GENERALIZED CYCLOTOMIC FIELDS

BY

Stephen Beale and D.K. Harrison

This note examines the splitting field $K \subseteq \mathbf{C}$ over \mathbf{Q} of the set of polynomials of the form $X^{n}-b$, with $n \in \mathbf{N}^{*}$ and $b \in \mathbf{Q}$. We obtain the Galois group $\operatorname{Aut}_{\mathbf{Q}}(K)$ as a natural subgroup of a semidirect product of the Pontryagin dual of a quotient of the divisible hull of the positive rationals and the automorphism group of the maximal abelian extension of the rationals.

Section 1

Let R denote the Pontryagin dual $\operatorname{Hom}(\mathbf{Q} / \mathbf{Z}, \mathbf{Q} / \mathbf{Z})$ of \mathbf{Q} / \mathbf{Z}. For each $n \in \mathbf{N}^{*}$ and $r \in R$ there is an integer k, uniquely determined modulo $n \mathbf{Z}$, such that

$$
r\left(\frac{1}{n}+\mathbf{Z}\right)=\frac{k}{n}+\mathbf{Z}
$$

We denote the class of $k \bmod n \mathbf{Z}$ by $j_{n}(r)$ and observe that $r \mapsto j_{n}(r)$ is a ring homomorphism of R onto $\mathbf{Z} / n \mathbf{Z}$ with kernel $n R$. If we write j_{n} for the induced $R / n R \rightarrow \mathbf{Z} / n \mathbf{Z}$, then these maps interact properly with the natural epimorphisms $R / n R \rightarrow R / m R$ and $\mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / m \mathbf{Z}$ when m divides n (i.e., the diagram

commutes), allowing us to identify the corresponding projective limits R and $\hat{\mathbf{Z}}$ ($=$ the Prüfer ring $\lim _{n} \mathbf{Z} / n \mathbf{Z}$). With the Krull topology (for which the sets $N_{A}=\{f \in R \mid f(a) \stackrel{\boxed{0}}{\boxed{n}} \forall a \in A\}$ form a basis of neighborhoods of the identity when A ranges over finite subsets of $\mathbf{Q} / \mathbf{Z}), R$ is a profinite group. The units $U(R)=\operatorname{Aut}(\mathbf{Q} / \mathbf{Z})$ of R form a closed subspace of R in which multiplication and inversion are continuous (in the relative topology) and hence $U(R)$

Received December 21, 1987.
is itself a profinite group. We also have the map

$$
\alpha \mapsto e^{2 \pi i \alpha}
$$

of \mathbf{Q} into \mathbf{C} with kernel \mathbf{Z}; we write C for its image and ζ_{n} for the image of $1 / n$, and we denote by ω the inverse of the induced isomorphism $\mathbf{Q} / \mathbf{Z} \rightarrow C$.

For B a discrete abelian group, there is a natural isomorphism

$$
\operatorname{Hom}(B \otimes \mathbf{Q} / \mathbf{Z}, \mathbf{Q} / \mathbf{Z}) \rightarrow \operatorname{Hom}(B, R)
$$

we give $\operatorname{Hom}(B, R)$ the strongest topology making this map continuous; here we take $B \otimes \mathbf{Q} / \mathbf{Z}$ to be discrete and we let $\operatorname{Hom}(B \otimes \mathbf{Q} / \mathbf{Z}, \mathbf{Q} / \mathbf{Z})$ have the Krull topology so that $\operatorname{Hom}(B \otimes \mathbf{Q} / \mathbf{Z}, \mathbf{Q} / \mathbf{Z})$ and hence $\operatorname{Hom}(B, R)$ are profinite groups. We note that $U(R)$ acts on $\operatorname{Hom}(B, R)$ by

$$
(r, f) \rightarrow r \circ f
$$

and that this action is continuous as a map from $U(R) \times \operatorname{Hom}(B, R)$ into $\operatorname{Hom}(B, R)$. It follows that with the product topology the semidirect product $\operatorname{Hom}(B, R) \rtimes U(R)$ is a topological group; the multiplication is given by

$$
(f, r)(g, s)=(f+r \cdot g, r s)
$$

for all $f, g \in \operatorname{Hom}(B, R), r, s \in U(R)$. Furthermore since both $\operatorname{Hom}(B, R)$ and $U(R)$ are compact, Hausdorff, and totally disconnected, so is their product, and therefore the semidirect product is a profinite group.

When B is free abelian we have a surjection

$$
\eta_{*}: \operatorname{Hom}(B, R) \rightarrow \operatorname{Hom}(B, R / 2 R)
$$

induced by the projection $\eta: R \rightarrow R / 2 R$, and we give $\operatorname{Hom}(B, R / 2 R)$ the strongest topology making η_{*} continuous. Assume B is so and let $\lambda: U(R) \rightarrow$ $\operatorname{Hom}(B, R / 2 R)$ be a continuous group homomorphism. We define B_{λ} to be the subset

$$
B_{\lambda}=\left\{(f, r) \in \operatorname{Hom}(B, R) \rtimes U(R) \mid \lambda(r)=\eta_{*}(f)\right\}
$$

of $\operatorname{Hom}(B, R) \rtimes U(R)$. Bearing in mind that the class modulo $2 R$ of an element $r \in R$ is determined completely by its restriction to $\frac{1}{2} \mathbf{Z} / \mathbf{Z}$ and that if r is a unit of $R,\left.r\right|_{\frac{1}{2} \mathrm{Z} \backslash \mathrm{z}}$ must be the identity, one checks that the continuous map

$$
(f, r) \mapsto \lambda(r)-\eta_{*}(f)
$$

of $\operatorname{Hom}(B, R) \rtimes U(R)$ into $\operatorname{Hom}(B, R / 2 R)$ is in fact a group homomorphism. As the kernel of this map, B_{λ} is a closed subgroup of $\operatorname{Hom}(B, R) \rtimes$ $U(R)$ and hence is a profinite group.

