GENERALIZED CYCLOTOMIC FIELDS

BY

STEPHEN BEALE AND D.K. HARRISON

This note examines the splitting field $K \subseteq \mathbb{C}$ over \mathbb{Q} of the set of polynomials of the form $X^n - b$, with $n \in \mathbb{N}^*$ and $b \in \mathbb{Q}$. We obtain the Galois group Aut_Q(K) as a natural subgroup of a semidirect product of the Pontryagin dual of a quotient of the divisible hull of the positive rationals and the automorphism group of the maximal abelian extension of the rationals.

Section 1

Let R denote the Pontryagin dual Hom(Q/Z, Q/Z) of Q/Z. For each $n \in \mathbb{N}^*$ and $r \in R$ there is an integer k, uniquely determined modulo nZ, such that

$$r\left(\frac{1}{n}+\mathbf{Z}\right)=\frac{k}{n}+\mathbf{Z}.$$

We denote the class of $k \mod n\mathbb{Z}$ by $j_n(r)$ and observe that $r \mapsto j_n(r)$ is a ring homomorphism of R onto $\mathbb{Z}/n\mathbb{Z}$ with kernel nR. If we write j_n for the induced $R/nR \to \mathbb{Z}/n\mathbb{Z}$, then these maps interact properly with the natural epimorphisms $R/nR \to R/mR$ and $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ when m divides n (i.e., the diagram

$$\begin{array}{ccc} R/nR & \xrightarrow{\tilde{j}_n} & \mathbb{Z}/n\mathbb{Z} \\ & & & \downarrow \\ R/mR & \xrightarrow{\tilde{j}_m} & \mathbb{Z}/m\mathbb{Z} \end{array}$$

commutes), allowing us to identify the corresponding projective limits R and $\hat{\mathbf{Z}}$ (= the Prüfer ring $\lim_{n \to \infty} \mathbb{Z}/n\mathbb{Z}$). With the Krull topology (for which the sets $N_A = \{ f \in R | f(a) = 0, \forall a \in A \}$ form a basis of neighborhoods of the identity when A ranges over finite subsets of \mathbb{Q}/\mathbb{Z}), R is a profinite group. The units $U(R) = \operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ of R form a closed subspace of R in which multiplication and inversion are continuous (in the relative topology) and hence U(R)

Received December 21, 1987.

^{© 1989} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

is itself a profinite group. We also have the map

$$\alpha \mapsto e^{2\pi i \alpha}$$

of Q into C with kernel Z; we write C for its image and ζ_n for the image of 1/n, and we denote by ω the inverse of the induced isomorphism $\mathbf{Q}/\mathbf{Z} \to C$. For B a discrete abelian group, there is a natural isomorphism

$$\operatorname{Hom}(B \otimes \mathbf{Q}/\mathbf{Z}, \mathbf{Q}/\mathbf{Z}) \to \operatorname{Hom}(B, R);$$

we give Hom(B, R) the strongest topology making this map continuous; here we take $B \otimes Q/Z$ to be discrete and we let Hom $(B \otimes Q/Z, Q/Z)$ have the Krull topology so that $Hom(B \otimes Q/Z, Q/Z)$ and hence Hom(B, R) are profinite groups. We note that U(R) acts on Hom(B, R) by

$$(r, f) \rightarrow r \circ f$$

and that this action is continuous as a map from $U(R) \times Hom(B, R)$ into Hom(B, R). It follows that with the product topology the semidirect product Hom $(B, R) \rtimes U(R)$ is a topological group; the multiplication is given by

$$(f,r)(g,s) = (f+r \cdot g, rs),$$

for all $f, g \in \text{Hom}(B, R), r, s \in U(R)$. Furthermore since both Hom(B, R)and U(R) are compact, Hausdorff, and totally disconnected, so is their product, and therefore the semidirect product is a profinite group.

When B is free abelian we have a surjection

$$\eta_*$$
: Hom $(B, R) \rightarrow$ Hom $(B, R/2R)$

induced by the projection η : $R \to R/2R$, and we give Hom(B, R/2R) the strongest topology making η_* continuous. Assume B is so and let $\lambda: U(R) \rightarrow U(R)$ Hom(B, R/2R) be a continuous group homomorphism. We define B_{λ} to be the subset

$$B_{\lambda} = \{ (f, r) \in \operatorname{Hom}(B, R) \rtimes U(R) | \lambda(r) = \eta_{*}(f) \}$$

of Hom $(B, R) \rtimes U(R)$. Bearing in mind that the class modulo 2R of an element $r \in R$ is determined completely by its restriction to $\frac{1}{2}Z/Z$ and that if r is a unit of R, $r|_{z \ge Z}$ must be the identity, one checks that the continuous map

$$(f,r) \mapsto \lambda(r) - \eta_*(f)$$

of Hom $(B, R) \rtimes U(R)$ into Hom(B, R/2R) is in fact a group homomorphism. As the kernel of this map, B_{λ} is a closed subgroup of Hom $(B, R) \rtimes$ U(R) and hence is a profinite group.

