NON-ISOTROPIC HAUSDORFF MEASURE AND EXCEPTIONAL SETS FOR HOLOMORPHIC SOBOLEV FUNCTIONS

BY

WILLIAM S. COHN

Let B^n denote the unit ball in C^n with boundary S, the unit sphere. If f is holomorphic in B^n with homogeneous polynomial expansion

$$f(z) = \sum_{k=0}^{\infty} f_k(z)$$

then f has radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z) = \sum_{k=0}^{\infty} k f_k(z)$$

as defined in [7]. For $\beta > 0$ one is therefore led to the definition

$$R^{\beta}f(z) = \sum_{k=0}^{\infty} (1+k)^{\beta} f_k(z)$$

of the so called "fractional derivatives" of f; see [4]. As in [4], for β , p > 0, define the "holomorphic Sobolev spaces"

$$H_{\mathcal{B}}^{p}(B^{n}) = \left\{ f \colon R^{\beta} f \in H^{p}(B^{n}) \right\}$$

where $H^p(B^n)$ is the usual Hardy space [7].

For $\zeta \in S$ and $\delta > 0$ let

$$B(\zeta,\delta) = \{ \eta \in S \text{ and } |1 - \langle \eta, \zeta \rangle| < \delta \}$$

be the Koranyi ball and

$$D_{\alpha}(\zeta) = \left\{ z \in B^n \text{ and } |1 - \langle z, \zeta \rangle| < \frac{\alpha}{2} (1 - |z|^2) \right\}$$

Received December 15, 1987.

be the admissible approach regions for $\zeta \in S$ and $\alpha > 1$. For a complex valued function f defined on B^n we have the maximal functions

$$M_{\alpha}f(\zeta) = \sup_{z \in D_{\alpha}(\zeta)} |f(z)|$$

where $\zeta \in S$. If $f: B^n \to C, \zeta \in S$ and

$$\lim_{z \to \xi, \ z \in D_{\alpha}(\xi)} f(z)$$

exists for all $\alpha > 1$, then we say that f has an admissable limit at ζ . Let E(f) denote the exceptional set

$$E(f) = \{ \zeta \in S \text{ and } f \text{ does not have an admissable limit at } \zeta \}.$$

In [3], Ahern proves the following result and its corollary; see also [1].

THEOREM A. Let $0 and <math>d = n - \beta p > 0$. Suppose $f \in H^p_{\beta}(B^n)$ and ν is a positive measure on S satisfying

(*)
$$\nu(B(\zeta,\delta)) \leq C\delta^d \quad \text{for } \zeta \in S \text{ and } \delta > 0,$$

for an absolute constant C. Then for each $\alpha > 1$ there is a constant $C = C(\alpha)$ such that

$$\int (M_{\alpha}f(\zeta))^{p} d\nu(\zeta) \leq C \|R^{\beta}f\|_{p}^{p}.$$

(Here, $\|g\|_p$ denotes the $H^p(B^n)$ norm of g).

COROLLARY A. If ν satisfies condition (*) of Theorem A and $f \in H^p_\beta(B^n)$ then

$$\nu(E(f))=0.$$

On the basis of Corollary A, Ahern suggests in [3] that the exceptional sets for functions in $H^p_\beta(B^n)$ are those of "non-isotropic" d-dimensional Hausdorff capacity 0. In this note, we verify his conjecture for the case of compact subsets of S.

For d > 0 and $E \subseteq S$ compact, let H_d be the capacity on S defined by

$$H_d(E) = \inf \left\{ \sum_{A \in \mathcal{O}} \delta_A^d \right\},\,$$

where the infimum is taken over all countable covers \mathcal{O} of E by balls

$$A = B(\zeta_A, \delta_A).$$

If n > 1 notice that the H_d capacity of a set depends on "directional considerations" because of the nature of the Koranyi ball $B(\zeta, \delta)$; see [7]. For this reason we refer to H_d as non-isotropic d-dimensional Hausdorff capacity.

To verify Ahern's conjecture we need the following "Frostman theorem" for H_d .

THEOREM 1. Let E be a compact subset of S. Then $H_d(E) > 0$ if and only if E contains the support of a positive measure $v \neq 0$ satisfying condition (*).

Combining Theorem 1 with Corollary A gives the next fact.

COROLLARY 1. Let $d = n - \beta p > 0$, where $0 and <math>\beta > 0$. Suppose E is a compact subset of S and E = E(f) for $f \in H^p_{\beta}(B^n)$. Then $H_d(E) = 0$.

Our second main result completes the characterization of the compact exceptional sets for $H_{\mathcal{B}}^{p}(\mathcal{B}^{n})$.

THEOREM 2. Let $d = n - \beta p > 0$, where $0 and <math>\beta > 0$, and suppose E is a compact subset of S for which $H_d(E) = 0$. Then there exists a function $f \in H^p_B(B^n)$ such that E = E(f).

It follows that the compact subsets of S which arise as exceptional sets for $H^p_{\beta}(B^n)$ functions are precisely the ones whose non-isotropic d-dimensional Hausdorff capacity is 0.

Our proof of Theorem 1 requires some machinery and ideas which also allow a proof of strong type capacitary results for holomorphic Sobolev functions analogous to real variable results found in [1] and [2]. These are pursued after the proof of Theorem 1 and stated as Theorem 3.

