-).

Note. By Theorem 3, G’(Vt-) is generated by (a2, b2, 2) where

(1(1.16) a2=S4TSZlT, b2= TSZITS4, c2=SaTSfTS4, $4=
0 1

Construction. Let f2 be an automorphic integral of weight 2k, k Z, with
rational period functions on G’(VC-); f2 is a meromorphic function on ocg’

satisfying the condition (1.1), that is, f2lM f2 + q2, M, where M G’(Vt-),
and q2, M is a rational function. Further, f2 is meromorphic in the local
uniformizing parameter at each cusp of a fundamental region for G’(v/-).
Since G’(Vc-) is generated by a2, b2, c2 given in (1.16) the condition (1.1) is
equivalent to

(1.17) fla: f2 q- q2, a2’ flb2 f + q2, b, AIc A + q2,.

Since G’(V-) is a free group, there is no element of finite order.
Now, consider the full group G(V-). We know that

j-----O j--O

Let us define the function

3

A E (/ lsZ rse),
j=O

where f2 is the above automorphic integral with rational period functions on

First note that the function f2 is meromorphic on g’. At the cusps of a
fundamental region for the Hecke group G(Vc-) the behavior of f is deter-
mined by the behavior of f2 at the cusps of a fundamental region for the



RATIONAL PERIOD FUNCTIONS 503

corresponding commutator subgroup G’(V/). And we have
(i)

3

(1.18) flS4 Y’, (fElS + f2ITS) + qE, s" + qE, rS#rl T
j--O

since S, TST G’(/).
(ii)

IT f21T + f2IS4TS;1TITS4 + f21S24TS;2TITS2
+f21S34TS-3T[TS34 + f2 + f2ITS4TSIIs4 + f2[TS24TS21Sf
+f21TSaaTS31S34.

Since, by (1.16), we know that

SaTST a2, S2 TS-2T a2ca.,
$34 TS3T Scla 2, S a2c b2,

the above implies that

(1.19) flT j + q2, a2ITS4 + q2, a2ca2[ZSf + q2,s,clTS34
+ q2, a"1 $4 -+" q2, a-lc2a-I $42 + q2, a-lc2S4-4 $43.

If we put q:z, a2ctb2 + q2, aXc2bxlT= (t2, Sa in (1.18) and

q2, a2lTS4 + q2, a2ca2[TS24 + q2, scXa.lTS2 + q2, alS
"[- q2, alc2a-I IS42 + q2, a1c2S4 1534 2, T,

then (1.18) and (1.19) become

(1.20) f[S4 f + 2,s4 f + q2, a2cb2 + q:z,aXc2bl T,

(1.21)
flT f + 2, T f + q2, alTS4 + q2,oc;lTS2 + q2, scalTS34

+ q2, a-1 $4 + q2, a-lc2a-I 1S4
2 "" q2, alc2S4-4 $43.

Both 2,s4 and 2, r are rational functions. Since any rational function f2
trivially satisfies (1.20), we impose the further restriction that f be a periodic
function, that is, f(z + v-) f(z). This is equivalent to

2, $4 q2, a2clb2 dr" q2, alc2b IT 0

in (1.20). Then f2 is an automorphic integral with a rational period function
on G(V/-), for 2, r satisfies the two relations in (1.6) if 2,s 0.
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Applying the consistency condition

q2, M1M2 q2, MI[Mg- + qg_,M2 for M1, M G’(x/-),

we see that, since $44 a2c lb2 and TS44T aIc2b 1, 2, $4
to

0 is equivalent

(1.22) q2, a21TS4TS34 q,ITSa4 + q2,62- q2,6IS-ITS4
+ q,lS1TS4 q, l TS4TS34 O.

Also, with (1.22), t)2, r in (1.21) becomes

(1.23) q2,r q2, a:lTS4- q_,aITS4T + q2, a:I(TS,)-T- q2, a2l(TS4)
+ q2, a:[ TS24 q2,I TS24 T + qa, a:I TS34
-q.,a2I(TS4)2S4 -t- q2,c21(TS4)
-q2,c21(ZS4)2T q.,cISXT + q2,cl(ZS4)zS4

On the basis of the above construction, we may state the following theorem.

THEOREM 5.
that

If we have any three rational functions q2, a2, q2, bz, q2, c2
such

q2, a TS4TS q2, a2 TS
+ q2, b q2, bIS-ITS4 + q2,cISITS4 q2, c21TS4TS34 0

in (1.22), then 2, r in (1.23) is a rational period function for G(v).

Proof 2, r satisfies the two relations in (1.6) from the construction.

(c) The case X yrs. Construction of automorphic integrals with rational
period functions on G(V-) from those on G’(x/-J-).