Section 2

Let E be the maximal abelian extension in \mathbf{C} of \mathbf{Q}; this is the smallest subfield of C containing the roots of all polynomials of the form $X^{n}-1$ with $n \in \mathbf{N}^{*}$. Write B for the multiplicative group of positive rational numbers; this is a free abelian group with basis the set S of prime numbers. For each $n \in \mathbf{N}^{*}, k \in \mathbf{Z}$, and $b \in B$, the polynomial $X^{n}-b^{k}$ has exactly one positive real root; we denote this root by $b^{k / n}$ and we write \mathscr{D} for the set of all such roots, F for the field $Q[\mathscr{D}]$, and K for $E[\mathscr{D}]=E \cdot F . \quad K$ is the splitting field of the set of polynomials $x^{n}-b, n \in \mathbf{N}^{*}, b \in B$. Denote its Galois group over \mathbf{Q} by Γ.

For p a prime number and k a unit of $\mathbf{Z} / p \mathbf{Z}$ we define the symbol (k / p) in $R / 2 R$ to be 0 if k is a square in $\mathbf{Z} / p \mathbf{Z}$ and to be 1 otherwise; $k \mapsto(k / p)$ is then a group homomorphism from $U(\mathbf{Z} / p \mathbf{Z})$ to $R / 2 R$. For $r \in U(R)$ we define $\lambda(r) \in \operatorname{Hom}(B, R / 2 R)$ on elements of the basis S of B by

$$
\lambda(r)(p)= \begin{cases}0 & \text { if } p=2 \text { and } j_{8}(r)= \pm 1+8 \mathbf{Z} \\ 1 & \text { if } p=2 \text { and } j_{8}(r)= \pm 3+8 \mathbf{Z} \\ \left(\frac{j_{p}(r)}{p}\right) & \text { if } p \equiv 1(\bmod 4) \\ & \text { or if } p \equiv 3(\bmod 4) \text { and } j_{4}(r)=1+4 \mathbf{Z} \\ 1+\left(\frac{j_{p}(r)}{p}\right) & \text { if } p \equiv 3(\bmod 4) \text { and } j_{4}(r)=3+4 \mathbf{Z}\end{cases}
$$

where $j_{n}: R \rightarrow \mathbf{Z} / n \mathbf{Z}$ is the map defined in $\S 1$. One checks with little difficulty that λ : $r \mapsto \lambda(r)$ is a continuous group homomorphism of $U(R)$ into $\operatorname{Hom}(B, R / 2 R)$. It is B_{λ} that we are after.

Theorem 2.1. With B and λ defined as above, $\Gamma \cong B_{\lambda}$.
Proof. For $\sigma \in \Gamma, b \in B$, and $\alpha \in \mathbf{Q}$, the number $\sigma\left(b^{\alpha}\right) / b^{\alpha}$ is a root of unity which depends only on the class of α modulo $\mathbf{Z} ; b^{\alpha}$ is to be interpreted as the unique positive real root of $x^{n}-b^{k}$, where $\alpha=k / n, k \in \mathbf{Z}, n \in \mathbf{N}^{*}$. Define $\mu: \Gamma \rightarrow \operatorname{Hom}(B, R)$ by'

$$
\sigma \mapsto\left(b \mapsto\left(\alpha+\mathbf{Z} \mapsto \omega\left(\sigma\left(b^{\alpha}\right) / b^{\alpha}\right)\right)\right)
$$

and $\nu: \Gamma \rightarrow U(R)$ by

$$
\left.\sigma \mapsto \omega \sigma\right|_{C} \omega^{-1}
$$

It is straightforward to check that ν is a continuous group epimorphism and
that μ is a well defined continuous map satisfying

$$
\mu(\tau \sigma)=\mu(\tau)+\nu(\tau) \mu(\sigma), \quad \forall \tau, \sigma \in \Gamma
$$

(i.e., μ is a derivation when $\operatorname{Hom}(B, R)$ is considered a Γ-module through ν). One notes that this is exactly what is needed to insure that $\varphi: \Gamma \rightarrow$ $\operatorname{Hom}(B, R) \rtimes U(R)$ defined by

$$
\sigma \mapsto(\mu(\sigma), \nu(\sigma))
$$

is a group homomorphism. One checks that the kernel of φ is trivial, and with the aid of the quadratic Gauss sums

$$
\sqrt{p}= \begin{cases}\zeta_{8}+\zeta_{8}^{7} & \text { if } p=2 \\ \sum_{i=1}^{p-1}\left(\frac{i}{p}\right) \zeta_{p}^{i} & \text { if } p \equiv 1(\bmod 4) \\ \sum_{i=1}^{p-1}\left(\frac{i}{p}\right) \zeta_{4 p}^{4 i+3 p} & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