In the sequel we adopt the following conventions and terminology. The letter σ will denote surface area on the sphere, while the letter C will stand for various absolute constants whose values differ in each occurrence while remaining independent of stated variables.

Finally, the symbol \doteq is used to indicate that two quantities are "comparable". That is, $A \doteq B$ if and only if there is a positive constant C such that $C^{-1}A \leq B \leq CA$.

Proof of Theorem 1. We will need the following notation. If $\zeta, \eta \in S$, let

$$d(\zeta,\eta)=|1-\langle\zeta,\eta\rangle|^{1/2}.$$

Then d is a metric on S; see [7]. Let

$$Q(\zeta, \delta) = \{ \eta \in S \text{ and } d(\eta, \zeta) < \delta \}.$$

Then $Q(\zeta, \delta) = B(\zeta, \delta^2)$ and if $0 \le \delta \le 2$

$$\sigma(Q(\zeta,\delta)) \doteq \delta^{2n};$$

for this last fact we again refer to [7]. For $0 < m \le n$ and $K \subseteq S$ compact, it follows that

$$H_m(K) = \inf \Big\{ \sum \delta_k^{2m} \colon K \subseteq \bigcup_k Q(\zeta_k, \delta_k) \Big\}.$$

Motivated by Frostman's proof of Theorem 1 for the case n = 1 and by the generalizations of his proof to \mathcal{R}^n , n > 1, one would like to find successive "dyadic decompositions" of the sphere into disjoint unions of sets that are essentially Koranyi balls of radius 2^{-k} , $k = 1, 2, \dots$ It seems, however, that the non-isotropic nature of the metric d on S for n > 1 makes the situation intrinsically more complicated than the situation in \mathcal{R}^n . Larman, [6], has given a, somewhat complicated, decomposition of a finite dimensional compact metric space into a "sequence of nets" which has the usual properties of the familiar dyadic decomposition of \mathcal{R}^n . We prefer, however, to proceed in a sightly different way, which will have the advantage of being simpler and keeping the paper self contained.

The first step in the proof requires the construction of a "lattice" contained in S. Let ζ^0 be an arbitrary point in S. Set $L_0 = {\zeta^0}$. Clearly, $S = Q(\zeta^0, 3)$. A standard argument proves the following lemma.

There exist subsets L_1, L_2, \ldots of S satisfying the following Lemma 1. properties:

- $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots;$ (1.1)
- (1.2) If $L_k = \{\zeta_s^k\}_{s=1}^{m_k}$ is a listing of the distinct elements of L_k then (i) $d(\zeta_s^k, \zeta_t^k) > 1/2^k$ if $s \neq t$, (ii) $\bigcup_{s=1}^{m_k} Q(\zeta_s^k, 3/2^k) = S$.

With $\{L_k\}_{k=0}^{\infty}$ constructed as in Lemma 1, define a relationship between elements of L_k and L_{k-1} by saying that $\zeta_s^k < \zeta_t^{k-1}$ if t is the smallest index such that

$$\zeta_s^k \in Q\left(\zeta_t^{k-1}, \frac{3}{2^{k-1}}\right).$$

Fix a positive integer N. For l = 1, 2, ..., N - 1 say that

$$\zeta_s^N < \zeta_t^{N-l}$$

if there exists a sequence of "inequalities"

(2)
$$\zeta_s^N < \zeta_{s_1}^{N-1} < \zeta_{s_2}^{N-2} < \cdots < \zeta_{s_{l-1}}^{N-(l-1)} < \zeta_t^{N-l}.$$

Notice that for a given $\zeta_s^N \in L_N$ there is a unique $\zeta_t^{N-1} \in L_{N-1}$ such that (1) holds.

Next, for $\zeta_s^{N-l} \in L_{N-l}$, where l = 1, 2, 3, ..., N, set

$$S_s^{N,l} = \left\{ \zeta_t^N \in L_N \text{ and } \zeta_t^N < \zeta_s^{N-l} \right\}.$$

It is possible that $S_s^{N,l} = \emptyset$. Now let $S_s^{N,0} = \{\zeta_s^N\}$, for $s = 1, 2, ..., m_N$. Then we have the following lemma.

- LEMMA 2. Let $0 \le l, j < N$. Then: (2.1) $S_s^{N,l} \cap S_t^{N,l} = \emptyset$, if $s \ne t$. (2.2) $\bigcup_{s=1}^{m_{N-1}} {}^{l}S_s^{N,l} = L_N$. (2.3) If $S_s^{N,l} \cap S_t^{N,j} \ne \emptyset$ and j < l, then $S_t^{N,j} \subseteq S_s^{N,l}$. (2.4) $S_s^{N,l} \subseteq Q(\zeta_s^{N-l}, 6/2^{N-l})$.

