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NON-ISOTROPIC HAUSDORFF MEASURE AND
EXCEPTIONAL SETS FOR HOLOMORPHIC
SOBOLEV FUNCTIONS

BY
WILLIAM S. COHN

Let B" denote the unit ball in C” with boundary S, the unit sphere. If f is
holomorphic in B”" with homogeneous polynomial expansion

f(2) = T fulz)

k=0
then f has radial derivative
n af oo
Rf(z) = ¥ 2,35 (2) = T kful(z)
j=1 J k=0

as defined in [7]. For B > 0 one is therefore led to the definition

REf(z) = ¥ (1+K)Pfi(2)

k=0

of the so called “fractional derivatives” of f; see [4]. As in [4], for B, p > 0,
define the “holomorphic Sobolev spaces”

HE(B") = {f: Rffe H?(B")}

where H?(B") is the usual Hardy space [7].
For{ € S and § > 0 let

B({,8) = {ne Sand|1-(n,{)| <8}

be the Koranyi ball and

D,(§) = {z € B and |1 - (2,0 < 5(1 - Iz1%)}
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674 WILLIAM S. COHN

be the admissible approach regions for { € § and « > 1. For a complex
valued function f defined on B” we have the maximal functions

M f(§) = sup |f(z)

zeD,(8)

where { € S. If f: B" » C,{ € S and

lim  f(z)

z=§,ze€D,($)

exists for all @ > 1, then we say that f has an admissable limit at {. Let E(f)
denote the exceptional set

E(f) = {¢ € S and f does not have an admissable limit at { }.
In [3], Ahern proves the following result and its corollary; see also [1].

THEOREM A. Let 0 <p <1 and d=n— Bp > 0. Suppose f € H;(B")
and v is a positive measure on S satisfying

(*) »(B(¢,8)) < C8¢ fort € Sand b >0,

for an absolute constant C. Then for each a > 1 there is a constant C = C(a)
such that

f(Maf(K))”dV(f) < C|IR*f||2.

(Here, ||gl|, denotes the H?(B") norm of g).

COROLLARY A. If v satisfies condition (*) of Theorem A and f € H;(B”)
then

v(E(f)) = 0.

On the basis of Corollary A, Ahern suggests in [3] that the exceptional sets
for functions in H?(B") are those of “non-isotropic” d-dimensional Haus-
dorff capacity 0. In this note, we verify his conjecture for the case of compact
subsets of S.

For d > 0 and E C S compact, let H, be the capacity on S defined by

H,(E) = int{ T 87,

A€0
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where the infimum is taken over all countable covers @ of E by balls

If n>1 notice that the H, capacity of a set depends on “directional
considerations” because of the nature of the Koranyi ball B({, 8); see [7]. For
this reason we refer to H, as non-isotropic d-dimensional Hausdorff capacity.

To verify Ahern’s conjecture we need the following “Frostman theorem” for
H,.

THEOREM 1. Let E be a compact subset of S. Then H,(E) > 0 if and only if
E contains the support of a positive measure v # O satisfying condition (*).

Combining Theorem 1 with Corollary A gives the next fact.

COROLLARY 1. Letd=n— Bp > 0, where 0 <p <1 and B > 0. Suppose
E is a compact subset of S and E = E(f) for f € H;(B"). Then Hy(E) = 0.

Our second main result completes the characterization of the compact
exceptional sets for H ;(B").

THEOREM 2. Letd=n— Bp > 0, where 0 <p <1 and B > 0, and sup-
pose E is a compact subset of S for which Hy(E) = 0. Then there exists a
function f € H;(B”) such that E = E(f).

It follows that the compact subsets of S which arise as exceptional sets for
H?(B") functions are precisely the ones whose non-isotropic d-dimensional
Hglusdorﬁ‘ capacity is 0.

Our proof of Theorem 1 requires some machinery and ideas which also
allow a proof of strong type capacitary results for holomorphic Sobolev
functions analogous to real variable results found in [1] and [2]. These are
pursued after the proof of Theorem 1 and stated as Theorem 3.

In the sequel we adopt the following conventions and terminology. The
letter ¢ will denote surface area on the sphere, while the letter C will stand for
various absolute constants whose values differ in each occurrence while
remaining independent of stated variables.