(see [1], pp. 70-75; here (i / p) is the ordinary Legendre symbol with values in $U(\mathbf{Z})=\{ \pm 1\}$), one sees that the diagram

commutes; it follows immediately that φ has its image in \boldsymbol{B}_{λ}. In order to show that its image is all of B_{λ}, we will identify K with a quotient of the group algebra $E(D)$ over E of the divisible hull $D=B \otimes \mathbf{Q}$ of B. The \mathbf{Q} here is the additive group of rationals. D is an abelian group which we write multiplicatively, and for $d \in D$ we let u_{d} denote the basis element of $E(D)$ corresponding to d. Since B is free abelian, the inclusions $\mathbf{Z} \rightarrow \mathbf{Q}$ and $\frac{1}{2} \mathbf{Z} \rightarrow \mathbf{Q}$ induce injections

$$
B \cong B \otimes \mathbf{Z} \rightarrow D \quad \text { and } \quad B \otimes \frac{1}{2} \mathbf{Z} \rightarrow D
$$

which we use to identify B and $B_{1}=B \otimes \frac{1}{2} \mathbf{Z}$ with subgroups of D.
For $b \in B$ and $\alpha \in \mathbf{Q}$ we have defined above the element $b^{\alpha} \in F$; the map

$$
(b, \alpha) \mapsto b^{\alpha}
$$

is \mathbf{Z}-bilinear from $B \times \mathbf{Q}$ into the units of K and so induces a group homomorphism $D \rightarrow U(K)$ which in turn determines a surjective E-algebra homomorphism

$$
\theta: E(D) \rightarrow K=E F
$$

Note that $\theta\left(\left\{u_{d} \mid d \in B_{1}\right\}\right) \subseteq E \cap F$ so $\theta\left(u_{d}\right) u_{1} \in E(D)$ when $d \in B_{1}$. We will show that the kernel of this map is the ideal \mathfrak{a} of $E(D)$ generated by the set

$$
T=\left\{u_{d}-\theta\left(u_{d}\right) u_{1} \mid d \in B_{1}\right\}
$$

and thereby obtain an isomorphism $\bar{\theta}: E(D) / \mathfrak{a} \rightarrow K$.
We note that D / B_{1} is a torsion abelian group and hence is the union of its finite subgroups; from this it follows that $E(D)$ is the union of its subalgebras $E(H)$ where H ranges over subgroups of D containing B_{1} as a subgroup of finite index (one uses here the fact that the set of such H is directed by inclusion). Hence to show that a is the kernel of θ it will be enough to show that for any such H the kernel of $\theta_{H}=\left.\theta\right|_{E(H)}$ is $E(H) \cdot T$. So let H be a subgroup of D with $B_{1} \leq H$ and with $\left\{h_{1}, \ldots, h_{t}\right\}$ a set of B_{1}-coset representatives in H. Then in the terminology of [2], the field $L=E\left[\theta\left(h_{1}\right), \ldots, \theta\left(h_{i}\right)\right]$ is a pure, separable, and coseparable extension of E and hence Cogalois over E. If $\theta\left(h_{i}\right)$ and $\theta\left(h_{j}\right)$ represent the same element of the Cogalois group $\operatorname{Cog}(L \mid E)=$ torsion subgroup of $U(L) / U(E)$, then h_{i} and h_{j} represent the same coset of B_{1} (one checks) which implies that $i=j$. It follows that $\theta\left(h_{1}\right) U(E), \ldots, \theta\left(h_{t}\right) U(E)$ are distinct elements of $\operatorname{Cog}(L \mid E)$ and hence that $\theta\left(h_{1}\right), \ldots, \theta\left(h_{t}\right)$ are linearly independent over E. This implies $\operatorname{dim}_{E}(L) \geq t$.

We next observe that vectors $u_{h_{1}}+E(H) \cdot T, \ldots, u_{h_{t}}+E(H) \cdot T$ span $E(H) / E(H) \cdot T$ as a vector space over E, and hence

$$
\operatorname{dim}_{E}(E(H) / E(H) \cdot T) \leq t .
$$

Now since T and hence $E(H) \cdot(T)$ are included in the kernel of θ_{H}, and since $L \cong E(H) / \operatorname{Ker}\left(\theta_{h}\right)$, we have

$$
t \leq \operatorname{dim}_{E}(L)=\operatorname{det}_{E}\left(E(H) / \operatorname{Ker}\left(\theta_{H}\right)\right) \leq \operatorname{det}_{E}(E(H) / E(H) \cdot T) \leq t
$$

which implies $E(H) \cdot T=\operatorname{Ker}\left(\theta_{H}\right)$. This shows that \mathfrak{a} is the kernel of θ and gives us the isomorphism

$$
\bar{\theta}: E(D) / \mathfrak{a} \rightarrow K
$$

We now complete the proof of the theorem by showing that φ maps Γ onto B_{λ}. Let $(f, r) \in B_{\lambda}$. The map

$$
(b, \alpha) \mapsto \omega^{-1}(f(b)(\alpha+\mathbf{Z})) u_{b \otimes \alpha}
$$

of $B \times \mathbf{Q}$ into the units of $E(D)$ is \mathbf{Z}-bilinear so induces a group homomorphism

$$
D=B \otimes \mathbf{Q} \rightarrow U(E(D))
$$

which induces an E-algebra homomorphism

$$
\hat{\sigma}: E(D) \rightarrow E(D)
$$

Since $\left.\tau \mapsto \tau\right|_{C}$ is an isomorphism of $\operatorname{Aut}(E)$ onto $\operatorname{Aut}(C)$, there is a unique element $\bar{r} \in \operatorname{Aut}(E)$ extending $\omega^{-1} r \omega \in \operatorname{Aut}(C)$. Define $\tilde{\sigma}: E(D) \rightarrow E(D)$ by

$$
\sum e_{d} u_{d} \mapsto \sum \bar{r}\left(e_{d}\right) \hat{\sigma}\left(u_{d}\right)
$$

