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L p ESTIMATES FOR CERTAIN GENERALIZATIONS OF
k-PLANE TRANSFORMS.

BY

S.W. DRURY

Introduction

Estimates for the k-plane transform have been obtained by a variety of
authors [1], [3], [5], [7], the definitive results being obtained by M. Christ [2].
We denote by M,, k the manifold of affine k-planes in R". For II an element of
M,, k, we denote by hn the Lebesgue measure carried by H. The k-plane
transform Tkf of a suitable function f defined on R" is given by

Tf(II) ff(x) dXii(x ).

There is a natural measure g carried by M,,, and invariant under rigid
motions of R". The typical estimate alluded to above takes the form

The /-plane to k-plane transform Tt, is a generalization of the k-plane
transform first mentioned (to our knowledge) by Strichartz [7, p. 701]. There is
an analogous transform St, for vector planes. Here we adapt Christ’s meth-
ods to obtain general estimates for these transforms. The novel element in the
present article is the use of stereographic projection as a link between the two
transforms T/, k and St,.
The results presented here have the bizarre property of being invariant

under all affine motions (cf. [4]). The affinely invariant results in this area are
generally the sharpest and were not obtained by the earlier workers--compare
for example [8, Theorem 4.2] with [2], Theorem 2.1(B). On the other hand,
even in the earliest work, smoothness estimates are obtained and it is an open
question how to formulate such estimates in an aftinely invariant way.
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The reader may consult [9] for a comprehensive survey of the area. We
should like to express our thanks to the referee for helpful comments and
suggestions.

I. Statement of results

Let Gn, denote the space of linear k-planes (i.e., k-planes passing through
the origin) in Rn. This is a compact manifold and indeed a homogenous space
of the orthogonal group O(n). It possesses an invariant probability measure ,
invariant under the action of O(n). The space M.,g of all k-planes can be
viewed as a bundle over G,, k- For II an element of Mn, k we can find a unique
translate or of H passing through the origin. We can then specify H by
YI or + x for a unique x in or +/-. Thus for or G,, , the fibre of Mn, k over or
can be realized as the Euclidean space or +/-. We use the notation

H or + x (or, x).

It is easy to see that d#(Yi) dX,r.(X)d(or) so that there are natural mixed
norm spaces of functions on M,,,k corresponding to the bundle structure.
Specifically

]lfllLO(Lr)(g,k) f If(or, X)I dkcr+/-(X ) d’y(or)} l/q.

Now let 0 _< _< k _< n. For H M., k there is a natural measure/rt on the
space Mk, t(II ) of/-planes contained in II. This measure is invariant under the
rigid transformations of YI and the normalizations for different II "agree".
Similarly for or Gn, k, there is a natural probability measure 3, on the space
Gk, l(or) of linear/-planes contained in or. For f a suitable function defined on

M, we define

(T,k/)(1-I) ff(o) d/.trt() ),

a function on M., k- Similarly if g is given on G., we define the function St, g
on G., by

fg(o)
THEOREM 1. Let 1 <_ 1 <_ k < n. Then

IISz, kgll./e C.,k, zllgll./k. (1)
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This result was previously known [2] if 1, or if k n 1, or if k. The
result for k n 1 can be deduced from the case 1, because Sn_, n-1 is
essentially the adjoint of $1, t- If k then Sz, k is of course the identity map.

THEOREM 2. Let 1 < < k < n. Then

where

(2)

(n- I)R’= (n- k)P’= Q, (n- l)B’= (n- k)A’= nQ’

and where 1 < R < (n + 1)/(l + 1) in general and 1 < R < oz if 2k > n + l.
Here the constant C depends on n, k, and R. The exponent Q has been used
only to link the other exponents.

Simple examples show that the result fails if (n I)R’ :# (n k)P’ or if
(n- I)B’ < (n- k)A’. The result was previously known if k n- 1 [2].
The reader should consult [4] for this formulation of the estimate. It is used to
obtain control of the standard k-plane transform.

2. Proof of the theorems

Theorems 1 and 2 will be proved together by an induction procedure. We
will show the following:

PROPOSITION 1.
same 1, k and n.

If (1) holds for fixed l, k and n then so does (2) for the

PROPOSITION 2. If (2) holds for fixed l, k and n then so does the statement
(1) in which l, k and n are replaced by + 1, k + 1 and n + I respectively.

Since Theorem 1 is known for 1 and general k and n (1 < k < n), an
obvious induction argument establishes Theorem 1 and Theorem 2. It remains
then to prove the propositions.

Proposition 1 is essentially a reworking of the ideas of Christ [2] in a
marginally different context. An easy calculation yields the following way of
writing Tt, :

Tt,,f(rr, x) fff(o, y)dXo+/- c(,+x)(y)d’,(O). (3)

Here r G,, ,, x r +/-, 0 G,, and y 0 +/-. The function f is defined on
Mn, and Tz, gf on M,,,. The affine /-plane t9 0 + y is contained in the
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affine k-plane H r + x if and only if/9

_
r (i.e., 0 Gk, l(9)) and y /9 +/-

N H. It is easy to check that

d,()) dXei c(,+x)(Y)d’,(O).