692

Section 2

Let *E* be the maximal abelian extension in **C** of **Q**; this is the smallest subfield of **C** containing the roots of all polynomials of the form $X^n - 1$ with $n \in \mathbb{N}^*$. Write *B* for the multiplicative group of positive rational numbers; this is a free abelian group with basis the set *S* of prime numbers. For each $n \in \mathbb{N}^*$, $k \in \mathbb{Z}$, and $b \in B$, the polynomial $X^n - b^k$ has exactly one positive real root; we denote this root by $b^{k/n}$ and we write \mathcal{D} for the set of all such roots, *F* for the field $\mathbb{Q}[\mathcal{D}]$, and *K* for $E[\mathcal{D}] = E \cdot F$. *K* is the splitting field of the set of polynomials $x^n - b, n \in \mathbb{N}^*, b \in B$. Denote its Galois group over \mathbb{Q} by Γ .

For p a prime number and k a unit of $\mathbb{Z}/p\mathbb{Z}$ we define the symbol (k/p) in R/2R to be 0 if k is a square in $\mathbb{Z}/p\mathbb{Z}$ and to be 1 otherwise; $k \mapsto (k/p)$ is then a group homomorphism from $U(\mathbb{Z}/p\mathbb{Z})$ to R/2R. For $r \in U(R)$ we define $\lambda(r) \in \text{Hom}(B, R/2R)$ on elements of the basis S of B by

$$\lambda(r)(p) = \begin{cases} 0 & \text{if } p = 2 \text{ and } j_8(r) = \pm 1 + 8\mathbb{Z}, \\ 1 & \text{if } p = 2 \text{ and } j_8(r) = \pm 3 + 8\mathbb{Z}, \\ \left(\frac{j_p(r)}{p}\right) & \text{if } p \equiv 1 \pmod{4}, \\ 0 & \text{rif } p \equiv 3 \pmod{4} \text{ and } j_4(r) = 1 + 4\mathbb{Z}, \\ 1 + \left(\frac{j_p(r)}{p}\right) & \text{if } p \equiv 3 \pmod{4} \text{ and } j_4(r) = 3 + 4\mathbb{Z}, \end{cases}$$

where $j_n: R \to \mathbb{Z}/n\mathbb{Z}$ is the map defined in §1. One checks with little difficulty that $\lambda: r \mapsto \lambda(r)$ is a continuous group homomorphism of U(R) into Hom(B, R/2R). It is B_{λ} that we are after.

THEOREM 2.1. With B and λ defined as above, $\Gamma \cong B_{\lambda}$.

Proof. For $\sigma \in \Gamma$, $b \in B$, and $\alpha \in \mathbb{Q}$, the number $\sigma(b^{\alpha})/b^{\alpha}$ is a root of unity which depends only on the class of α modulo Z; b^{α} is to be interpreted as the unique positive real root of $x^n - b^k$, where $\alpha = k/n, k \in \mathbb{Z}, n \in \mathbb{N}^*$. Define $\mu: \Gamma \to \operatorname{Hom}(B, R)$ by'

$$\sigma \mapsto (b \mapsto (\alpha + \mathbb{Z} \mapsto \omega(\sigma(b^{\alpha})/b^{\alpha}))),$$

and $\nu: \Gamma \to U(R)$ by

$$\sigma \mapsto \omega \sigma|_C \omega^{-1}$$
.

It is straightforward to check that ν is a continuous group epimorphism and

that μ is a well defined continuous map satisfying

$$\mu(\tau\sigma) = \mu(\tau) + \nu(\tau)\mu(\sigma), \quad \forall \tau, \sigma \in \Gamma$$

(i.e., μ is a derivation when Hom(B, R) is considered a Γ -module through ν). One notes that this is exactly what is needed to insure that $\varphi: \Gamma \to$ Hom $(B, R) \rtimes U(R)$ defined by

$$\sigma \mapsto (\mu(\sigma), \nu(\sigma))$$

is a group homomorphism. One checks that the kernel of φ is trivial, and with the aid of the quadratic Gauss sums

$$\sqrt{p} = \begin{cases} \zeta_8 + \zeta_8^7 & \text{if } p = 2, \\ \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta_p^i & \text{if } p \equiv 1 \pmod{4}, \\ \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta_{4p}^{4i+3p} & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