Proof. We only discuss (2.3) and (2.4). For (2.3), if $\zeta_{s_0}^N \in S_s^{N,l} \cap S_t^{N,j}$, then $\zeta_{s_0}^N < \zeta_t^{N-j}$ and $\zeta_{s_0}^N < \zeta_s^{N-l}$ and therefore we have "inequalities"

$$\zeta_t^{N-j} < \zeta_{t_1}^{N-(j+1)} < \cdots < \zeta_s^{N-l},$$

which shows that each ζ_i^N in $S_t^{N, j}$ is also in $S_s^{N, l}$. For (2.4), if $\zeta_t^N < \zeta_s^{N-l}$, then by (2) and the triangle inequality,

$$\begin{split} d\left(\zeta_{t}^{N},\zeta_{s}^{N-l}\right) &\leq d\left(\zeta_{t}^{N},\zeta_{s_{1}}^{N-1}\right) + d\left(\zeta_{s_{1}}^{N-1},\zeta_{s_{2}}^{N-2}\right) + \cdots + d\left(\zeta_{S_{l-1}}^{N-(l-1)},\zeta_{s}^{N-l}\right) \\ &< \frac{3}{2^{N-1}} + \frac{3}{2^{N-2}} + \cdots + \frac{3}{2^{N-l}} \\ &\leq \frac{6}{2^{N-l}}, \end{split}$$

as claimed.

LEMMA 3. Let $0 \le l \le N-1$ and suppose $\zeta_{s_0}^{N-l} \in L_{N-l}$. Then there exists an absolute constant N_0 , independent of l or N such that if

$$G = \left\langle \zeta_s^{N-l} \colon S_s^{N,\,l} \cap \, Q\left(\zeta_{s_0}^{N-l}, \frac{3}{2^{N-l}}\right) \neq \emptyset \right\rangle,$$

then the cardinality of G is less than N_0 .

Proof. By Lemma 2, if $\zeta_s^{N-l} \in G$ then $d(\zeta_s^{N-l}, \zeta_{s_0}^{N-l}) < 10/2^{N-l}$. The collection

$$\left\{Q\left(\zeta_s^{N-l}, \frac{1}{4\cdot 2^{N-l}}\right)\right\}$$

where $\zeta_s^{N-l} \in G$ is therefore a pairwise disjoint collection of balls contained in $Q(\zeta_{s_0}^{N-l}, 20/2^{N-l})$. Taking surface area measure σ of the union gives the inequality

$$k\left[\frac{1}{4\cdot 2^{N-l}}\right]^{2n} \le C\left[\frac{20}{2^{N-l}}\right]^{2n}$$

where k is the cardinality of G and C is an absolute constant. This gives the result.

The proof of Lemma 3 actually yields the following corollary.

COROLLARY 2. Let $\zeta \in S$ and

$$H = \left\langle \zeta_s^{N-l} \colon Q\left(\zeta_s^N, \frac{3}{2^{N-l}}\right) \cap Q\left(\zeta, \frac{1}{2^{N-l}}\right) \neq \emptyset \right\rangle.$$

Then the cardinality of H is less than N_1 where N_1 is an absolute constant independent of ζ , N, or l.

We are now ready to construct the measure μ that Theorem 1 asserts exists. Suppose that $E \subseteq S$ is compact and $H_d(E) > 0$. Let N be a fixed positive integer. Set

$$I_E = \left\langle s \colon Q\left(\zeta^N_s, \frac{3}{2^N}\right) \cap E \neq \emptyset \right\rangle.$$

Note that

$$E\subseteq \bigcup_{s\in I_E}Q\Big(\zeta_s^N,\frac{3}{2^N}\Big).$$

Let

$$\mu_0 = \sum_{s \in I_E} \left(\frac{1}{2^N}\right)^{2d} \delta_{\zeta_s^N},$$

where δ_{ζ} is point mass at ζ . Define μ_1 so it satisfies

$$\mu_1\left(S_s^{N,1}\right) = \begin{cases} \left(\frac{1}{2^{N-1}}\right)^{2d} & \text{if } \mu_0\left(S_s^{N,1}\right) > \left(\frac{1}{2^{N-1}}\right)^{2d} \\ \mu_0\left(S_s^{N,1}\right) & \text{otherwise.} \end{cases}$$

by, in the first case, redefining μ_0 on $S_s^{N,1}$ by multiplying the restriction of μ_0 to $S_s^{N,1}$ by the appropriate number λ , $0 < \lambda < 1$. Define μ_2 in a similar way so it satisfies

$$\mu_{2}(S_{s}^{N,2}) = \begin{cases} \left(\frac{1}{2^{N-2}}\right)^{2d} & \text{if } \mu_{1}(S_{s}^{N,2}) > \left(\frac{1}{2^{N-2}}\right)^{2d} \\ \mu_{1}(S_{s}^{N,2}) & \text{otherwise.} \end{cases}$$

Continue this process and construct μ_N .

