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NON-ISOTROPIC HAUSDORFF MEASURE AND
EXCEPTIONAL SETS FOR HOLOMORPHIC

SOBOLEV FUNCTIONS
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WILLIAM S. COHN

Let B denote the unit ball in Cn with boundary S, the unit sphere. If f is
holomorphic in Bn with homogeneous polynomial expansion

f(z) E A(z)
k--O

then f has radial derivative

" Of/(z) E -:4() E
j=,l /c=0

as defined in [7]. For > 0 one is therefore led to the definition

R’f(z) E (1 + k)’f(z)
k=0

of the so called "fractional derivatives" of f; see [4]. As in [4], for r, p > 0,
define the "holomorphic Sobolev spaces"

where H’(B") is the usual Hardy space [7].
For " S and > 0 let

(, ) {n s an I <n, > < }

be the Koranyi ball and

{ a (1 [zlZ)}D,,,() z B" and [1- (z,’)[ <-
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be the admissible approach regions for S and a > 1. For a complex
valued function f defined on B" we have the maximal functions

M,,/() sup
z-Oa()

where’S. Iff: B" C, S and

lim f(z)
z-",zDe,(

exists for all a > 1, then we say that f has an admissable limit at ’. Let E(f)
denote the exceptional set

E(f) { S and f does not have an admissable limit at " ).

In [3], Ahern proves the following result and its corollary; see also [1].

THEOREM A. Let 0 < p < 1 and d n tip > O. Suppose f H(B")
and v is a positive measure on S satisfying

v(B(’,8)) < C8d for S and iS > O,

for an absolute constant C. Then for each a > 1 there is a constant C C(a)
such that

f(Md()) <_ CIIR#flI;.

(Here, Ilgll denotes the H’(B") norm of g).

COROLLARY A.
then

If v satisfies condition ( ) of Theorem A and f H(B")

v(E(f)) =0.

On the basis of Corollary A, Ahem suggests in [3] that the exceptional sets
for functions in H(B) are those of "non-isotropic" d-dimensional Haus-
dorf capacity 0. In this note, we verify his conjecture for the case of compact
subsets of S.
For d > 0 and E

___
S compact, let Ha be the capacity on S defined by

Ha(E) inf(oSaA),
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where the infimum is taken over all countable covers 0 of E by bails

If n > 1 notice that the Ha capacity of a set depends on "directional
considerations" because of the nature of the Koranyi ball B(’, ); see [7]. For
this reason we refer to Hd as non-isotropic d-dimensional Hausdorff capacity.
To verify Ahem’s conjecture we need the following "Frostman theorem" for

Tnv.OREM 1. Let E be a compact subset of S. Then Ha(E) > 0 if and only if
E contains the support of a positive measure v :/: 0 satisfying condition (,).

Combining Theorem 1 with Corollary A gives the next fact.

COROLLARY 1. Let d n tip > 0, where 0 < p <_ 1 and fl > O. Suppose
E is a compact subset of S and E E(f) for f H(Bn). Then Hd(E) O.

Our second main result completes the characterization of the compact
exceptional sets for H(Bn).
THEOREM 2. Let d n tip > 0, where 0 < p < 1 and fl > 0, and sup-

pose E is a compact subset of S for which Hd(E) O. Then there exists a

function f H(Bn) such that E E(f).

It follows that the compact subsets of S which arise as exceptional sets for
(B") functions are precisely the ones whose non-isotropic d-dimensional
usdorff capacity is 0.
Our proof of Theorem 1 requires some machinery and ideas which also

allow a proof of strong type capacitary results for holomorphic Sobolev
functions analogous to real variable results found in [1] and [2]. These are
pursued after the proof of Theorem 1 and stated as Theorem 3.

In the sequel we adopt the following conventions and terminology. The
letter o will denote surface area on the sphere, while the letter C will stand for
various absolute constants whose values differ in each occurrence while
remaining independent of stated variables.

Finally, the symbol -" is used to indicate that two quantifies are "compara-
ble". That is, A -" B if and only if there is a positive constant C such that
C-XA < B < CA.

Proof of Theorem 1. We will need the following notation. If ’, r/ S, let
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Then d is a metric on S; see [7]. Let

Q(’, 6) (/ S and d(/, ’) < 6}.