One uses quadratic Gauss sums as above to check that $\tilde{\sigma}$ maps T (and hence \mathfrak{a}) into \mathfrak{a}. Thus we get an E-algebra homomorphism (taking 1 to 1) $\bar{\sigma}$: $E(D) / a \rightarrow E(D) / a$, and since $E(D) / a \cong K$ is a field, $\bar{\sigma}$ is an automorphism. Finally we let $\sigma_{f, r}$ be the composition $\bar{\theta} \bar{\sigma} \bar{\theta}^{-1}$ and check that $\mu\left(\sigma_{f, r}\right)=f$ and $\nu\left(\sigma_{f, r}\right)=r$ to complete the proof.

Section 3

We turn now to a consideration of subfields of K which are finite dimensional over the rationals, focusing on a family of these fields with the property that every such subfield is included in some one in our family.

We call a positive integer n indicial and write $n \in$ Ind if 8 divides n whenever n has a prime divisor congruent to 2 or $3 \bmod 4$. These will be cofinal in an upcoming inverse limit. For n indicial we write $S(n)$ for the set of prime divisors of n and $s(n)$ for the cardinality of $S(n)$. We define the nth indicial polynomial to be

$$
\Omega_{n}=\prod_{p \in S(n)}\left(X^{n}-p\right)
$$

and let K_{n} denote the splitting field in K of Ω_{n} over \mathbf{Q} and Γ_{n} the Galois group of K_{n} over \mathbf{Q}. We also set $E_{n}=\mathbf{Q}\left[\zeta_{n}\right]$ and $F_{n}=\mathbf{Q}\left[S(n)^{1 / n}\right]$, where $S(n)^{1 / n}=\left\{p^{1 / n} \mid p \in S(n)\right\}$, and we observe that $K_{n}=E_{n} F_{n}$ and that $E=$ $\bigcup_{n \in \operatorname{Ind}} E_{n}$, that $F=\bigcup_{n \in \operatorname{Ind}} 1 F_{n}$, and that $K=\bigcup_{n \in \operatorname{Ind}} K_{n}$. Furthermore if n, m are indicial then so is their least common multiple [n, m], and $E_{n} E_{m}=E_{[n, m]}$, $F_{n} F_{m} \subseteq F_{[n, m]}$, and $K_{n} K_{m} \subseteq K_{[n, m]}$. Thus the family $\left\{K_{n} \mid n \in\right.$ Ind $\}$ is cofinal (in the sense of the last paragraph) in the set of all finite dimensional extensions of \mathbf{Q} in K.

Let n be indicial. Write d_{n} for the greatest common divisor of 2 and n, U_{n} for the units of $\mathbf{Z} / n \mathbf{Z}$, and M_{n} for $\operatorname{Map}(S(n), \mathbf{Z} / n \mathbf{Z}) . \quad M_{n}$ is an abelian
group under pointwise addition of maps, and U_{n} acts on M_{n} by pointwise multiplication; $M_{n} \rtimes U_{n}$ will denote their semidirect product with respect to this action.

For k, j positive integers with $j \mid k, \pi_{k j}$ will denote the canonical map $\mathbf{Z} / k \mathbf{Z} \rightarrow \mathbf{Z} / j \mathbf{Z}$. The assignment $f \mapsto \pi_{n, d_{n}}{ }^{\circ} f$ maps M_{n} onto $\operatorname{Map}\left(S(n), \mathbf{Z} / d_{n} \mathbf{Z}\right)$ with kernel $d_{n} M_{n}$; we will use the induced isomorphism to identify $M_{n} / d_{n} M_{n}$ with $\operatorname{Map}\left(S(n), \mathbf{Z} / d_{n} \mathbf{Z}\right)$. Note that this group is trivial when n is odd.

Let $\eta_{n}: M_{n} \rightarrow M_{n} / d_{n} M_{n}$ be the natural projection, and define $\lambda_{n}: U_{n} \rightarrow$ $M_{n} / d_{n} M_{n}$ by

$$
\lambda_{n}^{(u)}(p)= \begin{cases}\frac{a^{2}-1}{8}+d_{n} \mathbf{Z}, & p=2, \\ {\left[\frac{u}{p}\right],} & p \equiv 1 \bmod 4 \\ {\left[\frac{u}{p}\right]+\frac{a-1}{2}+d_{n} \mathbf{Z},} & p \equiv 3 \bmod 4\end{cases}
$$

where $u=a+n \mathbf{Z} \in U_{n}$ and $p \in S(n)$, and where $[u / p]$ is defined to be $0 \in \mathbf{Z} / d_{n} \mathbf{Z}$ if u is a square in U_{n} and $1 \in \mathbf{Z} / d_{n} \mathbf{Z}$ otherwise; it is straightforward to check that λ_{n} is a well defined group homomorphism.