By virtue of Lemma 2, for each $s \in I_E$ there is a largest number l such that $\zeta_s^N \in S_t^{N,\,l}$ and

$$\mu_N(S_t^{N,l}) = \left(\frac{1}{2^{N-l}}\right)^{2d}.$$

Call such a set $S_i^{N,l}$ "maximal". Let the maximal sets be denoted by $S_{l_i}^{N,l_i}$, i = 1, ..., k. By Lemma 2, these sets are pairwise disjoint. It is also true that

$$\bigcup_{i=1}^k S_{t_i}^{N,\,l_i} \supseteq \left\{ \zeta_s^N \colon s \in I_E \right\}.$$

By Lemma 2, (2.4),

$$\bigcup_{\zeta_s^N \in S_t^{N,l_i}} Q\left(\zeta_s^N, \frac{3}{2^N}\right) \subseteq Q\left(\zeta_{t_i}^{N-l_i}, \frac{24}{2^{N-l_i}}\right)$$

and therefore

$$E\subseteq \bigcup_i Q\bigg(\zeta_{t_i}^{N-l_i},\frac{24}{2^{N-l_i}}\bigg),$$

implying that

$$H_d(E) \leq \sum_i \left(\frac{24}{2^{N-l_i}}\right)^{2d} = (24)^{2d} \mu_N(S),$$

since the maximal sets are disjoint.

If we use Lemma 3 and its corollary and let $\zeta \in S$, then

$$Q\left(\zeta,\frac{1}{2^{N-l}}\right)\cap Q\left(\zeta_s^{N,\,l},\frac{3}{2^{N-l}}\right)\neq\emptyset$$

for at most N_1 elements ζ_s^{N-l} in L_{N-l} . For each such ζ_s^{N-l} , let C_s be the set of all $S_t^{N,l}$ which intersect $Q(\zeta_s^{N-l}, 3/2^{N-l})$. Each C_s has at most N_0 elements, by Lemma 3. It follows now that

$$\mu_N\left(Q\left(\zeta_s^{N-l}, \frac{3}{2^{N-l}}\right)\right) \le \sum_{C_s} \mu_N\left(S_t^{N, l}\right)$$

$$\le N_0\left(\frac{1}{2^{N-l}}\right)^{2d}.$$

Therefore

$$\mu_N\left(Q\left(\zeta,\frac{1}{2^{N-l}}\right)\right) \leq N_1 N_0 \left(\frac{1}{2^{N-l}}\right)^{2d}$$

for all $\zeta \in S$, and l = 0, 1, ..., N.

We now have a sequence of measures $\{\mu_N\}$ satisfying the inequalities

$$(24)^{-2d}H_d(E) \le \mu_N(S) \le 1.$$

We may find a weak * convergent subsequence $\{\mu_{N_k}\}$ and a measure μ such that

(3)
$$(24)^{-2d}H_d(E) \le \mu(S) \le 1,$$

(4)
$$\mu$$
 is supported on E ,

(5)
$$\mu\left(Q\left(\zeta,\frac{1}{2^N}\right)\right) \leq N_1 N_0 \left(\frac{1}{2^N}\right)^{2d},$$

for all $\zeta \in S$ and $N = 0, 1, 2, \dots$

This completes the proof of Theorem 1.

We turn now to the question of strong type capacitary inequalities for functions in $H_{\beta}^{p}(B^{n})$. In the following discussion we will assume that $0 and <math>d = n - \beta p > 0$.

Let $f \in H_R^p(B^n)$. In [3], Ahern obtains the estimate

(6)
$$[MF(\zeta)]^p \leq \sum_{k=1}^{\infty} \lambda_k (\delta_k)^{-2d} u_k(\zeta)$$

for $\zeta \in S$, where $\sum \lambda_k \leq C \|R^{\beta}f\|_p^p$ and u_k is the characteristic function of a ball $Q(\zeta_k, \delta_k)$. For the purposes of this paper, however, it will be convenient to realize that we may assume that $0 \leq u_k \leq 1$ is *continuous* and supported in a ball $Q(\zeta_k, \delta_k)$. If X is a subset of S, extend the function H_d to X by letting

$$H_d(X) = \sup H_d(E)$$

where the supremum is taken over all compact sets $E \subseteq X$. We have the following lemma.

LEMMA 4. Let $K_m \subseteq K_{m+1}$, m = 1, 2, ... be compact subsets of S. Then

$$H_d\left(\bigcup_{m=1}^{\infty}K_m\right)\doteq\lim_{m\to\infty}H_d(K_m).$$

Proof. It is obvious that $H_d(\bigcup_{n=1}^{\infty} K_m) \ge \lim_{m \to \infty} H_d(K_m)$. Now let K be a compact subset of $\bigcup_{m=1}^{\infty} K_m$. From the proof of Theorem 1 it follows that

$$H_d(K) \doteq \sup \mu(K)$$

where the supremum is taken over all measures μ supported on K satisfying condition (*) with C = 1. Choose such a μ so

$$H_d(K) \leq C\mu(K).$$

Since μ is a measure and $K \subseteq \bigcup_{m=1}^{\infty} K_m$, $\mu(K) = \lim_{m \to \infty} \mu(K_m)$. For each m, find a cover $O_m = \{B(\zeta_i^m, \delta_i^m)\}$ such that

$$\sum_{i} \left(\delta_{i}^{m} \right)^{d} \leq H_{d} (K_{m}) + 2^{-m}.$$

Then

$$\mu(K_m) \leq \sum_i \mu(B(\zeta_i^m, \delta_i^m)) \leq \sum_i (\delta_i^m)^d$$

and therefore

$$\mu(K) \leq \lim_{m \to \infty} H_d(K_m),$$

which proves the lemma.