Then Q(’, ) B(’, 2) and if 0 _</$ _< 2

o(Q(, 8)) "- 62n;

for this last fact we again refer to [7]. For 0 < m < n and K
___
S compact, it

follows that

Hm(K) inf(Em" K OQ(k, k))"
k

Motivated by Frostman’s proof of Theorem 1 for the case n 1 and by the
generalizations of his proof to , n > 1, one would like to find successive
"dyadic decompositions" of the sphere into disjoint unions of sets that are
essentially Koranyi balls of radius 2 -k, k 1, 2, It seems, however, that
the non-isotropic nature of the metric d on S for n > 1 makes the situation
intrinsically more complicated than the situation in . Larman, [6], has given
a, somewhat complicated, decomposition of a finite dimensional compact
metric space into a "sequence of nets" which has the usual properties of the
familiar dyadic decomposition of . We prefer, however, to proceed in a
sightly different way, which will have the advantage of being simpler and
keeping the paper self contained.
The first step in the proof requires the construction of a "lattice" contained

in S. Let .o be an arbitrary point in S. Set L0 (’). Clearly, S Q(.0, 3).
A standard argument proves the following lemma.

LEMMA 1. There exist subsets L1, L2,... of S satisfying the following
properties:

(1.1) Lo

_
L

___
L2 -..;

(1.2) IlLk {’k}sm21 is a listing of the distinct elements of Lk then
(i) d(’k, ’tk) > 1/2k if s 4: t,
(ii) (3mk lodPk 3/2k) S.lkg,s

With (Lk }-o constructed as in Lemma 1, define a relationship between
elements of L and L_ by saying that .k < .tk- if is the smallest index
such that

2k-1
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Fix a positive integer N. For 1, 2,..., N 1 say that

(1) < ’t-t

if there exists a sequence of "inequalities"

(2) : < LN-1 < LN-2 < < LtN_s(,-1)< :-,.
Notice that for a given ’ LN there is a unique :--1 . LN_t such that (1)
holds.

Next, for ff-t LN_I where 1, 2, 3,..., N, set

S:’l= (: . LN and tN < sN-l).

It is possible that Sf"= 0. Now let S’ (’ }, for s 1, 2,..., ms. Then
we have the following lemma.

LEMMA2. Let O < l, j < N. Then:
(2.1) S:" f S:’1-" , if s q t.

m_tS:,(2.2) O= =Lv.
(2.3) If s:’l ("l S:’j :# andj < 1, then S:’j asN’I.
(2.4) SN’

_
Q(-t, 6/2N-t).

Proof. We only discuss (2.3) and (2.4).
For (2.3), if N Ns S;’ 3 St’ J, then so < -J and ’,o < , and there-

fore we have nequalitles"

which shows that each ’? in Sf’ j is also in S’ I.
N-IFor (2.4), if ’t < ’, then by (2) and the triangle inequality,

N-2 [/-N-(I-1) N-l)d(N sN l) <. d(?, ’sN1-1) + d(sN1-1, s ) + +d,S,_ s
3 3 3

< + +...+
2N-1 2N-2 2N-t
6

2N-l

as claimed.
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LEMMA 3. Let 0 < < N- 1 and suppose sUo -t LN_r Then there exists
an absolute constant No, independent of I or N such that if

,2N_l
4:

then the cardinality of G is less than No.

Proof
collection

By Lemma 2, if ’-tG then N-t n-t Thed(’s ’o ) < 10/2v-t

’4 2v-t

where ’-t G is therefore a pairwise disjoint collection of balls contained in
Q(’o-t,20/2v-t). Taking surface area measure o of the union gives the
inequality

k
4.2N-t

< C 2NSi

where k is the cardinality of G and C is an absolute constant. This gives the
result.

The proof of Lemma 3 actually yields the following corollary.

COROLLARY 2. Let S and

H -t: Q ,2__t Q ,2v-t =1=

Then the cardinality of H is less than N where N is an absolute constant
independent of , N, or 1.

We are now ready to construct the measure/ that Theorem I asserts exists.
Suppose that E __. S is compact and Hd(E) > 0. Let N be a fixed positive
integer. Set

Note that

u
sIe
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Let

where/l is point mass at ’. Define 1t so it satisfies

fitl ( asN’I )
 0(s7

1

otherwise.

2d

by, in the first case, redefining t0 on S’x by multiplying the restriction of/0
to S’1 by the appropriate number ,, 0 < 2 < 1. Define/x 2 in a similar way
so it satisfies

p,2(Sff,:z) 2N: if pa(Sff’) > 2v_:z

1( SsN’ 2) otherwise.