We let

$$
V_{n}= \begin{cases}\left(U_{n}\right)^{2} \cdot\{1,-1\} & \text { if } n \text { is even } \\ U_{n} & \text { if } n \text { is odd }\end{cases}
$$

Proposition 3.1. $\quad \lambda_{n}$ maps U_{n} onto $M_{n} / d_{n} M_{n}$ and V_{n} is its kernel.
Proof. This clear when n is odd, so assume that n is even and hence that $8 \mid n$. It is easily seen that V_{n} is included in the kernel. Suppose that $u \in U_{n}$ is in the kernel, with $u=a+n \mathbf{Z}, a$ relatively prime to n. Then u is a square in U_{n} if and only if $a \equiv 1 \bmod 8$ and $[u / p]=0$ for every odd prime p dividing n. Now if $a \equiv 1 \bmod 8$ then $\frac{1}{2}(a-1) \equiv 0 \bmod 2$, so for $p \mid n$ with $p \equiv 3 \bmod 4$,

$$
\left[\frac{u}{p}\right]=\left[\frac{u}{p}\right]+\left(\frac{a-1}{2}+2 \mathbf{Z}\right)=\lambda_{n}(u)(p)=0 .
$$

Since $[u / p]=\lambda_{n}(u)(p)=0$ for $p \mid n$ with $p \equiv 1 \bmod 4$ as well, we have $u \in U_{n}^{2}$ if $a \equiv 1 \bmod 8$. Thus since

$$
\frac{a^{2}-1}{8}+2 \mathbf{Z}=\lambda_{n}(u)(2)=0
$$

implies $a \equiv \pm 1 \bmod 8, u$ fails to be a square in U_{n} only if $a \equiv-1 \bmod 8$. In this case $-a \equiv 1 \bmod 8$,

$$
\left[\frac{-u}{p}\right]=\left[\frac{u}{p}\right]+\left[\frac{-1}{p}\right]=0
$$

for $p \mid n$ with $p \equiv 1 \bmod 4$, and for $p \mid n$ with $p \equiv 3 \bmod 4$,

$$
\begin{aligned}
{\left[\frac{-u}{p}\right] } & =\left[\frac{u}{p}\right]+\left[\frac{-1}{p}\right]=\left[\frac{u}{p}\right]+1 \\
& =\left[\frac{u}{p}\right]+\left(\frac{a-1}{2}+2 \mathbf{Z}\right)=\lambda_{n}(u)(p)=0
\end{aligned}
$$

and hence $-u \in U_{n}^{2}$ and $u \in V_{n}$. Thus $\operatorname{Ker}\left(\lambda_{n}\right)=V_{n}$.
Still assuming that n is even, we note that $-1 \notin U_{n}^{2}$ and hence that $\left|V_{n}\right|=2\left|U_{n}^{2}\right|$. By decomposing U_{n} into a product of groups of units mod prime powers we find that

$$
\left[U_{n}: U_{n}^{2}\right]=2^{s(n)+1}
$$

and hence that

$$
\left|V_{n}\right|=2 \varphi^{(n)} / 2^{s(n)+1}=\varphi^{(n)} / 2^{s(n)}
$$

It follows that the image of λ_{n} has cardinality $2^{s(n)}=\left[M_{n}: 2 M_{n}\right]$, which shows the map is surjective.

Let $G_{n}=\left\{(f, u) \in M_{n} \rtimes U_{n} \mid \eta_{n}(f)=\lambda_{n}(u)\right\}$. Define g_{n} to be the order of G_{n} and note that since

$$
(f, u) \mapsto \eta_{n}(f)-\lambda_{n}(u)
$$

is a group homomorphism (as one easily checks) of $M_{n} \rtimes U_{n}$ onto $M_{n} / d_{n} M_{n}$ with kernel G_{n}, G_{n} is a group and

$$
g n=\frac{\left|M_{n} \rtimes U_{n}\right|}{\left|M_{n} / 2 M_{n}\right|}=\left(\frac{n}{d_{n}}\right)^{-s(n)} \varphi(n),
$$

where φ is the Euler function.
Write C_{n} for the subgroup $\left\langle\zeta_{n}\right\rangle$ of C and ω_{n} for the unique group isomorphism $C_{n} \rightarrow \mathbf{Z} / n \mathbf{Z}$ satisfying $\omega_{n}\left(\zeta_{n}\right)=1+n \mathbf{Z}$. Define $\nu_{n}: \Gamma_{n} \rightarrow U_{n}$ by

$$
\sigma \mapsto \omega_{n}\left(\sigma\left(\zeta_{n}\right)\right)
$$

ν_{n} has its image in U_{n} since $\sigma\left(\tau_{n}\right)$ is a primitive nth root of unity, and one easily checks that ν_{n} is a group homomorphism. For each $\sigma \in \Gamma_{n}$ and $p \in$
$S(n), \sigma\left(p^{1 / n}\right) / p^{1 / n}$ is an nth root of 1 , so we can define a map $\mu_{n}: \Gamma_{n} \rightarrow M_{n}$ by