For $f \in H_{\beta}^p$ let $J((MF)^p)$ be the Choquet integral of $(Mf)^p$,

$$J((MF)^p) = \int_0^\infty H_d\{(MF)^p \ge t\} dt.$$

For $\varepsilon > 0$,

$$J((MF)^{p}) = \sum_{m=0}^{\infty} \int_{m}^{m+1} H_{d}\{(MF)^{p} \ge t\} dt$$
$$= \sum_{m=0}^{\infty} \int_{m}^{m+1} \varepsilon H_{d}\{(MF)^{p} \ge \varepsilon t\} dt$$

and therefore

$$\left|J((MF)^p) - \sum_{m=0}^{\infty} \varepsilon H_d\{(MF)^p \ge \varepsilon m\}\right| \le \varepsilon H_d(S).$$

To estimate $J((MF)^p)$ it is therefore enough to estimate the sum

$$\sum_{m=0}^{\infty} \varepsilon H_d \left\{ \left(MF \right)^p \ge \varepsilon m \right\}$$

for ε small. Use Ahern's inequality (6) to see that

(7)
$$\sum_{m=0}^{M} \varepsilon H_d \left\{ \left(MF \right)^p \ge \varepsilon m \right\} \le \sum_{m=0}^{M} \varepsilon H_d \left\{ \sum_{k} \lambda_k \delta_k^{-2d} u_k \ge \varepsilon m \right\}$$
$$\le C \sum_{m=0}^{M} \varepsilon H_d \left\{ \sum_{k=1}^{k_M} \lambda_k \delta_k^{-2d} u_k \ge \varepsilon m \right\}$$

for an integer k_M depending on M, where we have used Lemma 4 and the continuity of each u_k .

We need now to define approximating capacities H_d^N , $N = 1, 2, 3, \ldots$. Our notation will refer back to the proof of Theorem 1. For a positive integer N and $s = 1, 2, \ldots, M_N$ let

$$X(\zeta_s^N) = Q\left(\zeta_s^N, \frac{3}{2^N}\right) \setminus \bigcup_{t \leq s} Q\left(\zeta_t^N, \frac{3}{2^N}\right).$$

The collection $\{X(\zeta_s^N)\}_{s=1}^{m_N}$ is therefore pairwise disjoint and the union of all such sets (for fixed N) is S. If $0 \le l \le N$, l an integer, and $s = 1, 2, \ldots, m_{N-l}$, let

$$Y_{N, l, s} = \bigcup X(\zeta_t^N)$$

where the union is over all indices for which $\zeta_t^N \in S_s^{N,l}$. If $E \subseteq S$ define

$$H_d^N(E) = \inf \left\{ \sum \left(\frac{1}{2^{N-l}} \right)^{2d} \colon E \subseteq \bigcup Y_{N,l,s} \right\}.$$

It is easy to see that if $E = \bigcup_{k=1}^{\infty} E_k$ and $E_k \subseteq E_{k+1}$, then

$$H_d^N(E) = H_d^N(E_i)$$

for all $j \ge l$, where l is sufficiently large.

It is also immediate from the construction that if any two sets $Y_{N,l,s}$ (with fixed N) intersect, then one is contained in the other. These last two properties and R. Fefferman's argument in [5] prove the following result.

LEMMA 5. Let F and G be non-negative functions. Then

$$J_N(F+G) \le J_N(F) + J_N(G)$$

where

$$J_N(h) = \int_0^\infty H_d^N\{h \ge t\} dt$$

for $h \geq 0$.

We now estimate $J((MF)^p)$. With M fixed as in (7), choose N_2 so large that for $N > N_2$,

$$\begin{split} \sum_{m=0}^{M} \varepsilon H_d \left\langle \sum_{k=1}^{k_m} \lambda_k \delta_k^{-2d} u_k \geq \varepsilon m \right\rangle &\leq C \sum_{m=0}^{M} \varepsilon H_d^N \left\langle \sum_{k=1}^{k_M} \lambda_k \delta_k^{-2d} u_k \geq \varepsilon m \right\rangle \\ &\leq C J_N \left(\sum_{k=1}^{k_M} \lambda_k \delta_k^{-2d} u_k \right) \\ &\leq C \sum_{k=1}^{k_M} \lambda_k J_N \left(\delta_k^{-2d} u_k \right) \\ &\leq C \sum_{k=1}^{k_M} \lambda_k, \end{split}$$

provided N is sufficiently large so $2^{-N} \ll \delta_k$, $k = 1, ..., k_M$. Since this holds all M we have proved the following strong type capacitary inequality.

THEOREM 3. There is an absolute constant C such that

$$J((MF)^p) \leq C ||R^{\beta}||_p^p,$$

for all functions f holomorphic on B^n .

The remainder of the paper concerns the proof of Theorem 2.

The proof of Theorem 2 requires some preliminary lemmas. The first two follow from standard estimates of the type found in [7], Chapter 5.