2d

Continue this process and construct
By virtue of Lemma 2, for each s Ie there is a largest number I such that
y Stn’t and

Call such a set S’t "maximal". Let the maximal sets be denoted by Sv’t,

1,..., k. By Lemma 2, these sets are pairwise disjoint. It is also true that

By Lemma 2, (2.4),

u

and therefore

24 )E c_C_ UQ. t, 2V-l,
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implying that

24 )2dHd(E) < i 2N-/’ (24)2dixv (S),

since the maximal sets are disjoint.
If we use Lemma 3 and its corollary and let " S, then

Q ’,2v_, q Q ’:",2v_, * 0

for at most N dements .-t in Lv_ t. For each such .-l, let C, be the set of
all S’ which intersect Q(.v-t, 3/2N-t). Each C, has at most NO elements, by
Lemma 3. It follows now that

,2v_
< Eixv(S,t)

1 )2d< NO 2N-I

Therefore

IXc(Q(,, 1 1 2d

for all ’ S, and 1 0,1,..., N.
We now have a sequence of measures { IX } satisfying the inequalities

(24)-2dHd(E) < IX(S) < 1.

We may find a weak convergent subsequence { IX N, } and a measure IX such
that

(3)
(4)

(24)-2dHd(E) < Ix(S) < 1,

Ix is supported on E,

for all " S and N 0,1, 2,
This completes the proof of Theorem 1.
We turn now to the question of strong type capacitary inequalities for

functions in H;(B). In the following discussion we will assume that 0 < p < 1
and d= n flp > O.
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Let f H(B"). In [3], Ahem obtains the estimate

(6) [MF(’)] v <
kl

for " S, where E, < CllRPfll and u is the characteristic function of a
ball Q(’, ,). For the purposes of this paper, however, it will be convenient to
realize that we may assume that 0 < u 1 is continuous and supported in a
ball Q(’k, ). If X is a subset of S, extend the function Ha to X by letting

H.(X) s pH,,(E)

where the supremum is taken over all compact sets E
___

X. We have the
following lemma.

LEMMA 4. Let K,, c_ K,,+ 1, m 1, 2,... be compact subsets of S. Then

H,, -"
m---1 m-- oo

Proof It is obvious that HaOJ, K") > lirnm_.oo Ha(K"). Now let K be
a compact subset of LI_I K,,. From the proof of Theorem 1 it follows that

n,,(K) -" sup ,(K)

where the supremum is taken over all measures # supported on K satisfying
condition (.) with C 1. Choose such a # so

Ha(K) <_ C#(K).
oo (K) lim,,_, g(gm). For eachSince # is a measure and K Ll"_t K" # oo

m, find a cover 0,. ( B(’/. /")) such that

Then

2-".

I,l,(K") E(B(/m, /m)) _< E(S/m) d

and therefore

l.t (K ) <_ lira Hd (Km )
m.- oo

which proves the lemma.
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For f Hff let J((MF) p) be the Choquet integral of (Mf) p,

J( (MF ) ) foHa { (MF) p >_ t) dr.

For e > 0,

and therefore

J((MF)) E fm+tHa((MF) > t) dt

_, fmn+leHd((MF) I >_ et} dt
m=O

J((MF)) _, eHa ((MF) > em }
m=O

<

To estimate J((MF)) it is therefore enough to estimate the sum

E ella ((MF) > em )

for small. Use Ahem’s inequality (6) to see that

(7)
M M

m----0 m---0 k

< C E ella EXkS;ZaUk >em
m---0 k=l

for an integer kM depending on M, where we have used Lemma 4 and the
continuity of each uk.
We need now to define approximating capacities Hff, N 1, 2, 3, Our

notation will refer back to the proof of Theorem 1. For a positive integer N
and s 1, 2,..., Mv let

The collection ( X(’)}dl is therefore pairwise disjoint and the union of all
such sets (for fixed N) is S. If 0 < 1 < N, an integer, and s 1, 2,..., mN_l,
let
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where the union is over all indices for which .vt S’ t. If E _c S define

nff(E) inf E 21N-I E UYN, I,s

It is easy to see that if E LI
_

Ek and Ek c_ Ek+ 1, then

for all j > 1, where is sufficiently large.
It is also immediate from the construction that if any two sets YN, t, (with

fixed N) intersect, then one is contained in the other. These last two properties
and R. Fefferman’s argument in [5] prove the following result.

LEMM 5. Let F and G be non-negative functions. Then

Jlv(F + G) < Jlv(F) + Jv(G)

where

forh>O.