Note. By Theorem 3, G’(VC-) is generated by (a3, b3, c3, d3, e3) where

(1.24) a S6TS- 1T,

d3 (TS;1)2(TS6)2,

b3 TS[ TS6, c3 (S6T)2(S -IT) 2,

e3 for
0 1

Construction. Let f3 be an automorphic integral of weight 2k, k Z, with
rational period functions on G’(x/-J-); f3 is a meromorphic function in
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satisfying the condition (1.1), that is, f31M f3 + q3, M, where M G’(V/-J-),
and q3, M is a rational function. Further f3 is meromorphic in the local
uniformizing parameter at each cusp of a fundamental region for G’(-).
Since G’(-) is generated by a3, b3, c3, d3, e defined in (1.24), the condition
(1.1) is equivalent to

(1.25) f3la3--A + q3, 3, f3lb3- f3 + q3,,,

AIC3--A "-I- q3, c3, Aid3--A + q3,a,

f31e3 f3 + q3, e3"

Since G’(V/-) is a free group, there is no dement of finite order.
Now, consider the full group G(V/-). We know that

G(v/-) .J G’(v)S V 1,3 G’(V/-)TS/, for 56
1

j=0 j=0 0

Let us define the following function f3 such that

5

E (/ lsd + TS ),
j--0

where f3 is an automorphic integral with rational period functions on G’(V0-).
First note that the function is meromorphic in ’. At the cusps of a
fundamental region for the Hecke group G(V0-) the behavior of f is deter-
mined by the behavior of f3 at the cusps of a fundamental region for the
corresponding commutator subgroup G’(v/-). Furthermore, we have

(i)

5

(1.26) flS6- Y’. (f31Sd + f31ZS/,) + q3,sg + q3, TSgTIT
j--0

since S, TST G’(v/).
(ii)

5 5

fl T f31Z + E f31a/,za;zl Tad + f3 + E f31 zadzai-lS/,
j=l j=l

Since, by (1.24), we know that

SrTS T a3, S6TS2T a3cf la

S36 TS3T a3cle3c;la3, S:TS4T Sble3cf la3,
$56TS 5T $66b 1TS-6T,
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the above implies that

(1.27) flT f3 + q3, a3lTS6 + q3, a3cla3lTS62 + q3, a3cle3cla31TS36
+ q3, Sble3c;la TS + q3, S66bXrS;rl TS65 + q3, a IS6
+ q3, a-lc3al 1S62 "" q3, a lc3e lc3a1 ]S
+ q3, a;lc3elb3S6[S + q3, TSTb3SzrIS56

If we let

and

q3, s + q3, TST[ T 3

7t3, r q3, ITS6 + q3, a3c la ITS62 -1" q3, a3cle3cla ITS36 -I- q3, Sb;le3cla ZS
+ q3, S66blTSrTI TS + q3, a $6 "+" q3, a1c3a-1 1S6

2 + q3, alc3elc3al
+ q3, alc3elb3S’lS64 + q3, TSTb3SrIS65,

then (1.26) and (1.27) become

1S6 =f + 3,s =f + q3,s + q3,rsrlT

3 + q3, a3c;le3dlb3 + q3, aXc3eXd3b IT,
and

(1.29)
flT= f + 3,r=f3 + qa, a3lTS6 + q3, a3cla3lTS6

+ q3, a3c le3c la TS2 + q3, SbXe3c lo TS + q3, Sb1TSrTI TS65
+ q3, a-1 1S6 + q3, alc3a-I S "]" q3, a 1c3e lc3al $6

+ q3, alc3e 163S-6 IS6
4 + q3, TSTb3S 1S56

Since any rational function f3 trivially satisfies (1..28), we impose the further
restriction that f be a period function, that is f3(z + v)= f(z). This is
equivalent to 3,s6 0 in (1.28). Then f is an automorphic integral with
rational period function on G(Vr-). For 3, r satisfies the two relations in (1.6)
if 3, s6 0.

Applying the consistency condition on q3, MIM2 q3, MI IM2 + q3, M_ for

M1, M2 G’(f-), we see that (with $66 a3cle3dflb3, TST
aflc3efld3b-l) 3,s6 0 is equivalent to

(1.30)
773 s q TSrTS q3 TS + q3 b q b Sg- TS6

+ q3,I(TSr)3S2 q3,cITSrTS56 + q3,aISg-XTS6 q3,al(Sg-T)2S62
+ q3, e3I(S-IT)2S q3, eI(TS6)3S36 =O.
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Furthermore, 3, y in (1.29) becomes

(1.31)
(13 r q3 ZS6 q3 TS6T + q a ( TSr ) :T q ( TS6

+ q3 TS62 q3 TS6T + q a TS q3, 31TS T

+ q3, a3I(TSr)ZSrT q3, a3I(TSr)zS6
+q3,1S6-- q3,IST q3,ISZT + q3,l(S-Z)-
+ q3, t,3[$6-2- q3,,Is-XTS-
+q3 cI(TSr) q3,I(TS6)2T + q3,cI(TSr)3T q3,cl(TS6

+ q3,cI(TS6)2S6 q3,cI(TS6)2S6T
+ q3, a3 S TS- q3, a3 [S-,TS-T

+ q3,,I(TS6) q3,I(TS6)3T.