$$
\sigma \mapsto\left(p \mapsto \omega_{n}\left(\sigma\left(p^{1 / n}\right) / p^{1 / n}\right)\right) ;
$$

for $\sigma, \tau \in \Gamma_{n}$, this map satisfies

$$
\mu_{n}(\sigma \tau)=\mu_{n}(\sigma)+\nu_{n}(\sigma) \mu_{n}(\tau) .
$$

Thus

$$
\varphi_{n}: \sigma \mapsto\left(\mu_{n}(\sigma), \nu_{n}(\sigma)\right)
$$

is a group homomorphism of Γ_{n} into $M_{n} \rtimes U_{n}$.
Theorem 3.2. φ_{n} maps Γ_{n} isomorphically onto G_{n}.
Proof. One checks that φ_{n} is injective and uses quadratic Gauss sums as in 2 to see that its image lies in G_{n}. We take advantage of the finiteness of Γ_{n} and G_{n} in showing that the image of φ_{n} is all of G_{n}. The following lemma enables us to count the relevant dimensions.

Lemma 3.3. F_{n} and $E_{n} \cap F_{n}$ are cogalois extensions (see [2]) of \mathbf{Q} with cogalois groups isomorphic, respectively, to M_{n} and $M_{n} / d_{n} M_{n}$.

Proof. Write L for $E_{n} \cap F_{n}$ and \mathbf{Q}^{*} for the units of \mathbf{Q}. By [2], F_{n} is cogalois over \mathbf{Q} and hence the subextension $L \mid \mathbf{Q}$ is also cogalois, and $\operatorname{Cog}(L \mid \mathbf{Q}) \leq \operatorname{Cog}\left(F_{n} \mid \mathbf{Q}\right)$. Let t be a positive integer dividing n. For a prime $p \in S(n)$ and an integer $a, p^{a / t}$ is an element of F_{n} whose coset modulo \mathbf{Q}^{*} depends only on p and the class u of a modulo $t \mathbf{Z}$, and we let $p^{u / t} \mathbf{Q}^{*}$ stand for this coset; it is an element of $\operatorname{Cog}\left(F_{n} \mid \mathbf{Q}\right)$. It is straightforward to check that

$$
f \mapsto \prod_{p \in S(n)} p^{f(p) / n} \mathbf{Q}^{*}
$$

is a group isomorphism of M_{n} onto $\operatorname{Cog}\left(F_{n} \mid \mathbf{Q}\right)$.
Using Gauss sums again, one notes that for every $p \in S(n), p^{1 / d_{n}} \in E_{n}$, and since $d_{n} \mid n, p^{1 / d_{n}} \in F_{n}$ as well, so that $p^{a / d_{n}} \in L$ for every integer a. Hence

$$
f \mapsto \prod_{p \in S(n)} p^{f(p) / d_{n}} \mathbf{Q}^{*}
$$

defines a map from $\operatorname{Map}\left(S(n), \mathbf{Z} / d_{n} \mathbf{Z}\right) \cong M_{n} / 2 M_{n}$ into $\operatorname{Cog}(L \mid \mathbf{Q})$ which one checks is an injective group homomorphism. Its surjectivity follows (as one checks) from the fact, which we proceed to establish, that every element of $\operatorname{Cog}(L \mid \mathbf{Q})$ has order dividing d_{n}.

Let $y \in \operatorname{Cog}(L \mid \mathbf{Q})$ have order k. Note that $k \mid n$ since $\operatorname{Cog}(L \mid \mathbf{Q}) \leq$ $\operatorname{Cog}\left(F_{n} \mid \mathbf{Q}\right)$ and the latter has exponent n. Also, y is of the form $b \mathbf{Q}^{*}$ with $b \in L$ and $b^{k} \in \mathbf{Q}^{*}$; thus b is a root in L of $X^{k}-b^{k} \in \mathbf{Q}[x]$. The conjugates of b over \mathbf{Q} all look like ζb with ζ a k th root of 1 , and they all lie in L since L is a subfield of the abelian extension E_{n}. Thus if ζb is a conjugate of b, then $\zeta \in L_{n} \subseteq F_{n} \subseteq \mathbf{R}$ which implies that $\zeta= \pm 1$. It follows that all conjugates of b are in the set $\{b,-b\}$ and therefore that $b^{2} \in \mathbf{Q}$ and $y^{2}=1$. Thus $k \mid 2$, and since $k \mid n$ as well, we get $k \mid d_{n}$. This establishes the lemma.

We complete the proof of the theorem by observing that, as a consequence of the lemma,

$$
\left[F_{n}: \mathbf{Q}\right]=\left|\operatorname{Cog}\left(F_{n} \mid \mathbf{Q}\right)\right|=n^{s(n)}
$$

and

$$
\left[E_{n} \cap F_{n}: \mathbf{Q}\right]=\left|\operatorname{Cog}\left(E_{n} \cap F_{n} \mid \mathbf{Q}\right)\right|=d_{n}^{s(n)}
$$

and hence

$$
\begin{aligned}
\left|\Gamma_{n}\right| & =\left[K_{n}: \mathbf{Q}\right]=\left[E_{n}: \mathbf{Q}\right]\left[F_{n}: \mathbf{Q}\right] /\left[E_{n} \cap F_{n}: \mathbf{Q}\right] \\
& =\varphi(n) \cdot \frac{n^{s(n)}}{d^{s(n)}} \\
& =g_{n}
\end{aligned}
$$