(see [1], pp. 70–75; here (i/p) is the ordinary Legendre symbol with values in $U(\mathbf{Z}) = \{\pm 1\}$), one sees that the diagram

$$\begin{array}{cccc} \Gamma & \stackrel{\nu}{\longrightarrow} & U(R) \\ \downarrow & & & \downarrow \lambda \\ Hom(B,R) & \stackrel{\eta_{\bullet}}{\longrightarrow} & Hom(B,R/2R) \end{array}$$

commutes; it follows immediately that φ has its image in B_{λ} . In order to show that its image is all of B_{λ} , we will identify K with a quotient of the group algebra E(D) over E of the divisible hull $D = B \otimes \mathbf{Q}$ of B. The \mathbf{Q} here is the additive group of rationals. D is an abelian group which we write multiplicatively, and for $d \in D$ we let u_d denote the basis element of E(D) corresponding to d. Since B is free abelian, the inclusions $\mathbf{Z} \to \mathbf{Q}$ and $\frac{1}{2}\mathbf{Z} \to \mathbf{Q}$ induce injections

$$B \cong B \otimes \mathbb{Z} \to D$$
 and $B \otimes \frac{1}{2}\mathbb{Z} \to D$

which we use to identify B and $B_1 = B \otimes \frac{1}{2}\mathbb{Z}$ with subgroups of D.

For $b \in B$ and $\alpha \in \mathbf{Q}$ we have defined above the element $b^{\alpha} \in F$; the map

 $(b, \alpha) \mapsto b^{\alpha}$

694

is **Z**-bilinear from $B \times \mathbf{Q}$ into the units of K and so induces a group homomorphism $D \to U(K)$ which in turn determines a surjective E-algebra homomorphism

$$\theta: E(D) \to K = EF.$$

Note that $\theta(\{u_d | d \in B_1\}) \subseteq E \cap F$ so $\theta(u_d)u_1 \in E(D)$ when $d \in B_1$. We will show that the kernel of this map is the ideal a of E(D) generated by the set

$$T = \left\{ u_d - \theta(u_d) u_1 | d \in B_1 \right\}$$

and thereby obtain an isomorphism $\overline{\theta}$: $E(D)/\mathfrak{a} \to K$.

We note that D/B_1 is a torsion abelian group and hence is the union of its finite subgroups; from this it follows that E(D) is the union of its subalgebras E(H) where H ranges over subgroups of D containing B_1 as a subgroup of finite index (one uses here the fact that the set of such H is directed by inclusion). Hence to show that α is the kernel of θ it will be enough to show that for any such H the kernel of $\theta_H = \theta|_{E(H)}$ is $E(H) \cdot T$. So let H be a subgroup of D with $B_1 \leq H$ and with $\{h_1, \ldots, h_i\}$ a set of B_1 -coset representatives in H. Then in the terminology of [2], the field $L = E[\theta(h_1), \ldots, \theta(h_i)]$ is a pure, separable, and coseparable extension of E and hence Cogalois over E. If $\theta(h_i)$ and $\theta(h_j)$ represent the same element of the Cogalois group $\operatorname{Cog}(L|E) = \operatorname{torsion}$ subgroup of U(L)/U(E), then h_i and h_j represent the same coset of B_1 (one checks) which implies that i = j. It follows that $\theta(h_1)U(E), \ldots, \theta(h_i)U(E)$ are distinct elements of $\operatorname{Cog}(L|E)$ and hence that $\theta(h_1), \ldots, \theta(h_i)$ are linearly independent over E. This implies $\dim_E(L) \geq t$.

We next observe that vectors $u_{h_1} + E(H) \cdot T, \ldots, u_{h_i} + E(H) \cdot T$ span $E(H)/E(H) \cdot T$ as a vector space over E, and hence

$$\dim_E(E(H)/E(H)\cdot T)\leq t.$$

Now since T and hence $E(H) \cdot (T)$ are included in the kernel of θ_H , and since $L \cong E(H)/\text{Ker}(\theta_h)$, we have

$$t \leq \dim_E(L) = \det_E(E(H)/\operatorname{Ker}(\theta_H)) \leq \det_E(E(H)/E(H) \cdot T) \leq t,$$

which implies $E(H) \cdot T = \text{Ker}(\theta_H)$. This shows that a is the kernel of θ and gives us the isomorphism

$$\overline{\theta} \colon E(D)/\mathfrak{a} \to K.$$

We now complete the proof of the theorem by showing that φ maps Γ onto B_{λ} . Let $(f, r) \in B_{\lambda}$. The map