LEMMA 6. Let m > n and 0 < r < 1. Then for t large and r close to 1 there is an absolute constant C such that with $\zeta \in S$,

$$\int_{\mathcal{X}} \frac{(1-r)^{m-n}}{|1-\langle z,\xi\rangle|^m} d\sigma(z) \leq Ct^{n-m},$$

where $X = \{z \in S \text{ and } |1 - \langle z, \zeta \rangle| > t(1 - r)\}.$

LEMMA 7. Let $\zeta, \eta \in S$ and suppose $B(\zeta, \delta) \cap B(\eta, \rho) = \phi$. Assume that $0 < 1 - r_1 < \delta$, $0 < 1 - r_2 < \rho$ and let $z \in B(\eta, \rho/2)$. Then for δ and ρ sufficiently small,

$$|1 - \langle z, r_1 \zeta \rangle| \doteq |1 - \langle r_2 \eta, r_1 \zeta \rangle| \doteq |1 - \langle \eta, \zeta \rangle|.$$

LEMMA 8. Let $\{B(\zeta_i, \delta_i)\}$ be a collection of pairwise disjoint balls contained in δ . Set

$$\tilde{\xi}_i = \left(1 - \frac{\delta_i}{t}\right) \zeta_i$$
 where $t > 1$,

and let

$$r_i = 1 - \frac{\delta_i}{t}.$$

Then there is an absolute constant C = C(m) such that if m > n then

$$\sum_{j \neq i} \frac{\left(1 - r_i\right)^{m-n} \left(1 - r_j\right)^n}{\left|1 - \langle \tilde{\xi}_i, \tilde{\xi}_j \rangle\right|^m} \le Ct^{-m}.$$

Proof. By Lemma 6, with $X = \{z \in S \text{ and } |1 - \langle z, \zeta_i \rangle| > \delta_i \}$,

$$\int_{X} \frac{\left(1-r_{i}\right)^{m-n}}{\left|1-\left\langle z,\zeta_{i}\right\rangle\right|^{m}} d\sigma(z) \leq C\left(\frac{\delta_{i}}{1-r_{i}}\right)^{m-n} = Ct^{n-m}.$$

Let $B_j = B(\zeta_j, \delta_j/2)$. Since the collection $\{B_j\}$ is pairwise disjoint,

$$\sum_{j\neq i} \int_{B_j} \frac{(1-r_i)^{m-n}}{|1-\langle z, \zeta_i \rangle|^m} d\sigma(z) \leq Ct^{n-m}.$$

Lemma 7 now allows the estimate

$$\sum_{j \neq i} \frac{\left(1 - r_i\right)^{m-n}}{\left|1 - \left\langle \tilde{\xi}_j, \tilde{\xi}_i \right\rangle\right|^m} \sigma(B_j) \le Ct^{n-m}$$

and therefore

$$\sum_{j \neq i} \frac{\left(1 - r_i\right)^{m-n} 2^{-n} \delta_j^n}{\left|1 - \langle \tilde{\xi}_j, \tilde{\xi}_i \rangle \right|^m} \le C t^{n-m}.$$

Since $\delta_i = (1 - r_i)t$, the result follows.

LEMMA 9. Let $\mathscr{C} = \{B(\zeta_i, \delta_i)\}\$ be a finite collection of pairwise disjoint balls in S. Then there exists a function $F = F(z, \mathscr{C}, t)$ defined on B^n associated with \mathscr{C} and the number t with the property that, for t sufficiently large,

$$|F(\tilde{\xi}_i)| \geq \frac{1}{3}$$

where

$$\tilde{\zeta}_i = \left(1 - \frac{\delta_i}{t}\right) \zeta_i$$

as in Lemma 8.

Proof. Reorder the sequence $\{\zeta_i\}$ so $\delta_1 \geq \delta_2 \geq \cdots$. By Lemma 8 it follows that

(7)
$$\sum_{i>i} \frac{\left(1-r_{i}\right)^{m}}{\left|1-\left\langle \tilde{\xi}_{i},\tilde{\xi}_{i}\right\rangle\right|^{m}} \leq C(m)t^{-m}$$

where $1 - r_j = \delta_j/t$ as in Lemma 8, and m > n. Define

$$g_j(z) = \frac{2^m (1 - r_j)^m}{(1 - \langle z, \tilde{\zeta}_j \rangle)^m}$$

and notice that

$$|g_j(\tilde{\zeta}_j)| \geq 1.$$

Let $\omega_1 = 1$ and define $\omega_2, \omega_3, \ldots$, inductively by the rule

$$\omega_{k} = \begin{cases} 0 & \text{if } \left| \sum_{j < k} \omega_{j} g_{j}(\tilde{\xi}_{k}) \right| \geq \frac{1}{2} \\ 1 & \text{if } \left| \sum_{j < k} \omega_{j} g_{j}(\tilde{\xi}_{k}) \right| < \frac{1}{2}. \end{cases}$$

Let $F(z) = \sum \omega_j g_j(z)$. Using (7) and the definition of ω_k , it follows that, for $k \geq 2$, in the case where $\omega_k = 0$,

$$|F(\tilde{\zeta}_k)| \geq \frac{1}{2} - C(m)t^{-m}$$

and in the case where $\omega_k = 1$,

$$|F(\tilde{\xi}_k)| > 1 - \frac{1}{2} - C(m)t^{-m}.$$

For k = 1 it is also true that

$$|F(\tilde{\xi}_1)| > 1 - C(m)t^{-m}.$$

For a fixed m > n, we may choose t sufficiently large and get the desired function.