The next result gives G_{n} as an extension of $M_{n} / d_{n} M_{n}$. Let

$$
N_{n}=\operatorname{Map}(S(n), d n(\mathbf{Z} / n \mathbf{Z}))=d_{n} M_{n}
$$

The action of U_{n} on M_{n} restricts to an action of V_{n} on N_{n}, and the semidirect product $N_{n} \rtimes V_{n}$ with respect to this action is a subgroup of $M_{n} \rtimes U_{n}$. Since N_{n} is the kernel of $\eta_{n}: M_{n} \rightarrow M_{n} / d_{n} M_{n}$ and V_{n} is the kernel of $\lambda_{n}: U_{n} \rightarrow$ $M_{n} / d_{n} M_{n}, N_{n} \rtimes V_{n}$ is actually a subgroup of G_{n}.

Theorem 3.4. There is an exact sequence

$$
1 \rightarrow N_{n} \rtimes V_{n} \rightarrow G_{n} \rightarrow M_{n} / N_{n} \rightarrow 1
$$

Proof. The map from G_{n} to M_{n} / M_{n} is given by $(f, u) \mapsto \lambda_{n}(u)$. All details are easy to check.

We now give a criterion for deciding when an arbitrary number field is K_{n} for some indicial integer n. Let L be a finite extension of \mathbf{Q}. Write $r^{\prime}=r^{\prime}(L)$ for the cardinality of the group $\mu(L)$ of roots of unity in L. We note that r^{\prime} is
always even, and we set

$$
r=r(L)= \begin{cases}r^{\prime} & \text { if } 4 \mid r^{\prime} \\ \frac{1}{2} r^{\prime} & \text { if } 4 \nmid r^{\prime}\end{cases}
$$

Recall that B denotes the multiplicative group of positive rationals, and set

$$
A=A(K)=\left\{\alpha \in B \mid \exists a \in L \text { with } a^{r}=\alpha\right\}
$$

Lemma 3.5. Assume n is an indicial integer. Then $r\left(K_{n}\right)=n$.
Proof. Since $\zeta_{n} \in \mu\left(K_{n}\right), n \mid r^{\prime}$ and $\varphi^{(n)} \mid \varphi\left(r^{\prime}\right)$. Also $E_{r^{\prime}} \cdot F_{n} \subseteq K_{n}$, so [$E_{r^{\prime}} \cdot F_{n}$: Q] divides g_{n}. We note that Lemma 3.3 remains valid when E_{n} is replaced by any extension of E_{n} which is abelian over \mathbf{Q}, and hence [$E_{r^{\prime}} \cap F_{n}$: $\mathbf{Q}]=d_{n}^{s(n)}$. It follows that

$$
\left[E_{r^{\prime}} \cdot F_{n}: \mathbf{Q}\right]=\varphi\left(r^{\prime}\right) n^{s(n)} / d_{n}^{s(n)}
$$

and because this divides $g_{n}=\varphi(n) n^{s(n)} / d_{n}^{s(n)}$ we obtain $\varphi\left(r^{\prime}\right)=\varphi(n)$. If n is even then $n=r^{\prime}$, and since $8 \mid n$ in this case, $8 \mid r^{\prime}$, so $r=r^{\prime}=n$. If n is odd then $\varphi^{(n)}=\varphi^{\left(r^{\prime}\right)}$ implies $r^{\prime}=2 n$; in this case 4 does not divide r^{\prime} and $r=\frac{1}{2} r^{\prime}=n$. Thus in either case we conclude that $r=n$.

Corollary 3.6. If n and m are indicial and $K_{n} \subseteq K_{m}$, then $n \mid m$.
Theorem 3.7. With L, r, and A as above, the following are equivalent:
(1) $L=K_{n}$ for some indicial integer n;
(2) r is indicial and $L=K_{r}$;
(3) r is indicial, $S(r) \subseteq A$, and $[L: Q] \leq g_{r}$;
(4) $\exists m$ indicial with $m \mid r, S(m) \subseteq A$, and $[L: \mathbf{Q}] \leq g_{m}$.

Proof. The implication (1) $\Rightarrow(2)$ follows from the last lemma, and (2) \Rightarrow (3) \Rightarrow (4) is clear. If (4) holds then $\zeta_{m} \in L$ and $X^{r}-p$ has a root in L for every $p \mid m$. It follows that $X^{m}-p$ splits over L for each $p \mid m$, and hence that $K_{m} \subseteq L$. The condition $[L: \mathbf{Q}] \leq g_{m}$ then implies that $L=K_{m}$.

Finally, we remark that for n indicial it can be shown that a prime number q ramifies in K_{n} if and only if q divides n. Furthermore, if p is a prime number which is indicial (i.e., if p is a prime congruent to $1(\bmod 4)$ then p ramifies fully in K_{p}, and for q a prime different from p, q decomposes in K_{p} into a product of g primes each of inertial degree f, where f is the multiplicative order f_{0} of $q \bmod p$ and $g=p(p-1) / f_{0}$ if $X^{p}-\bar{p} \in \mathbf{Z} / q \mathbf{Z}[x]$ has a
root in $\mathbf{Z} / q \mathbf{Z}$ and $f=p \cdot f_{0}$ and $g=(p-1) / f_{o}$ if $X^{p}-\bar{p}$ has no root in $\mathbf{Z} / q \mathbf{Z}$.