On the basis of the above construction, we may state the following theorem.

THEOREM 6. If we have any rational period functions q3, a3, q3, b3,
q3, c3, q3, a3, q3e3 satisfying condition (1.30), say,

q3 TSrTS65 q TS66 + q b q b3 S- TS6

+ q3 ( TS6 ) S2 q TSrTS + q3 a S TS6

-q3,d31(SIT)2S + q3,eI(SIT)2S
-q3,I(TS6)3S2 O,

then 3, y in (1.31) is a rational period function on G(vf).

Proof 3, T in (1.31) satisfies the two relations in (1.6) from the construc-
tions.
We have found a relation between rational period functions of automorphic

integrals on G(3,,) and those on G’(,), for n 3, 4, 6. Now, by applying an
appropriate operator from G(X,) (n 4, 6) to F(1), we can get more examples
of rational period functions on F(1). We note that the pairwise commensura-
bility of the Hecke groups G(h,) (n 3,4,6) permits the construction of
modular integrals with rational period functions for G(v-) and G(V/-). This is
demonstrated by the following lemma which uses a construction introduced by
Bogo and Kuyk [1].
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LEMMA 7. Let F be an automorphic integral for G(X) where
of weight 2k with generating period function qx, r qx- Then

X2_1

t----0

is a modular integral with generating period function ql, T--- ql where

qx=qx(’z)+’-2kqx(z/X)+X-2kqx( z-1)X + (l--z) -2’qx ( 1--zXZ )
ifx=v 

and

ql

Remark. A. Parson and K. Rosen [18] used this lemma to get the examples
of rational period functions with poles in Q(v/-), Q(v/-).

Proof of Lemma 7. See [18].

4. An application of Theorem 4: Examples of quadratic fields
containing poles of rational period functions (pole-matching method)

Let us go back to Theorem 4. If we have two rational functions qal
qbx qb such that

qa qalM qb qblN where M TS-1TS, N S-4TS,

qa,

then

qT qa qa[ T + qlS- qa[ S-1T + qbl S-a
--qblS-2T + qblS-3- qblS-3T

satisfies the relations in (1.6)" Now, if qa has a pole at the point a, then qalM
has a pole at M-la. On the other hand, if qb has the pole t, qblM has a pole
N-1ft. In order to satisfy the relation,

qa- qalM qb- qbl N,

these poles should be matched. By applying this idea we get the following
theorem.
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THEOREM 8. Given a quadratic fieM

K= Q F2m_

where F is the Fibonacci sequence, F0 0, F1, F2 1, F 2,..., then there
exists a nontrivial rational periodfunction qr of modular integral with weight 2k,
k odd with poles in K. To prove this theorem, we need the following lemmata.

LEMMA 9 (James and Knopp [10], [11]). Let M SL(2, R) be hyperbolic.
Then a nonconstant meromorphic function r(z) on the complex plane satisfies
r akM rim r if and only if

r(z) A(z- Ol)-k(z O/2) -k

where A C and a1, a2 are the real fixed points of M or

r(z) A(z al) -’

where A C and a, are the fixed points of M.

Let us consider the relation (1.14):

qa qalM qb qblN for qal qa, qbx qb"

In particular, suppose qa has only one pole a, qb has only one pole fl, and
poles match in the following way:

M-a N-fl

for M TS-TS, N ( S-4TS )

Then claim that the qr in (1.15) is a constant multiple of the example in
Theorem 1 [13].

For, we have the relation qa- qalM qb- qblN and, by the pole match-
ing, qa qalM and qb qbl N" Lemma 9 implies that

qa Cl(Z a)-k(z Or’) -k,
qb C2( Z fl )-k ( z fl’)-,

where cl, c2 C, a, a’ are the fixed points and fl, fl’ are the fixed points of N.
We get the rational function qr from qa, qb by (1.15). A calculation shows that
qr is the same as the rational function in Theorem 1 [13].
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LEMMA 10. Let

M= TS 1TS=
1 2 -1 -1

then

F2m- F2m )(1) Mm

F2m F2m+

(2) (M-I)=--(N-)"(M-) ( F2m+lF2m + F22m_1
2

2F2m+ lF2m )f2m+ lF2m + FL_

where F is the Fibonacci sequence, Fo O, F 1, F2 1,.... Thus the fixed
points of (M-1)m-I(N-1)m(M-1) are

mZ+.

Proof Since it can be proved by induction on m, we omit it.

LEMMA 11. For m Z+,

(a) F22i_lF2m+l- F22iF2m_l > F2m_ for 1 < < rn- 1,

F22/+lSm+l- F22i + 2F2m > F2m for 1 < < m- 1.

(b) F22i+3F2m_X- F+2F2m+I > F2m_ for 0 < < rn- 1,

F22i+lF2m_X- F22iF2m+l > F2m_ for 1 < < rn 1.