$$(b, \alpha) \mapsto \omega^{-1}(f(b)(\alpha + \mathbf{Z}))u_{b\otimes\alpha}$$

of $B \times Q$ into the units of E(D) is Z-bilinear so induces a group homomorphism

$$D = B \otimes \mathbf{Q} \to U(E(D))$$

which induces an E-algebra homomorphism

$$\hat{\sigma}: E(D) \to E(D).$$

Since $\tau \mapsto \tau|_C$ is an isomorphism of Aut(*E*) onto Aut(*C*), there is a unique element $\bar{r} \in Aut(E)$ extending $\omega^{-1}r\omega \in Aut(C)$. Define $\tilde{\sigma}: E(D) \to E(D)$ by

$$\sum e_d u_d \mapsto \sum \bar{r}(e_d) \hat{\sigma}(u_d).$$

One uses quadratic Gauss sums as above to check that $\tilde{\sigma}$ maps T (and hence a) into a. Thus we get an *E*-algebra homomorphism (taking 1 to 1) $\bar{\sigma}$: $E(D)/\alpha \to E(D)/\alpha$, and since $E(D)/\alpha \cong K$ is a field, $\bar{\sigma}$ is an automorphism. Finally we let $\sigma_{f,r}$ be the composition $\bar{\theta}\bar{\sigma}\bar{\theta}^{-1}$ and check that $\mu(\sigma_{f,r}) = f$ and $\nu(\sigma_{f,r}) = r$ to complete the proof.

Section 3

We turn now to a consideration of subfields of K which are finite dimensional over the rationals, focusing on a family of these fields with the property that every such subfield is included in some one in our family.

We call a positive integer *n* indicial and write $n \in \text{Ind}$ if 8 divides *n* whenever *n* has a prime divisor congruent to 2 or 3 mod 4. These will be cofinal in an upcoming inverse limit. For *n* indicial we write S(n) for the set of prime divisors of *n* and s(n) for the cardinality of S(n). We define the *n*th indicial polynomial to be

$$\Omega_n = \prod_{p \in S(n)} (X^n - p)$$

and let K_n denote the splitting field in K of Ω_n over \mathbf{Q} and Γ_n the Galois group of K_n over \mathbf{Q} . We also set $E_n = \mathbf{Q}[\zeta_n]$ and $F_n = \mathbf{Q}[S(n)^{1/n}]$, where $S(n)^{1/n} = \{p^{1/n} | p \in S(n)\}$, and we observe that $K_n = E_n F_n$ and that $E = \bigcup_{n \in \text{Ind}} E_n$, that $F = \bigcup_{n \in \text{Ind}} I_n$, and that $K = \bigcup_{n \in \text{Ind}} K_n$. Furthermore if n, mare indicial then so is their least common multiple [n, m], and $E_n E_m = E_{[n, m]}$, $F_n F_m \subseteq F_{[n, m]}$, and $K_n K_m \subseteq K_{[n, m]}$. Thus the family $\{K_n | n \in \text{Ind}\}$ is cofinal (in the sense of the last paragraph) in the set of all finite dimensional extensions of \mathbf{Q} in K.

Let *n* be indicial. Write d_n for the greatest common divisor of 2 and *n*, U_n for the units of $\mathbb{Z}/n\mathbb{Z}$, and M_n for Map $(S(n), \mathbb{Z}/n\mathbb{Z})$. M_n is an abelian

696

group under pointwise addition of maps, and U_n acts on M_n by pointwise multiplication; $M_n \rtimes U_n$ will denote their semidirect product with respect to this action.

For k, j positive integers with $j|k, \pi_{kj}$ will denote the canonical map $\mathbb{Z}/k\mathbb{Z} \to \mathbb{Z}/j\mathbb{Z}$. The assignment $f \mapsto \pi_{n, d_n} \circ f$ maps M_n onto $\operatorname{Map}(S(n), \mathbb{Z}/d_n\mathbb{Z})$ with kernel d_nM_n ; we will use the induced isomorphism to identify M_n/d_nM_n with $\operatorname{Map}(S(n), \mathbb{Z}/d_n\mathbb{Z})$. Note that this group is trivial when n is odd.

Let $\eta_n: M_n \to M_n/d_n M_n$ be the natural projection, and define $\lambda_n: U_n \to M_n/d_n M_n$ by

$$\lambda_n^{(u)}(p) = \begin{cases} \frac{a^2 - 1}{8} + d_n \mathbb{Z}, & p = 2, \\ \left[\frac{u}{p}\right], & p \equiv 1 \mod 4, \\ \left[\frac{u}{p}\right] + \frac{a - 1}{2} + d_n \mathbb{Z}, & p \equiv 3 \mod 4, \end{cases}$$

where $u = a + n\mathbb{Z} \in U_n$ and $p \in S(n)$, and where [u/p] is defined to be $0 \in \mathbb{Z}/d_n\mathbb{Z}$ if u is a square in U_n and $1 \in \mathbb{Z}/d_n\mathbb{Z}$ otherwise; it is straightforward to check that λ_n is a well defined group homomorphism.