Finally, the symbol = is used to indicate that two quantities are “compara-
ble”. That is, A = B if and only if there is a positive constant C such that
C4<B<cCA

Proof of Theorem 1. We will need the following notation. If {,n € §, let

dg,m) = |1 = (&, n)|V2
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Then d is a metric on S; see [7]. Let

0(¢,8) = {n  Sand d(n,¢) <8}.

Then Q(¢, 8) = B(¢,8%) and if 0 < & < 2

s(Q(8,8)) = 8%

for this last fact we again refer to [7]. For 0 < m < n and K C S compact, it
follows that

H,(K) = inf{za,f"': Kc LkJQ(gk, 8k)}.

Motivated by Frostman’s proof of Theorem 1 for the case n = 1 and by the
generalizations of his proof to 2", n > 1, one would like to find successive
“dyadic decompositions” of the sphere into disjoint unions of sets that are
essentially Koranyi balls of radius 27%, k = 1,2,... . It seems, however, that
the non-isotropic nature of the metric d on S for n > 1 makes the situation
intrinsically more complicated than the situation in %£”. Larman, [6], has given
a, somewhat complicated, decomposition of a finite dimensional compact
metric space into a “sequence of nets” which has the usual properties of the
familiar dyadic decomposition of %#”". We prefer, however, to proceed in a
sightly different way, which will have the advantage of being simpler and
keeping the paper self contained.

The first step in the proof requires the construction of a “lattice” contained
in S. Let {° be an arbitrary point in S. Set L, = {{°}. Clearly, S = Q({9 3).
A standard argument proves the following lemma.

LEMMA 1. There exist subsets L, L,,... of S satisfying the following
properties:

11 LycL,cL,c ---;

(1.2) If L, = {¢ky™, is a listing of the distinct elements of L, then

@ dk 8o > 1/2%ifs#1,

@) Um,0(8%3/2%) = S.

With {L,}%., constructed as in Lemma 1, define a relationship between
elements of L, and L,_; by saying that {¥ < {¥~! if ¢ is the smallest index
such that

(ke Q( A 2k3—1)'
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Fix a positive integer N. For / = 1,2,..., N — 1 say that
(1) §N < N !
if there exists a sequence of “inequalities”

(2) {slv<§£l——l<§sl;l—2< {N (O 1)<§N l

Si-1

Notice that for a given {¥ € L, there is a unique {¥~/ € L,,_, such that (1)
holds.
Next, for {N~'e L,,_,, where I =1,2,3,..., N, set

Nl {¢NeLyand ¢V < gVl

It is possible that S/ = @. Now let SN0 = (¢}, for s = 1,2,..., my. Then
we have the followmg lemma.

LemMMmA 2. Let 0 <, j < N. Then:

Q1) SMINSMI=0, ifs+t.

22) U;"_N1 'SN’ Ly.

(2.3) IfsN’n sN/ # 0 andj <1, then SN/ c SN,
4 SM'c Q({N L6/2871).

Proof. We only discuss (2.3) and (2.4).

For (2.3), if §N € SN N SN, then ¢ < ¥/ and ¢V < (¥ and there-
fore we have * mequalmcs

&"N—j < g"IlV'(I'*l) < e < g‘sN_I’

which shows that each {¥ in S/ is also in S".
For (2.4), if {¥ < ¢{V~, then by (2) and the triangle inequality,

8. = (5510 + (530, 510) e (s 5)
3 3 3
< F + W + -0 4+ ?ﬁ_—_l
6
< -2—1;,_—,,

as claimed.
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LemMMA 3. Let 0 <1 < N — 1 and suppose {s’g" € Ly_,. Then there exists
an absolute constant N, independent of | or N such that if

6= {artsrn o8 gam) + 9).

then the cardinality of G is less than N,.

Proof. By Lemma 2, if (V'€ G then d({V/, §s':") < 10/27~!. The

collection
Cl )

where (V! € G is therefore a pairwise disjoint collection of balls contained in
Q(¢N~!,20/2V~"). Taking surface area measure o of the union gives the

inequality
1 2n 20 2n
k[4 : 2N-’] = C[zN—']

where k is the cardinality of G and C is an absolute constant. This gives the
result.

The proof of Lemma 3 actually yields the following corollary.

COROLLARY 2. Let¢ € S and

{KN " Q( g ’)nQ(g’zN ’)*¢}

Then the cardinality of H is less than N; where N, is an absolute constant
independent of ¢, N, or .