Proof. (a). This becomes

+1 2F2m > F2m for 1 < < m- 1

because F?F2m+ F22F2m F2m > F2m-1 for rn > 1. Now, since

F2m+ F2i+ F2m_1F2i+ 2 F2m_

F2m+lkF+ F2m_t(F2i+3F2i+l
[F2m+lF2i+l- F2m_lF2i+3]F2i+l

it is enough to show that

F2m+lF2i+l F2m_lF2i+3 > 0 for 1 _< < rn 1.
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But

(b) Because it is similar to (a), we omit the proof. Now, we return to the
proof of Theorem 8.

Proof of Theorem 8. The relation (1.14),

qa- qlM qb- qbl N,

suggests the following: If qa has poles at (ai}, 1,..., m, then qalM has
poles at (M-lai}, i= 1,.._,m. And if qb has poles at (flj), j 1,..., n,
then qblN has poles at (N-lflj }, j 1,..., n. Because of the relation (1.14)
they should match each other. In particular, we consider the following pole
matching scheme:

(1.32)

M-lal M-la2 M-lo3 M-lotto U-1/l N-lfl2 N-lfl.
where an arrow indicates that they are the same. Here the ( a } are the poles of
qa and the { flj } are the poles of qb. In particular, let

qa---’- rl(z) + r2(z) + +rm(Z) and qb Ul(Z) + u2(z) "+" "+’urn(z)

where 5(z), ui(z),l <i< m, are rational functions that have the form
Ai(2 li)-k(2 1) -k, for some l Q(v/-), 1 is the algebraic conjugate of
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in Q(vr), and A
we choose

C is a constant. Since qa has poles at { ai }, 1 < < m,

r(z) A,(z a,)-k(z a)- for A C.

Also, since qb has poles at flj, 1 < j < m, we choose

uj(z) Bj(z flj)-’(z flf )-’ for Bj C.

Then the relation (1.14),

becomes

qa- qalM qb- qbl N,

rl + r2 + + r rllM rlM r,lM
u + u2 + +um UllN- u2lN umlN

for

qa
m m

Eri, qb= ,ui

By the above pole-matching scheme (1.32), we can assume that

rl rzlM, r_- r31M,..., r,,_x-- r,lM,

-ulN, u ulN,..., Um_l[N,
-qlM.

This implies that

(1.33) r rll(M-1)m-l(N-1)m(M-1).

If we apply Lemma 9 and Lemma 10 (2), then we get the explicit formula
rl(z):

(1.34) r(z) A z z + Fm_

without loss of generality put A 1. Also we have the equation (1.14),

qa- qalM qb- qblN"
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By the relation (1.33), qr in (1.15) is

(1.35)
m-1 m-1

qr E rxl(M-1) i+ E rll(M-1) iS-1
i=0 i=0

m-1 m-1

E rll(M-1) iT- , rl[(M-1) iS-1T
i=0 i=0

m

_
rlI(M-I)m-I(N-1)’S-2

i---1

rn m

E rll(M-1)m-l(N-1) iS-3 + E rll(M-1)m-l(N-1) iS-2z
i-1 i=1

m

+ E rlI(M-1)m-I(N-1) iS-3T.
i---1

(This qr satisfies the two relations in (1.6).) It remains to show that qr in
(1.35) is not zero.

First, let us simplify (1.35). We know that

(1.36)
(N-I)/-- (S-1TS4S-ITS4... S-ITS4) [S-2(STS2STS2... STS2)S2]

factors factors

S-2(M)iS2 (since M STS2-- TS-1TS, N S-4TS).

By (1.33) and (1.36), we know that

r[(M-1)m-l(N-)is-2
rllMNm(N-1)is-2
rIST(M-)m- rIIST(S-TSTS-TST... S-TST )
rllS(M)m-iT.

Therefore

m m., rll(M-1)m-(N-)is-2 _, rlS(M)m-iT=
i-1 i=l

m-1

E rllSMgT.
j=O
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So (1.35) becomes

(1.37)

To prove that qr is not identically zero, it is enough to show through rx is
never cancelled in (1.37).

Since

z- V
by (1.34), for

L=( ac bd)SL(2’R)
we consider Table (1.38). Now, I claim that r in (1.37) is never cancelled.
Since, in (1.34),

-k

the coefficient of r(z) equals 1. The worst possibility is the following" For s at
least one of the coefficients of the terms in (1.37),