We let

$$V_n = \begin{cases} (U_n)^2 \cdot \{1, -1\} & \text{if } n \text{ is even} \\ U_n & \text{if } n \text{ is odd.} \end{cases}$$

PROPOSITION 3.1. λ_n maps U_n onto $M_n/d_n M_n$ and V_n is its kernel.

Proof. This clear when n is odd, so assume that n is even and hence that 8|n. It is easily seen that V_n is included in the kernel. Suppose that $u \in U_n$ is in the kernel, with $u = a + n\mathbb{Z}$, a relatively prime to n. Then u is a square in U_n if and only if $a \equiv 1 \mod 8$ and [u/p] = 0 for every odd prime p dividing n. Now if $a \equiv 1 \mod 8$ then $\frac{1}{2}(a-1) \equiv 0 \mod 2$, so for p|n with $p \equiv 3 \mod 4$,

$$\left[\frac{u}{p}\right] = \left[\frac{u}{p}\right] + \left(\frac{a-1}{2} + 2\mathbf{Z}\right) = \lambda_n(u)(p) = 0.$$

Since $[u/p] = \lambda_n(u)(p) = 0$ for p|n with $p \equiv 1 \mod 4$ as well, we have $u \in U_n^2$ if $a \equiv 1 \mod 8$. Thus since

$$\frac{a^2-1}{8}+2\mathbf{Z}=\lambda_n(u)(2)=0$$

implies $a \equiv \pm 1 \mod 8$, *u* fails to be a square in U_n only if $a \equiv -1 \mod 8$. In this case $-a \equiv 1 \mod 8$,

$$\left[\frac{-u}{p}\right] = \left[\frac{u}{p}\right] + \left[\frac{-1}{p}\right] = 0$$

for p|n with $p \equiv 1 \mod 4$, and for p|n with $p \equiv 3 \mod 4$,

$$\begin{bmatrix} \frac{-u}{p} \end{bmatrix} = \begin{bmatrix} \frac{u}{p} \end{bmatrix} + \begin{bmatrix} \frac{-1}{p} \end{bmatrix} = \begin{bmatrix} \frac{u}{p} \end{bmatrix} + 1$$
$$= \begin{bmatrix} \frac{u}{p} \end{bmatrix} + \left(\frac{a-1}{2} + 2\mathbf{Z}\right) = \lambda_n(u)(p) = 0,$$

and hence $-u \in U_n^2$ and $u \in V_n$. Thus $\operatorname{Ker}(\lambda_n) = V_n$.

Still assuming that *n* is even, we note that $-1 \notin U_n^2$ and hence that $|V_n| = 2|U_n^2|$. By decomposing U_n into a product of groups of units mod prime powers we find that

$$\left[U_n: U_n^2\right] = 2^{s(n)+1}$$

and hence that

$$|V_n| = 2\varphi^{(n)}/2^{s(n)+1} = \varphi^{(n)}/2^{s(n)}.$$

It follows that the image of λ_n has cardinality $2^{s(n)} = [M_n; 2M_n]$, which shows the map is surjective.

Let $G_n = \{(f, u) \in M_n \rtimes U_n | \eta_n(f) = \lambda_n(u)\}$. Define g_n to be the order of G_n and note that since

$$(f, u) \mapsto \eta_n(f) - \lambda_n(u)$$

is a group homomorphism (as one easily checks) of $M_n \rtimes U_n$ onto $M_n/d_n M_n$ with kernel G_n , G_n is a group and

$$gn = \frac{|M_n \rtimes U_n|}{|M_n/2M_n|} = \left(\frac{n}{d_n}\right)^{s(n)} \varphi(n),$$

where φ is the Euler function.