S (h) ny(h >_ t} at

We now estimate J((MF)P). With M fixed as in (7), choose N2 so large
that for N > N2,

m=0 k--1

provided N is sufficiently large so 2 -v << k, k 1,..., kt. Since this holds
all M we have proved the following strong type capacitary inequality.



684 WILLIAM S. COHN

THEOREM 3. There is an absolute constant C such that

pJ((MF)’) < CllR#II,

for all functions f holomorphic on B".

The remainder of the paper concerns the proof of Theorem 2.
The proof of Theorem 2 requires some preliminary lemmas. The first two

follow from standard estimates of the type found in [7], Chapter 5.

LEMMA 6. Let rn > n and 0 < r < 1. Then for t large and r close to 1 there
is an absolute constant C such that with S,

(1-- r!m-n[1 (z-["rode(z) < ctn-m

where X { z S and l1 <z, ’)l > t(1 r)}.

LEMMA 7. Let , 1 e S and suppose B(, 6) N B(I, #) ep. Assume that
O < l r1< , O < l r2 < p and let z B(l,#/2). Then for and p
sufficiently small,

I1 <z, rx’>l-" I1 <r9_B, rx’>l -" I1 <, >1-
Let { B(i, 8i)} be a collection ofpairwise disjoint balls contained

where > 1,

and let

Then there is an absolute constant C C(m) such that if m > n then

E (1 ri)m-"(1 rj)
<__ Ct-m.

Proof By Lemma 6, with X { z e S and I1 <z, g>l > },

fx (1- ri) m

[’,.do(z) < C ’ll <z, ’,) 1 r
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Let By B(’,/y/2). Since the collection (By) is pairwise disjoint,

ri) m-"

.j-’. 1 :-5 ( i " d ( z ) < Ct

Lemma 7 now allows the estimate

o(s ) < ctn-m

and therefore

(1
<__ Ctn-m

j*i I1 <’y, i)l

Since 8j (1 r)t, the result follows.

LEMMA 9. Let = { B(i, i)} be a finite collection ofpairwise disjoint balls
in S. Then there exists a function F F(z, c, t) defined on Bn associated with rg
and the number with the property that, for t sufficiently large,

1

where

as in Lemma 8.

Proof. Reorder the sequence {} so 8x > 82 > ""- By Lernrna 8 it
follows that

(7) E (1 ._.)m~ < C(m)t-m
j>i I1 <i, j)l m

where 1 r y/t as in Lemma 8, and m > n. Define

g (z)
2m(1 rj) m

(1 <2,))
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and notice that

Let o 1 and define 2, 3,---, inductively by the rule

0 if

1 if

j<k

1

Let F(z) Z,%gj(z). Using (7) and the definition of tok, it follows that, for
k > 2, in the case where tk 0,

1 _C(m)t_,

and in the case where 60k 1,

1[F(rk)[ > 1 2 C(m)t-m"

For k 1 it is also true that

IF(rl)] > 1 C(rn)t-.
For a fixed m > n, we may choose sufficiently large and get the desired
function.

Notice also that with F constructed as above, there is the easy pointwise
estimate

(8) IF(z)l < E 2’(8J)’
for Izl < 1.

j (1- Izl)

In what follows, the letters rn and and the notation

refer back to Lemma 9.
Now suppose that the hypotheses of Theorem 2 hold, i.e., d n- tip,

0 < p < 1, fl > 0 and E is a compact subset of S for which Ha(E) 0. We
are ready to construct the function f H(B") whose existence proves
Theorem 2.
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We first claim that it is possible to find a sequence of finite open covers of
E, c#1, if2, if3,.--, and positive constants K, ml, m 2, m3,... satisfying the
following conditions:

N(9) ffj { B(’q, KSq}i= where ( B(.q, 8q)} is a pairwise disjoint
collection of balls in S.

(10) If Fs. is the function associated with the disjoint collection obtained
from cg as in Lemma 4, then

(12) 2

(1 IlJ) m a----1E (aj)"mj <
1 1
2 i 1,000

for 1 < < Nt, 1 < 1 < j- 1, where

(13) mj > mj_ -st- 1.

(14) m
i==1

< 2-J.