{ rl (M-’)’ )’ ’S-rl(M- T, rxlT, r,l(M-)

rI(M-’)S-T, rIS(M)’, rIS(M)’T, rISM’TS-XT, r, ISM’TS- }
for someO<i<m- 1,

is 1 or -1, and the poles are matched. Table (1.38) shows that this would
imply

(1.39) F22iF2m_X- F2_xF2,,,+x +F2,,_ for some 1 <i < m- 1,
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Table (1.38)

l<l<m-1

O<i<m-1

rl ( M-1)iS-1T
O<i<m-1

r11SM
O<i<m-1

rl SMiT
O<i<m-1

r11SMiTS-1T
O<i<m-1

rl SMiTS
O<i<m-1

F.22i+lF2m_l- Fi F2m +

F.2F2i F2m-1 i- F2m +1

F+ FE,n_ FEi F_,n +

F+2F2m_1 Fi+lF2m+l

F22i + F2m_1- F2i F2m +

F2m_lF2/+2- F2m+lF2/+l

F22i+ F2m_ F22i+ F2m+

F2 F: + F + F2 +

O1"

OF

F22/+ 2F2m- F22i +1F2m +1 -[- -1

F22i + 3F2m-1- F2 + 2F2m+1 -1

F’2i F22iF2m+1 -" F2m+ 1F2m_

But, by Lemma 11, we know that

for0<somei<m- 1.

2(1.40) F2i + 2F2m_1- F + F2m F2m
in the case m l and i= O, or

F22i F2 F22iF2 F2+1 +1

in the case 0 and all m.
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Then, from the Table (1.38), (1.40) implies that the coefficients of

(rl[(M-1)S-1, rlISM0 )
equal (1) -k for every m, and the coefficient of

( rl ( M-)S-T, rlS(M)T, qIS(M)TS- )
equals (-1)‘ for m 1. The simple calculation shows that

{ rlS-, rllS, rllS-1r, rllSr, rlISTS -1 )
is different from r(z), for k odd, by looking at poles. Therefore, q in (1.37) is
never cancelled for every m, so qT is a nontrivial function, qT O.
The proof is complete.

5. Some generalizations

then

(A) A generalization of Theorem 4.
We generalize Theorem 4 to all of the Hecke groups. If qa, qb satisfy (1.14),

qa- qa[ TS-1TS qb- qbl S-3TSTS2,

T-- qa- qal T + qal S-1 qal S-1T + qbl S-2
--qblS-2T + qblS-3- qblS-3T

is a rational period function of a modular integral with weight 2k on (1).
This can be generalized to all of the Hecke groups.

THEOREM 12.

we have

If we have any rational functions h, g such that, for
1 X X 2cos-,S,,=
0 1 n

(1.41)
then

h hITSITSn g- gIS3TSnTSff

(1.42) q,,r h hiT + hlS hISIT
+glS2 glS2T + glS gISaT

is a rational period function of an automorphic integral with weight 2k on the
Hecke group

G(X), 2cos-, n > 3.
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Proof According to 2, it is enough to check the two relations in (1.6). The
condition qn, 7-1T + qn, r 0 is obvious from the form of qn, r in (1.42).
On the other hand,

qn, rl(TS) with E
0 i=0 0

n-1 n-1

E hI(TS) ’- E hlT(TS)’
0 0

n-1 n-1

+ ., hlSI(TS,,) i- ., hlSIT(TS,,)
0 0

n-1 n-1

+ E glS2(TSn) i- E glS2T(TS)
0 0

n-1 n-1

+ E glS23(TS)- E glS23T(TS)
0 0

n-1 n-1

since hl(ZS)= hlS2T(TS)
0 0

and
0 o

1[ n--1

1( i+1hlT(TS,)i+
0 0

n-1 n-1

E gIS22T(TS) i+2 + E glS;3(TSn) ’+3

0 0

n-1

E hls2 (rs ) ’+1

o

-glS2r(rS)+ + glN(TN)+] O.

This holds because (1.44) implies that

n-1

E [hlSl(ZSn) hiT- glSX(TS) + glS3(TS)3]I(TS)
0

n-1

E [hlS(TS) hi T- glS2T(TS)2 + glS3(TS)3]I(TS) ’= O.
0

The proof is complete.
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Remark. In particular, if hl TSITS, h, glS3TSnTSn2 g then q,, r in
(1.42) is a constant multiple of the examples in Theorem 2.4 [21], for 2 V-
(n=4) and h=(n=6).

Note. We give some explicit examples of q,, r that arise from (1.42).
The relation (1.41) is

h hITS-aTS, g- gIS-3TSnTS2.
For instance, if we choose h g]S3TSnTS2, and g h TSITS", then
the relation (1.41) is satisfied. Furthermore, since

h glS3TS,TS2 hl TSTS2TS,TS2,
Lemma 9 implies that

h h TS TS2TS,TS h ( 1+ 2h2 4h3 ))k(2)k2) 4)k4 2)k2 + 1

if and only if

-k -k

h=cz- X z- X

Without loss of generality assume c 1.
(a) The case h 1. A simple calculation shows that the qr of (1.42) is

+ 2(z- 1 + V-)-k(z- 1- /)-
+2(z + 1 + V/-)-k(z + 1 V/--) -k

-k

for k odd.
Note that qr 0 for k even.
(b) The case -. A simple calculation shows that q4, r in (1.42) is

=2z- 2 z- 2

+2-k+ z- 4 z- 4

q4, T

+ 2-k+l Z

-k

-k

for k odd.