Notice also that with F constructed as above, there is the easy pointwise estimate

(8)
$$|F(z)| \le \sum_{j} \frac{2^{m} (\delta_{j})^{m}}{(1-|z|)^{m}} \quad \text{for } |z| < 1.$$

In what follows, the letters m and t and the notation

$$\tilde{\zeta} = \left(1 - \frac{\delta}{t}\right)\zeta$$

refer back to Lemma 9.

Now suppose that the hypotheses of Theorem 2 hold, i.e., $d = n - \beta p$, $0 , <math>\beta > 0$ and E is a compact subset of S for which $H_d(E) = 0$. We are ready to construct the function $f \in H^p_\beta(B^n)$ whose existence proves Theorem 2.

We first claim that it is possible to find a sequence of finite open covers of $E, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \ldots$, and positive constants K, m_1, m_2, m_3, \ldots , satisfying the following conditions:

- (9) $\mathscr{C}_j = \{B(\zeta_{ij}, K\delta_{ij})\}_{i=1}^{N^j}$ where $\{B(\zeta_{ij}, \delta_{ij})\}_{i=1}^{N_j}$ is a pairwise disjoint collection of balls in S.
- (10) If F_j is the function associated with the disjoint collection obtained from \mathscr{C}_j as in Lemma 4, then

(11)
$$\frac{m_j}{4} \geq 8 \left(\sum_{i < j} m_i ||F_i||_{\infty} \right).$$

(12)
$$\frac{2^m}{\left(1-|\tilde{\xi}_{il}|\right)^m} \sum_{a=1}^{N_j} \left(\delta_{aj}\right)^m m_j < \frac{1}{2^j} \frac{1}{1,000}$$

for $1 \le i \le N_l$, $1 \le l \le j - 1$, where

(13)
$$\tilde{\zeta}_{il} = \left(1 - \frac{\delta_{il}}{t}\right) \zeta_{il}.$$

$$m_j > m_{j-1} + 1.$$

(14)
$$m_j^p \sum_{i=1}^{N_j} (\delta_{ij})^{n-\beta p} < 2^{-j}.$$

To prove the claim, first set $m_0 = 0$. That K, \mathscr{C}_1 and m_1 may be found is clear from standard covering arguments and the fact that $H_d(E) = 0$.

Assume inductively that $\mathscr{C}_1, \mathscr{C}_2, \ldots, \mathscr{C}_{k-1}$ and $m_1, m_2, \ldots, m_{k-1}$ have been chosen. Choose m_k so

$$(15) m_k > m_{k-1} + 1$$

and

(16)
$$\frac{m_k}{4} \geq 8 \left(\sum_{i \leq k} m_i ||F_i||_{\infty} \right),$$

which is possible since each $F_i \in H^{\infty}$. Now use the hypothesis that $H_d(E) = 0$ and the standard covering argument to obtain a finite cover of E by balls $\{B(\zeta_{ik}, K\delta_{ik})\}$ where $\{B(\zeta_{ik}, \delta_{ik})\}$ is a pairwise disjoint collection and the δ_{ik} are so small that (11), (12), and (14) hold with k replacing j. By induction, the claim is proved.

The desired function can now be constructed. Set

$$f(z) = \sum_{k=1}^{\infty} m_k F_k(z)$$

where m_k and F_k are as in (9)–(14). From the construction above and Lemma 9 as well as the pointwise estimate (8), it follows that

$$|f(\tilde{\xi}_{ik})| \geq m_k |F_k(\tilde{\xi}_{ik})| - \left| \sum_{j < k} m_j F_j(\tilde{\xi}_{ik}) \right| - \left| \sum_{j > k} m_j F_j(\tilde{\xi}_{ik}) \right|$$

$$\geq \frac{m_k}{3} - \sum_{j < k} m_j ||F_j||_{\infty} - \frac{1}{1000} \sum_{j > k} \frac{1}{2^j}$$

$$\geq Cm_k.$$

Using this last inequality we show that $M_{\alpha}f \equiv \infty$ on E, provided α is sufficiently large. Let $\zeta \in E$. Fix k and find a ball $B(\zeta_{ik}, K\delta_{ik})$ in the cover of E, \mathscr{C}_k , which contains ζ . Since

$$|1 - \langle \zeta, \zeta_{ik} \rangle| < K\delta_{ik}$$
 and $1 - |\tilde{\zeta}_{ik}| = \frac{\delta_{ik}}{t}$

it follows that

$$\begin{split} |1 - \left\langle \zeta, \tilde{\zeta}_{ik} \right\rangle| &= |1 - \left\langle \zeta, \zeta_{ik} \right\rangle + \left\langle \zeta, \zeta_{ik} \right\rangle - \left\langle \zeta, \tilde{\zeta}_{ik} \right\rangle| \\ &\leq |1 - \left\langle \zeta, \zeta_{ik} \right\rangle| + |\zeta_{ik} - \tilde{\zeta}_{ik}| \\ &\leq \left(K + \frac{1}{t}\right) \delta_{ik} \end{split}$$

and therefore

$$(1-|\tilde{\zeta}_{ik}|) \geq \frac{1}{t(K+\frac{1}{t})}|1-\langle \zeta, \tilde{\zeta}_{ik}\rangle|,$$

i.e., $\tilde{\zeta}_{ik} \in D_{\alpha}(\zeta)$ for α sufficiently large independent of ζ or k. Thus

$$(M_{\alpha}f)(\zeta) \ge |f(\tilde{\zeta}_{ik})| \ge Cm_k$$

and $M_{\alpha}f \equiv \infty$ on E.