Write C_n for the subgroup $\langle \zeta_n \rangle$ of C and ω_n for the unique group isomorphism $C_n \to \mathbb{Z}/n\mathbb{Z}$ satisfying $\omega_n(\zeta_n) = 1 + n\mathbb{Z}$. Define $\nu_n: \Gamma_n \to U_n$ by

$$\sigma \mapsto \omega_n(\sigma(\zeta_n));$$

 ν_n has its image in U_n since $\sigma(\tau_n)$ is a primitive *n*th root of unity, and one easily checks that ν_n is a group homomorphism. For each $\sigma \in \Gamma_n$ and $p \in$

 $S(n), \sigma(p^{1/n})/p^{1/n}$ is an *n*th root of 1, so we can define a map $\mu_n: \Gamma_n \to M_n$ by

 $\sigma \mapsto \left(p \mapsto \omega_n \left(\sigma \left(p^{1/n} \right) / p^{1/n} \right) \right);$

for $\sigma, \tau \in \Gamma_n$, this map satisfies

$$\mu_n(\sigma\tau) = \mu_n(\sigma) + \nu_n(\sigma)\mu_n(\tau).$$

Thus

$$\varphi_n: \sigma \mapsto (\mu_n(\sigma), \nu_n(\sigma))$$

is a group homomorphism of Γ_n into $M_n \rtimes U_n$.

THEOREM 3.2. φ_n maps Γ_n isomorphically onto G_n .

Proof. One checks that φ_n is injective and uses quadratic Gauss sums as in 2 to see that its image lies in G_n . We take advantage of the finiteness of Γ_n and G_n in showing that the image of φ_n is all of G_n . The following lemma enables us to count the relevant dimensions.

LEMMA 3.3. F_n and $E_n \cap F_n$ are cogalois extensions (see [2]) of **Q** with cogalois groups isomorphic, respectively, to M_n and $M_n/d_n M_n$.

Proof. Write L for $E_n \cap F_n$ and \mathbb{Q}^* for the units of \mathbb{Q} . By [2], F_n is cogalois over \mathbb{Q} and hence the subextension $L|\mathbb{Q}$ is also cogalois, and $\operatorname{Cog}(L|\mathbb{Q}) \leq \operatorname{Cog}(F_n|\mathbb{Q})$. Let t be a positive integer dividing n. For a prime $p \in S(n)$ and an integer a, $p^{a/t}$ is an element of F_n whose coset modulo \mathbb{Q}^* depends only on p and the class u of a modulo $t\mathbb{Z}$, and we let $p^{u/t}\mathbb{Q}^*$ stand for this coset; it is an element of $\operatorname{Cog}(F_n|\mathbb{Q})$. It is straightforward to check that

$$f \mapsto \prod_{p \in S(n)} p^{f(p)/n} \mathbf{Q}^*$$

is a group isomorphism of M_n onto $\operatorname{Cog}(F_n|\mathbf{Q})$.

Using Gauss sums again, one notes that for every $p \in S(n)$, $p^{1/d_n} \in E_n$, and since $d_n | n$, $p^{1/d_n} \in F_n$ as well, so that $p^{a/d_n} \in L$ for every integer a. Hence

$$f \mapsto \prod_{p \in S(n)} p^{f(p)/d_n} \mathbf{Q}^*$$

defines a map from Map(S(n), $\mathbb{Z}/d_n\mathbb{Z}$) $\cong M_n/2M_n$ into Cog($L|\mathbb{Q}$) which one checks is an injective group homomorphism. Its surjectivity follows (as one checks) from the fact, which we proceed to establish, that every element of Cog($L|\mathbb{Q}$) has order dividing d_n .

Let $y \in \text{Cog}(L|\mathbf{Q})$ have order k. Note that k|n since $\text{Cog}(L|\mathbf{Q}) \leq \text{Cog}(F_n|\mathbf{Q})$ and the latter has exponent n. Also, y is of the form $b\mathbf{Q}^*$ with $b \in L$ and $b^k \in \mathbf{Q}^*$; thus b is a root in L of $X^k - b^k \in \mathbf{Q}[x]$. The conjugates of b over \mathbf{Q} all look like ζb with ζ a kth root of 1, and they all lie in L since L is a subfield of the abelian extension E_n . Thus if ζb is a conjugate of b, then $\zeta \in L_n \subseteq F_n \subseteq \mathbf{R}$ which implies that $\zeta = \pm 1$. It follows that all conjugates of b are in the set $\{b, -b\}$ and therefore that $b^2 \in \mathbf{Q}$ and $y^2 = 1$. Thus k|2, and since k|n as well, we get $k|d_n$. This establishes the lemma.