Section 4

Let $K \mid k$ be a finite extension of fields and let $\operatorname{Sub}(K \mid k)$ be the lattice (with respect to inclusion) of field extensions of k in K. An inclusion reversing bijection θ of $\operatorname{Sub}(K \mid k)$ onto itself will be called a duality of $K \mid k$ if for all $L \in \operatorname{Sub}(K \mid k),[K: L]=[\theta(L): k]$ holds. A field extension for which a duality exists will be called semiabelian. We make analogous definitions for a finite group G and its lattice of subgroups $\operatorname{Sub}(G)$, and note that a Galois field extension is semiabelian if and only if its Galois group is. We also point out that as a lattice antiisomorphism, a duality of $K \mid k$ takes intersections to composities and composites to intersections. A similar statement holds for groups.

Let G be a finite abelian group. By selecting an isomorphism of G onto its Pontryagin dual \hat{G} and following the induced lattice isomorphism $\operatorname{Sub}(G) \rightarrow$ $\operatorname{Sub}(\hat{G})$ with the lattice antiisomorphism

$$
H \mapsto\{\sigma \in G \mid \chi(\sigma)=1, \forall \chi \in H\}
$$

of $\operatorname{Sub}(\hat{G})$ onto $\operatorname{Sub}(G)$, one obtains a duality of G. Thus finite abelian groups are semiabelian. The next two theorems follow easily from this observation.

Theorem 4.1. Every Cogalois field extension (see [2]) is semiabelian.
Theorem 4.2. Every abelian field extension is semiabelian.
Let n be an indicial integer. Let $m=m(n)=d_{n} \cdot \prod_{p \in S(n)} p$ and $k_{n}=$ $E_{m(n)}=\mathbf{Q}\left[\zeta_{m(n)}\right]$. Note that k_{n} is a subfield of K_{n}.

Theorem 4.3. $\quad K_{n} \mid k_{n}$ is a semiabelian field extension.
Proof. Lemma 3.5 implies that $K \mid k$ is a pure extension. Since it is also separable and coseparable, theorem 1.5 of [2] implies it is Cogalois and hence semiabelian.

The existence of a duality for a group imposes a symmetry on its lattice of subgroups which we exploit in the following application.

Theorem 4.4. Let $K \mid k$ be a semiabelian Galois field extension of finite degree g. Let

$$
g=p_{1}^{e_{1}} \ldots p_{2}^{e_{s}}
$$

be the prime decomposition of g. Then for $i=1, \ldots, s$ there is a unique subextension L_{i} of degree $p_{i}^{e_{i}}$ over k, and

$$
K \cong L_{1} \otimes_{k} \cdots \otimes_{k} L_{s}
$$

as k-algebras.
Proof. By theorem 7 of [3] semiabelian groups are nilpotent. Hence $G=$ Aut $_{k}(K)$ has unique Sylow subgroups. We choose a duality θ of G, and for each $i=1, \ldots, s$ we let H_{i} denote the p_{i}-Sylow subgroup of G. Then $\theta\left(H_{i}\right)$ has index $p_{i}^{e_{i}}$ in G, and since there is just one such subgroup in G, it is independent of the choice of θ. The Galois correspondence then gives a unique element L_{i} of $\operatorname{Sub}(K \mid k)$ with $\left[L_{i}: k\right]=p_{i}^{e_{i}}$.

To obtain the isomorphism of the theorem's second assertion, we note that multiplication induces a k-algebra homomorphism

$$
L_{1} \otimes_{k} \cdots \otimes_{k} L_{s} \rightarrow K
$$

with image $L_{1} \ldots L_{s}$. The properties of θ imply that

$$
\begin{aligned}
L_{1} \ldots L_{s} & =K^{\theta\left(H_{1}\right) \cap \cdots \cap \theta\left(H_{s}\right)} \\
& =K^{\theta\left(\left\langle H_{1}, \ldots, H_{s}\right\rangle\right)} \\
& =K^{\theta(G)} \\
& =K^{\{1\}} \\
& =K .
\end{aligned}
$$

Thus our map is surjective. Since both domain and codomain have dimension g over k, the map is also injective, and the theorem is proved.

Corollary 4.5. Let n be indicial and for each $p \mid n$ write e_{p} for the largest power of p dividing $g_{n} / \varphi_{(m(n))}=\left[K_{n}: k_{n}\right]$. Then for each such p there is a unique subextension $L_{(p, n)}$ of $K_{n} \mid k_{n}$ with $\left[L(p, n): k_{n}\right]=p^{e_{p}}$, and K_{n} is isomorphic as a k_{n}-algebra to the tensor product over k_{n} of the $L_{(p, n)}$.

References

1. K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer Verlag, New York, 1982.
2. C. Greither and D.K. Harrison, A Galois correspondence for radical extensions of fields, J. Pure Appl. Algebra, 43 (1986), pp. 257-270.
3. M. Suzuki, Structure of a group and the structure of its lattice of subgroups, Ergeb. Math. Grenzgeb., Springer, New York, 1956.

University of Oregon

Eugene, Oregon