-k
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Note that q4, 7-= 0 for k even.
(c) The case h V-. A simple calculation shows that qr, T in (1.42) is

q6, T g
3 Z 3

-k

-(-2) -k z- 6 z-
-k

( z- z- ) )
-k

-k

+3 -k z- 9 z-
-k

-k -k

2V+ 3)+2-’ z- 6

2V/_+ 3V/)-(-1) -’ z- -*(z- 2--f-)-.3
for k even or odd.

Remark. Theorem 5 and Theorem 6 can also be generalized to all of the
Hecke groups as Theorem 12.

(B) A generalization of Knopp’s construction [13].
M. Knopp [13] initiated the study of rational period functions of modular

integrals which differ from the period functions of Eichler integrals.
Here, we generalize M. Knopp’s construction of [13].

THEOREM 13. Let G(,,,), h,, 2 cos ,r/n with n Z, n > 3, be the Hecke
group. Let f be a rational function such that

/1[ s, T fl STS;’T f,
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where, as before

Xn) (0 -1) l=1 Z+

1
,T=

1 0

Then if k is an odd integer, the nontriviai function

1-1 1-1

(1.43) q., T- Y’. fl TS.T E fl siT E f[ rsi + E fl S’.
i----0 i=0 i=1 i=1

is the generating period function of some automorphic integral of weight 2k for

Note.
[131.

When n 3 and 1, qr in (1.43) is an example by M. Knopp

Remark. Since

St,,TStT (2n/2 + 1
and fl S,TS, T f,

f has poles in Q(2n12 + 4, X.) by Lemma 9. Furthermore, qn, T is obtained
from f by subjecting the variable z to linear fractional transformations, so we
conclude that these (q.,r) have poles in Q(212 + 4,

Proof of Theorem 13. Define r fl T- f, again a rational function. Since
T2 I, we have r IT + r 0. Now,

1-1

q.,r E rlST- Y’.rlS. with E E,
0 i=0 0

and since (TS.)" I, it follows that

n--1 1-1

E q.,r[(TS.) ’= E rIS+I(TS.) "-2 ErIS(TSn) "-1

0 0

l-1
q- E rlSin+(rSn) n-3 ErlSin(ZSn) n-2

0

1-1

+"" + E rlS.T-
o

0 (since the sum telescapes).
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On the other hand,

q,, rl T + q,, r fl T fl TSt + fl St fl TStT + f- f + f] StT fl T =- O,

since fl TS fl ST. So this q,, r satisfies the two relations in (2.6).
Now, I claim that q,, r is nontrivial, for k odd, i.e., q,, r 0. To show this,

let us consider the following. From (1.43),

1-1

q,, r rlS2T Y’.rlS. where r fl T f.
0

Since f fl S’TS T, Lemma 9 implies that

r=-c z- 2 z- 2

for k odd. Without loss of generality assume c 1. Note that r(z) 0 for k
even. So,

(1.44)
1--1 1-1

q,,r= E rIST- ErlS r + E rIST- ErIS
0 1 1 1

-k

(i )-k --2i)kn + ),l + (),1)2 + 4

o

-k

z 2(1 + i)2n1-

(_2i)t.+X.l+(,.l)+4)+_,z- 2

(z- -2iX. + )k.l-2 ()t.l):" + 4 )

-k

-k

Now, we claim that r(z) in (1.44) is never cancelled. Since the coefficients of
(- rlS,) in q,, r 2equal 1 from (1.44) the worst case is that the coefficients of
(+ Y’/o-x rlST), (iX, i)2,1 1) -k, equal 1 -’ 1 for k odd, and the poles of
Y/o-1 r] ST are matched to those of E rlS,.
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Table A
Examples q., r in Theorem 13 for odd k

(a) The case )t 1

Poles of qr

1=1 _+(l+/-grS-

+ 2 ’+ 6 ’+ ’2

+ (2 + V/-" + (1 + qr-}, + ( 1 + Vr ) 1
4 ’+-’ +v/

(b) The case

poles of qn, r

+__(v + Z-

1(v5 3-, ___d, +/-
d

2 ’+ 10 ’+ 2

1
7 +__-, ___3,

_+(v _+ 3}

(c) The case X 7:3-
Poles of qn, r

1=1

l=4

+-+-{ f- -+ v/ff
2

1+ {’- + 4}, +, _+2

2 ’-+ 7 ’+ 2

+(q + 1}
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Now, compare coefficients. Suppose i22n i21 1 1 for some 0 < <
!- 1 so that h2(i l) 2, for some 0 < < l- 1. This implies that i(i
l) 2 and 2 1 or ,2 2 and i(i- l)-- 1. These are impossible since
0 < _< l- 1. Thus qn, r is a nontrivial rational period function of an auto-
morphic integral with weight 2k (k odd).
The proof is complete.
In Table A, I gave a few explicit examples, obtained from Theorem 13, of

rational period functions on G(A).