The key observation is that the inner integral in (3) is really an (k -/)-plane
transform in the (n-/)-dimensional space 0 +/-. Let us denote this inner
integral by

F(O, ,Y, x) ff(o, y)dXoi

where 7 0 +/- Nr is an element of Gn_t, k_t(0 +/-) and x is an element of 0 +/-

orthogonal to 7 (which is a complicated way of saying that x r +/-). Thus
7 + x is the generic affine (k -/)-plane contained in the (n -/)-plane 0 +/-.
Using now the standard estimate for k-plane transforms, Christ [2], we have

where (n I)R’= (n k)P’= Q and 1 < P < (n + 1 l)(k + 1 l)-1.
If in addition 2k > n + then (k l) > 1/2(n l) and Christ’s L2 methods
extend the range to

Now, taking the LA norm in 0 we get

Rewriting (3), we have

Tt, kf(, x) fF(O, x) dr.(0)

and we need to show that Tl, kf LB(Ln). Thus taking LR norms in x over
r +/- it remains to show that if

fG(O, dv.(O)

then
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Towards this, we let h be a function in the unit ball of LB’(Gn, k). Then we
have

fg(r)h(r) dv(r)

fG(O, ")h(rr) dy,(O)

f (o, "Y)h(r) dyo(r ) dy(O)_
f flh(,)I e’ dvo(,) fla(O, ,)I - dr(O)

where d,/o is the invariant measure on the space of k-planes containing 0. We
have

do(,) d0().
Now

dv()H(O) flh()l’ *

so by the estimate adjoint to (1), we see that H1/Q’ is controlled in L"o’(’-’)-I

provided that

nQ’(n l)-1= B’.

The desired estimate now follows if

A’= nQ’(n- k) -.
This completes the proof of Proposition 1.

For Proposition 2 we will need only the special case

P=A (n + l)(k + l) -1, Q=n+l, R= B= (n + I)(I + I) -1

of (2). This is the situation in which the norms are unmixed. We aim to show
that T, in R and Sz/l, k/ in R / are intertwined by stereographic
projection. Towards this we need to calculate some Jacobian determinants. We
start out with the formula

dXn(x0).., dXn(x) d(rt) c6-(--)dX(x0).., dX(x) (4)

for the aftine k-planes II in Rn. We have denoted by A the volume of the
k-simplex with vertices x0, xl,..., xk. This formula is proved in [3], but (we
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have since learnt) was originally due to Blaschke; see [6, p. 200]. We also need
the Blaschke formula in the essentially equivalent form

dX,(Zo) dX,,(z,) dy(r) cD-(’-) dX(zo) dX(z,) (5)

for k + 1 planes r through the origin in R"+ 1. Here D denotes the volume of
the (k + 1)-simplex with vertices O, zo, Zl,..., zk.

Now let E be a hyperplane in R"+ a distance a > 0 from the origin. For
every k-plane 1-I in E let r be the linear span of H in R+1. Then r is a
k + 1 plane through the origin in R+ 1. Furthermore, almost every k + 1
plane r through the origin in R+ arises in this way. For 1-I a k-plane in E,
we denote by b(II) the distance from 0 to II. Let Xo,..., xk be points of II.
Let to,..., k be real numbers and set Zj tjxj (0 <_ j < k) points of r. Then
one easily sees that

dh(zj) at dXE(xj) dtj, (6)

d,,(zj) b(1-I)t) dXrt(X) dty (7)

for 0 < j < k. Taking (4), "multiplying" each side by dto.., dtk and rewriting
with (6) and (7) we get

k

(b(II))-(’+l) l-[ t-f k dX,(Zo).., dX,(zk) d(II)
j--0

k

cA-("-k)a-(k+l)I-[ t; dk(Zo).., dk(Zk).
j=0

Now D cb(1-I)Al-I=otj, whence

(b(1-I)) -("+1) dXr(Zo).., d,r(Zk) d#(1-[)
cD-(n-k)a-(k+l)dX(zo).., dX(zk).

Finally, comparison with (5) yields

dy(qr) ca+(b(II)) -("+) dt(II). (8)

Now repeat the argument with R"+1 replaced by r, n by k, E by H, r by
0, k by and II by . We obtain

d/,(O) c(b(II))’+(b(O))-(+) d/ri(O). (9)

Finally in (8) we replace k by l, r by 0 and H by O to find

d’t(O) cat+l(b(O)) -("+1) dl(O) (10)
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where now 3’ and / are the standard measures on an+l,l+ and Mn,
respectively.
With these Jacobian determinants computed we complete the proof of

Proposition 2. We revert to the viewpoint that E is a fixed hyperplane of
Rn+ 1, to be thought of as a copy of Rn. We denote II a k-plane of E and an
/-plane of II. Further, rr and 0 denote the linear spans of II and O in Rn/

respectively. Let f L(n+l)/(l+l)(Gn+l,l+l) and define

F(O) (b(O))-k+l)f(O).
Then

II FII z,.+,/,+ 1)(mn., ca -(k + 1)(t+ 1)/(n + :)Ilfll z.,.+,/,+ 1)(Gn+ 1./+ 1)

by (10). Also

S/+l,k+lf(’n’) ff(o) d’r(O )

cfr(o)(b(II)) ’+ d(O)
c(b(II))’+lTt, kF(II)

by (9). Finally, by (8),

II S+ 1, k + :fll t(n+l)/(i+ 1)(Gn+l.k+l) a(’ + 1)(t+ 1)/(,, +,11 T, ,FII (,,+ 1)/(/+ 1)"

But by (2),

from which follows

IlSt+l,,+lfll(,,+l)/(t+l) <- cllfll(n+l)/(k+l).

This completes the proof of Proposition 2.
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