To prove the claim, first set m0 0. That K, 1 and m may be found is
dear from standard coveting arguments and the fact that Ha(E) 0.
Assume inductively that , ’2,..-, k-x and ml, rn 2,.--, rnk- have been

chosen. Choose mk so

(15) mk > mk_ q- 1

and -- >_ 8 m,llF+lloo
i<k

which is possible since each F H. Now use the hypothesis that Ha(E) 0
and the standard covering argument to obtain a finite cover of E by balls
(B(ik, K$ik)} where (B(ik, $ik)} is a pairwise disjoint collection and the 8ik
are so small that (11), (12), and (14) hold with k replacing j. By induction, the
claim is proved.
The desired function can now be constructed. Set

f(z) E mkFk(Z)
k-1
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where mk and Fk are as in (9)-(14). From the construction above and Lemma
9 as well as the pointwise estimate (8), it follows that

j>k

1
> m3k <m:llF.ll oo 1000

Y>k

>_ Cmk

Using this last inequality we show that M,f oo on E, provided a is
sufficiently large. Let " E. Fix k and find a ball B(ik, K8ik) in the cover of
E, ’k, which contains g’. Since

and 1 ik

it follows that

I1 (, k)[ 11 (, ,) + (, a,) (, k)[
-< I1 (, ,k) / Iik ikl

(1)_< K+ 7 8

and therefore

1(1 Il) > 1 11 (’,k)[,
t(K+ )

i.e., k D.(ff) for a sufficiently large independent of " or k. Thus

(M/)(’) >_ [f(k)[ >-- Cm

and Mf oo on E.
From the construction of f it is also apparent that f extends to be

continuous at every point " S \ E. Therefore E E(f).
Finally, we must show that Rf HV(Bn). Since

--mtOik2 (ik)f(z) Zmk., -.---
k (1 (z, ik))

where Wik 1 or 0, the fact that 0 < p _< 1 and the triangle inequality shows
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that

where

IIR#fll; < CY’.mE (ik)mPllRC( k)ll;
k

C(z, rt)
(1 (z, r))

for z B" and " S. By (14), it is therefore sufficient to obtain the estimate

fs(1 r)mV[RC( r’)[" do < C(1 r) "-v

for a constant C depending only on m, where 0 < r < 1 and " S. We will
consider only the case where 0 < fl < 1 since only simple modifications of our
argument are needed in general.

Let g(zl)= Z,n_la,z be holomorphic for z in the unit disk of the
complex plane. The classical ’fractional derivative’

(D#g)(z) E (n + 1)aanZ;, fl > 0
n-’O

has the well known representation

1 1[log -a
(Dg)(gl)= 1"(1-fl)fo ] (DT )( tz) dt

valid if 0 < fl < 1, which follows from the formulas

(17) (n + 1)a= r((1 #) log 7- dt

for n 0,1, 2, Fix z B" and let X B. If f is holomorphic B" with
homogeneous polynomial expansion f(z) Y’?-ofk(z), then

(Raf)(hz) E (1 + k)ahkfk(z )
k--O

1 1

r(1 #), fo log7 Df( tz, ) dr,

where D, is the classical derivative operator defined above and is applied to
the function (of X)f(tzh); here we have used formula (17) above. Letting 2 go
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to 1 yields an integral representation for (Raf)(z) analogous to the one for
(Dg)(zl) mentioned before. If we apply this representation to f(z) C(z, r)
we obtain the estimate

Since

IRaC(z; r)l-< cf0 log
1

I1 t(z, r’)l m+l

<C
I1 (z, d’)l =+a"

fs (1 r) m’

I1 (zll(m+fl)p do(z) < C{1 r}
(1 r) mp+Bp-n

if (m + fl)p > n, we have the desired inequality.

REFERENCES

1. D. ADAMS, The classification problem for the capacities associated with the Besov and Triebel-
Lizorkin spaces, preprint.

2. ,4 note on the Choquet integrals with respect to Hausdorff capacity, preprint.
3. P. AHERN, Exceptional sets for holomorphic Sobolev functions, Michigan Math. J., vol. 35 (1988),

pp. 29-41.
4. F. BEATROUS and J. BURBEA, Soboleo spaces of holomorphic functions in the ball, preprint.
5. g. FEFFERMAN, ,4 theory of entropy in Fourier analysis, Adv. in Math., vol. 30 (1978), pp.

171-201.
6. D.G. LARMEN, On Hausdorff measure in finite-dimensional compact metric spaces, Proc. London

Math. Soc. (3), vol. 17 (1967), pp. 193-206.
7. W. RUDIN, Function theory in the unit ball of cn, Springer-Veflag, New York, 1980.

WAYNE STATE UNIVERSITY
DETROIT, 1V[ICmGAN