6. Rational period functions with poles in arbitrary real quadratic fields

1. Existence of rational periodfunctions for modular integrals of weight 2k, k
even or odd, and with poles in an arbitrary real quadratic field Q(Cr-), N Z+.

(a) Construction of the rational period function.
In this section we once again construct rational functions satisfying the two

relations in (1.6); an argument involving Pell’s equation shows that these
rational period functions can be constructed with poles in arbitrarily chosen
real quadratic fields Q(/-), N Z+, and with k even or odd.

THEOREM 14. Let g be a nonconstant meromorphic function such that

where

g1-2gStT glST g,

s.= o o

and I > 4. If k is an integer (odd or even),

1-1 1-1

(1.45) q,r E giSt. E giSt.T
i=1 i--1

is a nontrivial rational period function of an automorphic integral of weight 2k
for G(hn).

Remark. By Lemma 9,

-k

(1.46) g(z) gISt.T= c. z 2

( "1-212-4 )z- 2

-k
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Without loss of generality assume c 1. Therefore, qn, l(Z) has poles in

Proof. The proof is given in two steps.

Step 1. To demonstrate that qn, r generates a period function for an
automorphic integral it suffices to show that qn, r satisfies the two relations in
(1.6).

(i) q,. 7"1T + q,. 7" 0 is trivial by a construction of q,. 7-.

(ii) Since (S,,T)" I, and glST g,

n-1

Y’.
0

n-1 n-l )with
i=0 0

1-1 1-1

E glSin(Sr) n-1 E g]Sinr(ST) -1
1 1

1-1 1-1

+ E glSi,,(S,,T) "-2- E glS,T(S,,T) "-
1 1

l-1 1-1

S,T(S.T+ + E gIS.(S.T) E gl )
1

1-1 1-1

glSt-irs; glTS; + glStn-(TS;X)2

--gl(TS;X)2"k +glS.Z glS.Z + glSln-1- g

( s,-1s:1 (s:t) + ( s,- (s:1t
-gl(r&-l)) +"-+(gl(xr)- g)

+ (glS-x- gITS2X)=-O.

Therefore, q, 7" is a rational period function of an automorphic integral of
weight 2k.
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Step 2. It remains to show that q,, r is nontrivial, that is, that q,, r 0. To
show this, let us consider the following: From (1.45) and (1.46), we have

(1.47)
1--1 1-1

qn,T(z) E g[Sin- E g[ST
i--1 i--1

11( Xn 2i,.

i=1

1--1

E (i 2X2n
i----1

(z_

-k

z-
2(_i2X2n + i,l-- 1)

,nl- 2iX Xgn12 4 )(- i2,2 + iX2nl- 1)

-k

-k

Since the coefficients of (Y"i--ll-1 glS/,) in qn, T equal 1 from (1.47), the worst case
is that for some I < < 1, the coefficients of (y,.=t-x g[S,T), (i2,2 + 1
i,2nl) -k, equal 1 and the poles of t-1(Y’.i= glS’T) are matched to those of
(EZ giSt).
Now compare coefficients. Suppose (i2X2 + 1 i2l) -k 1. There are two

possibilities"
(1) i2h2 iX2l for k odd or even. This is impossible for 1 < < l- 1.
(2) i21- 2i2= ih2(l- i)= 2 for k even. This implies either i(l- 1)
2, X2 1 or i(l 1) 1, ,2 2 for i, Z+. These hold only for 3,

i= 1, An= 1; != 3, i=2, An=l;and !=2, i= 1, ’n= v/--
Thus, qn, r is a nontrivial rational period function of an automorphic

integral with weight 2k (k odd or even), whenever > 4.
The proof is complete.

Remark. In Theorem 14 qn, r is nontrivial if k is odd for 3, , 1.
Furthermore, this is the same example as given in Knopp’s Theorem 1 [13].

COROLLARY 15. Let g be a nonconstant meromorphic function such that
glSEmT g, where m Z+. If k is an integer (odd or even), then

qn, T
2m-1 2m-1

E giSt- E glST
i=1 i=1
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& a nontrivial rational period function of an automorphic integral of weight 2k

for G(,). The poles of this q,,r are in Q(v/)2m2 1, )t).

Proof This is the case 2m of Theorem 14.

(b) Theorem on Pell’s equation and corollary.
Now, we state the following well-known theorem without proof. With this

theorem and Theorem 14 we show the existence of a rational period function
of modular integral with weight 2k (k even or odd), that has poles in an
arbitrary quadratic field Q(-), N H Z/.

THEOREM 16. (1) Let D be a positive integer which & not a perfect square.
Then the equation x2- Dy2= 1 has an infinity of integer solutions (x, y).
Furthermore, if (x1, Yx) is a minimal integer solution of x2 Dy2 1, then
(x,, y,) is also a solution ofx2 Dy2 1 where (x, + y,v-) (xx + yxvC)",
nHZ+.