We complete the proof of the theorem by observing that, as a consequence of the lemma,

$$[F_n: \mathbf{Q}] = |\operatorname{Cog}(F_n | \mathbf{Q})| = n^{s(n)}$$

and

$$[E_n \cap F_n: \mathbf{Q}] = |\operatorname{Cog}(E_n \cap F_n | \mathbf{Q})| = d_n^{s(n)},$$

and hence

$$|\Gamma_n| = [K_n; \mathbf{Q}] = [E_n; \mathbf{Q}][F_n; \mathbf{Q}] / [E_n \cap F_n; \mathbf{Q}]$$
$$= \varphi(n) \cdot \frac{n^{s(n)}}{d^{s(n)}}$$
$$= g_n.$$

The next result gives G_n as an extension of $M_n/d_n M_n$. Let

$$N_n = \operatorname{Map}(S(n), dn(\mathbb{Z}/n\mathbb{Z})) = d_n M_n.$$

The action of U_n on M_n restricts to an action of V_n on N_n , and the semidirect product $N_n \rtimes V_n$ with respect to this action is a subgroup of $M_n \rtimes U_n$. Since N_n is the kernel of η_n : $M_n \to M_n/d_n M_n$ and V_n is the kernel of λ_n : $U_n \to M_n/d_n M_n$, $N_n \rtimes V_n$ is actually a subgroup of G_n .

THEOREM 3.4. There is an exact sequence

$$1 \to N_n \rtimes V_n \to G_n \to M_n/N_n \to 1.$$

Proof. The map from G_n to M_n/M_n is given by $(f, u) \mapsto \lambda_n(u)$. All details are easy to check.

We now give a criterion for deciding when an arbitrary number field is K_n for some indicial integer *n*. Let *L* be a finite extension of **Q**. Write r' = r'(L) for the cardinality of the group $\mu(L)$ of roots of unity in *L*. We note that r' is

always even, and we set

$$r = r(L) = \begin{cases} r' & \text{if } 4|r' \\ \frac{1}{2}r' & \text{if } 4\nmid r'. \end{cases}$$

Recall that B denotes the multiplicative group of positive rationals, and set

$$A = A(K) = \{ \alpha \in B | \exists a \in L \text{ with } a^r = \alpha \}.$$

LEMMA 3.5. Assume n is an indicial integer. Then $r(K_n) = n$.

Proof. Since $\zeta_n \in \mu(K_n)$, n|r' and $\varphi^{(n)}|\varphi(r')$. Also $E_{r'} \cdot F_n \subseteq K_n$, so $[E_{r'} \cdot F_n: \mathbf{Q}]$ divides g_n . We note that Lemma 3.3 remains valid when E_n is replaced by any extension of E_n which is abelian over \mathbf{Q} , and hence $[E_{r'} \cap F_n: \mathbf{Q}] = d_n^{s(n)}$. It follows that

$$[E_{r'} \cdot F_n: \mathbf{Q}] = \varphi(r') n^{s(n)} / d_n^{s(n)},$$

and because this divides $g_n = \varphi(n)n^{s(n)}/d_n^{s(n)}$ we obtain $\varphi(r') = \varphi(n)$. If *n* is even then n = r', and since 8|n in this case, 8|r', so r = r' = n. If *n* is odd then $\varphi^{(n)} = \varphi^{(r')}$ implies r' = 2n; in this case 4 does not divide r' and $r = \frac{1}{2}r' = n$. Thus in either case we conclude that r = n.

COROLLARY 3.6. If n and m are indicial and $K_n \subseteq K_m$, then n|m.

THEOREM 3.7. With L, r, and A as above, the following are equivalent:

- (1) $L = K_n$ for some indicial integer n;
- (2) r is indicial and $L = K_r$;
- (3) r is indicial, $S(r) \subseteq A$, and $[L: \mathbf{Q}] \leq g_r$;
- (4) \exists m indicial with $m|r, S(m) \subseteq A$, and $[L: \mathbf{Q}] \leq g_m$.

Proof. The implication $(1) \Rightarrow (2)$ follows from the last lemma, and $(2) \Rightarrow (3) \Rightarrow (4)$ is clear. If (4) holds then $\zeta_m \in L$ and X' - p has a root in L for every p|m. It follows that $X^m - p$ splits over L for each p|m, and hence that $K_m \subseteq L$. The condition $[L: \mathbf{Q}] \leq g_m$ then implies that $L = K_m$. \Box

Finally, we remark that for *n* indicial it can be shown that a prime number q ramifies in K_n if and only if q divides *n*. Furthermore, if p is a prime number which is indicial (i.e., if p is a prime congruent to 1 (mod 4) then p ramifies fully in K_p , and for q a prime different from p, q decomposes in K_p into a product of g primes each of inertial degree f, where f is the multiplicative order f_0 of $q \mod p$ and $g = p(p-1)/f_0$ if $X^p - \bar{p} \in \mathbb{Z}/q\mathbb{Z}[x]$ has a

root in $\mathbb{Z}/q\mathbb{Z}$ and $f = p \cdot f_0$ and $g = (p-1)/f_o$ if $X^p - \overline{p}$ has no root in $\mathbb{Z}/q\mathbb{Z}$.