From the construction of f it is also apparent that f extends to be continuous at every point $\zeta \in S \setminus E$. Therefore E = E(f).

Finally, we must show that $R^{\beta}f \in H^p(B^n)$. Since

$$f(z) = \sum_{k} m_{k} \sum_{i} \frac{\omega_{ik} 2^{m} t^{-m} (\delta_{ik})^{m}}{\left(1 - \langle z, \tilde{\xi}_{ik} \rangle\right)^{m}}$$

where $\omega_{ik} = 1$ or 0, the fact that 0 and the triangle inequality shows

that

$$\|R^{\beta}f\|_{p}^{p} \leq C\sum_{k} m_{k}^{p} \sum_{i} \left(\delta_{ik}\right)^{mp} \|R^{\beta}C\left(\cdot,\tilde{\zeta}_{ik}\right)\|_{p}^{p}$$

where

$$C(z, r\zeta) = \frac{1}{(1 - \langle z, r\zeta \rangle)^m}$$

for $z \in B^n$ and $\zeta \in S$. By (14), it is therefore sufficient to obtain the estimate

$$\int_{\mathcal{S}} (1-r)^{mp} |R^{\beta}C(\cdot, r\zeta)|^p d\sigma \leq C(1-r)^{n-\beta p}$$

for a constant C depending only on m, where 0 < r < 1 and $\zeta \in S$. We will consider only the case where $0 < \beta < 1$ since only simple modifications of our argument are needed in general.

Let $g(z_1) = \sum_{n=1}^{\infty} a_n z_1^n$ be holomorphic for z_1 in the unit disk of the complex plane. The classical 'fractional derivative'

$$(D^{\beta}g)(z_1) = \sum_{n=0}^{\infty} (n+1)^{\beta} a_n z_1^n, \, \beta > 0$$

has the well known representation

$$(D^{\beta}g)(z_1) = \frac{1}{\Gamma(1-\beta)} \int_0^1 \left[\log \frac{1}{t}\right]^{-\beta} (D^1f)(tz_1) dt$$

valid if $0 < \beta < 1$, which follows from the formulas

(17)
$$(n+1)^{\beta} = \frac{(n+1)}{\Gamma(1-\beta)} \int_0^1 \left[\log \frac{1}{t} \right]^{-\beta} t^n dt$$

for n = 0, 1, 2, Fix $z \in B^n$ and let $\lambda \in B^1$. If f is holomorphic B^n with homogeneous polynomial expansion $f(z) = \sum_{k=0}^{\infty} f_k(z)$, then

$$(R^{\beta}f)(\lambda z) = \sum_{k=0}^{\infty} (1+k)^{\beta} \lambda^{k} f_{k}(z)$$
$$= \frac{1}{\Gamma(1-\beta)} \int_{0}^{1} \left[\log \frac{1}{t} \right]^{-\beta} D_{\lambda}^{1} f(tz\lambda) dt,$$

where D_{λ}^{1} is the classical derivative operator defined above and is applied to the function (of λ) $f(tz\lambda)$; here we have used formula (17) above. Letting λ go

to 1 yields an integral representation for $(R^{\beta}f)(z)$ analogous to the one for $(D^{\beta}g)(z_1)$ mentioned before. If we apply this representation to $f(z) = C(z, r\zeta)$ we obtain the estimate

$$|R^{\beta}C(z; r\zeta)| \le C \int_0^1 \left[\log \frac{1}{t} \right]^{-\beta} \frac{1}{|1 - t\langle z, r\zeta \rangle|^{m+1}} dt$$

$$\le C \frac{1}{|1 - \langle z, r\zeta \rangle|^{m+\beta}}.$$

Since

$$\int_{S} \frac{\left(1-r\right)^{mp}}{\left|1-\left\langle z,r\zeta\right\rangle\right|^{(m+\beta)p}} d\sigma(z) \leq \frac{C(1-r)^{mp}}{\left(1-r\right)^{mp+\beta p-n}}$$

if $(m + \beta)p > n$, we have the desired inequality.

REFERENCES

- D. ADAMS, The classification problem for the capacities associated with the Besov and Triebel-Lizorkin spaces, preprint.
- 2. _____, A note on the Choquet integrals with respect to Hausdorff capacity, preprint.
- P. AHERN, Exceptional sets for holomorphic Sobolev functions, Michigan Math. J., vol. 35 (1988), pp. 29–41.
- 4. F. BEATROUS and J. BURBEA, Sobolev spaces of holomorphic functions in the ball, preprint.
- R. FEFFERMAN, A theory of entropy in Fourier analysis, Adv. in Math., vol. 30 (1978), pp. 171-201.
- D.G. LARMEN, On Hausdorff measure in finite-dimensional compact metric spaces, Proc. London Math. Soc. (3), vol. 17 (1967), pp. 193–206.
- 7. W. RUDIN, Function theory in the unit ball of &", Springer-Verlag, New York, 1980.

WAYNE STATE UNIVERSITY DETROIT, MICHIGAN