(2) Let D be a square free positive integer. If (xi, yi) is the minimalpositive
integer solution of the equation

X 2 Dy2=4

then every integer solution (x., y.) satisfies the equation

2 2 ’nHZ+

and every (x., y.) of the type

x"+Y"Vt-2 ( xl + ylv/)2
satisfies the equation x2 Dy2 4.

(3) Let fl x + yiV/-, xi, Yi H Z+.
If the norm of fl, (Nil) is 1, then N(2fl) 4. This implies the existence of a

solution of the equation x 2 y2D 4.

We may state the following results.

COROLLARY 17. There exist nontriviai rational period functions of modular
integrals of weight 2k, k odd or even, with poles in an arbitrary real quadratic
field Q(v/-), N H Z+.

Proof This is an immediate result of Corollary 15 and Theorem 16.
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COROLLARY 18. The collection _{_qr 2k N ) Of rational period functions with
poles in the real quadratic field Q(/N ) is infinite dimensional over C.

Proof.

with

In Theorem 14 with 1 we construct qr 0 such that

qT
1-1 1-1

i--1 i=1

-k

g= glStT= c" 2 2

-k

Let N be square free such that 12- 4 Nm2. Theorem 16 implies that this
has infinitely many integer solutions (l, m). The location of the poles of qr
implies that for each N we get infinitely many linearly independent qr.

Note. If l, m are even integers, then (1,)2_ I Nm’ with 2/’,
m= 2m’.

2. Existence of a rationalperiodfunction for an automorphic integral of weight
2k, k even or odd, on the Hecke groups G(X) with poles in Q(v/-, ,), where p
is square free, h v, v/-.
Now, we shall show the existence of rational period functions with poles at

Q(/--, X), p is a positive square free, on the Hecke group G(V-), G(q-).
Leutbecher [16] has shown that of the Hecke groups only those for n 4

and 6 are commensurable with the modular group. The commensurability of
these groups permits construction of automorphic integrals for G(v/-) and
G(v/-) from modular integrals. This construction is described in the following
theorem [8], [18].

THEOREM 19 [18]. Let F be a modular integral of weight 2k, k Z, with
generating period function qr q. Then

Fx( /X)

is an automorphic integral for G(k) where k f or v/. The corresponding
generating period function qx, r qx is

qx k2kq( kz ) + q( z/k ).

Remark. It should be pointed out that the definition of Fx(z ) is precisely
that used by Hecke in his original construction of automorphic forms on
G(q-) and G(-) from modular forms 8].
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Table B
Explicit form of qn, r in Theorem 14, k odd, even

(a) The case X 1

Poles of qr

1=4

l=5

l=6

(1 d}, __d, +_ -,
+ 2 ’+ 2 ’+ 6 ’+ 10

+(2 + 2}, + (1 + 2v} +2v, +

+{1+2 +

(b) The case

Poles of qn, r

1=4

1=5

1=6

+{ + }, +5, +7, +

_+{32 +_ d _+40-g 2 _+4
2 }’+-{ 2 }’+-( 14 }

}
1+ {2d- + 1},_ {v + 11, _+ v-), + vq’

9 15 )"
(c) The case X fJ-

Poles of q., r

1=4

1=5

1=6

+{e5 + ldi-}, +_ re’i-i-,-+ 1--’ -+ 8

2 ’+ 2 ’+ 22

,4 }
1+{25- + 2dg}, +{(5 + 2dg}, _+ 2’, _+

+{2d +d-/ d
14 )’-+{-+23 }
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(d) The case A 2

Poles of q,,, r

1=4

1=5

1=6

{ 1 + 1/7 + 27t},-_- +-+_ 2 + (7r- +2V/-
1//7

1

273-+

+
11 + 3V/-

+ 4 ’ 4

{3+3+134+50 } {1++134+50 }+ +
20 + 8d 32 + 12d

+ +
13 + 5d 22+ 8d

COROLLARY 20. There exist nontrivial rational period functions of integrals
of weight 2 k, k odd or even, with poles in Q(_, ) on the Hecke groups G(X),
where p is a square free positive integer, )t f, v/-.

Proof This is an immediate result of Corollary 18 and Theorem 19.

7. Conclusion

The number theoretical significance of the Eichler integral of negative
integer weight with a polynomial period is well known. For instance, the
coefficients of the period polynomial are closely related with the values of an
L-function at a certain integer points (see [16], [18]).

In this article, we construct a rational period function of a modular integral
of weight 2k (any integer k) with poles in an arbitrary real quadratic field
Q(v/--), N Z/. Since all the examples that we construct are closely related
to the k th power of binary quadratic forms, we may expect to obtain
additional interesting number theoretical results. For instance, the existence of
rational period functions is connected with the class number problem for real
quadratic fields (see [3]).

In Table B, we give a few explicit examples, obtained from Theorem 14, of a
rational period function on G(X).
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