Section 4

Let K|k be a finite extension of fields and let $\operatorname{Sub}(K|k)$ be the lattice (with respect to inclusion) of field extensions of k in K. An inclusion reversing bijection θ of $\operatorname{Sub}(K|k)$ onto itself will be called a *duality* of K|k if for all $L \in \operatorname{Sub}(K|k)$, $[K: L] = [\theta(L): k]$ holds. A field extension for which a duality exists will be called *semiabelian*. We make analogous definitions for a finite group G and its lattice of subgroups $\operatorname{Sub}(G)$, and note that a Galois field extension is semiabelian if and only if its Galois group is. We also point out that as a lattice antiisomorphism, a duality of K|k takes intersections to composities and composites to intersections. A similar statement holds for groups.

Let G be a finite abelian group. By selecting an isomorphism of G onto its Pontryagin dual \hat{G} and following the induced lattice isomorphism $\operatorname{Sub}(G) \rightarrow \operatorname{Sub}(\hat{G})$ with the lattice antiisomorphism

$$H \mapsto \{ \sigma \in G | \chi(\sigma) = 1, \forall \chi \in H \}$$

of $\operatorname{Sub}(\hat{G})$ onto $\operatorname{Sub}(G)$, one obtains a duality of G. Thus finite abelian groups are semiabelian. The next two theorems follow easily from this observation.

THEOREM 4.1. Every Cogalois field extension (see [2]) is semiabelian.

THEOREM 4.2. Every abelian field extension is semiabelian.

Let *n* be an indicial integer. Let $m = m(n) = d_n \cdot \prod_{p \in S(n)} p$ and $k_n = E_{m(n)} = \mathbb{Q}[\zeta_{m(n)}]$. Note that k_n is a subfield of K_n .

THEOREM 4.3. $K_n | k_n$ is a semiabelian field extension.

Proof. Lemma 3.5 implies that K|k is a pure extension. Since it is also separable and coseparable, theorem 1.5 of [2] implies it is Cogalois and hence semiabelian.

The existence of a duality for a group imposes a symmetry on its lattice of subgroups which we exploit in the following application.

THEOREM 4.4. Let K|k be a semiabelian Galois field extension of finite degree g. Let

$$g=p_1^{e_1}\dots p_2^{e_s}$$

be the prime decomposition of g. Then for i = 1, ..., s there is a unique subextension L_i of degree $p_i^{e_i}$ over k, and

$$K \cong L_1 \otimes_k \cdots \otimes_k L_s$$

as k-algebras.

Proof. By theorem 7 of [3] semiabelian groups are nilpotent. Hence $G = \operatorname{Aut}_k(K)$ has unique Sylow subgroups. We choose a duality θ of G, and for each $i = 1, \ldots, s$ we let H_i denote the p_i -Sylow subgroup of G. Then $\theta(H_i)$ has index $p_i^{e_i}$ in G, and since there is just one such subgroup in G, it is independent of the choice of θ . The Galois correspondence then gives a unique element L_i of Sub(K|k) with $[L_i: k] = p_i^{e_i}$.

To obtain the isomorphism of the theorem's second assertion, we note that multiplication induces a k-algebra homomorphism

 $L_1 \otimes_k \cdots \otimes_k L_s \to K$

with image $L_1 \ldots L_s$. The properties of θ imply that

$$L_1 \dots L_s = K^{\theta(H_1)} \cap \dots \cap \theta(H_s)$$
$$= K^{\theta(\langle H_1, \dots, H_s \rangle)}$$
$$= K^{\theta(G)}$$
$$= K^{\{1\}}$$
$$= K$$

Thus our map is surjective. Since both domain and codomain have dimension g over k, the map is also injective, and the theorem is proved.

COROLLARY 4.5. Let n be indicial and for each p|n write e_p for the largest power of p dividing $g_n/\varphi_{(m(n))} = [K_n: k_n]$. Then for each such p there is a unique subextension $L_{(p,n)}$ of $K_n|k_n$ with $[L(p,n): k_n] = p^{e_p}$, and K_n is isomorphic as a k_n -algebra to the tensor product over k_n of the $L_{(p,n)}$.

References

- 1. K. IRELAND and M. ROSEN, A classical introduction to modern number theory, Springer Verlag, New York, 1982.
- C. GREITHER and D.K. HARRISON, A Galois correspondence for radical extensions of fields, J. Pure Appl. Algebra, 43 (1986), pp. 257-270.
- 3. M. SUZUKI, Structure of a group and the structure of its lattice of subgroups, Ergeb. Math. Grenzgeb., Springer, New York, 1956.

UNIVERSITY OF OREGON EUGENE, OREGON