We are now ready to construct the measure p that Theorem 1 asserts exists.

Suppose that E C S is compact and H,(E) > 0. Let N be a fixed positive
integer. Set

IE={s: Q( 3,23N)r\E4=¢}

Note that

Ec U o(thy):

s€lg
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Let

where §; is point mass at {. Define p, so it satisfies

1 \¥ 1 \¥
: N,1
(s - | (7] () > (7]
po(SM1)  otherwise.
by, in the first case, redefining p, on SM! by multiplying the restriction of p,

to SM'! by the appropriate number A, 0 < A < 1. Define p, in a similar way
so it satisfies

1 2d ) N2 1 2d
() - {(77) () > (5]

p:(SM?)  otherwise.

Continue this process and construct p .
By virtue of Lemma 2, for each s € I; there is a largest number / such that
¢N¥ e S¥! and

1 2d
pn(SM) = (W) -

Call such a set S/ “maximal”. Let the maximal sets be denoted by S,
i=1,..., k. By Lemma 2, these sets are pairwise disjoint. It is also true that

k
U S,ﬁv”f 2 {{sN: s E IE}.

i=1

By Lemma 2, (2.4),

U o) < ot tgr)

N oM.
g-‘ es’l '

and therefore

o, 24
Ec UQ( ~ ",2N_,,),
i
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implying that

1/(E) < £ ) - @9a(s),

since the maximal sets are disjoint.
If we use Lemma 3 and its corollary and let { € S, then

o(¢.5577) ne[srizem) # 0

for at most N, elements {¥~/in L, _,. For each such {¥~/, let C, be the set of
all S/ which intersect Q(¢(¥~/,3/27"). Each C, has at most N, elements, by
Lemma 3. It follows now that

MN(Q(Q”",%)) < %P‘N(StN’l)

1\
<No(21v 1) :

el <

forall{ € S,and /=0,1,..., N.
We now have a sequence of measures { i, } satisfying the inequalities

Therefore

(24) 7 H,(E) < py(S) < 1.

We may find a weak * convergent subsequence {py } and a measure p such
that

(3) (24)*'H,(E) < u(S) <1,
(4) p is supported on E,
5) w(o(tar)) = Mol )

forall{ e Sand N=0,1,2,....

This completes the proof of Theorem 1.

We turn now to the question of strong type capacitary inequalities for
functions in H ;(B”). In the following discussion we will assume that0 < p <1
andd=n-— Bp > 0.
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Let fe H;(B”). In [3], Ahern obtains the estimate
(6) [MF($)]” < kzlkk(ﬁk)“z"uk(f)

for { € S, where LA, < C||R3f||},’ and u, is the characteristic function of a
ball Q(§,, 8,). For the purposes of this paper, however, it will be convenient to
realize that we may assume that 0 < u, < 1 is continuous and supported in a
ball Q($,, 8,). If X is a subset of S, extend the function H, to X by letting

H,(X) = sup H,(E)

where the supremum is taken over all compact sets E C X. We have the
following lemma.

LemMAa 4. Let K, C K, .1,m=1,2,... be compact subsets of S. Then

Hd( U K,,,) = lim Hy(K,).

m=1

Proof. 1t is obvious that H,(UY_, K,,) = lim,, _, . H,(K,,). Now let K be

n=1

a compact subset of U2_, K,,. From the proof of Theorem 1 it follows that
H,(K) = supp(K)

where the supremum is taken over all measures p supported on K satisfying
condition (*) with C = 1. Choose such a p so

H,(K) < Cp(K).

Since p is a measure and K c U%_, K,,, p(K) = lim,,, _, , p(K,,). For each

m=1

m, find a cover O,, = { B({[", 8]")} such that
L) < Hy(K,) +27"
Then

p(K,) < Lp(BGm, 8m) < T(8)°

and therefore

W(K) < lim H(K,),

which proves the lemma.
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For f € HY let J((MF)?) be the Choquet integral of (Mf)?,
J((MF)?) = med{(MF)p >t} dr.
0

For ¢ > 0,

J((MF)?) = i /m+1’Hd{(MF)p2t}dt

m=0"m

]

3 j'”“eHd{(MF)” >et) dt

m=0

and therefore

J((MF)*?) - f eH,{(MF)” > em}

m=0

< eH,(S).

To estimate J((MF)?) it is therefore enough to estimate the sum

i eH,{(MF)" > em)

m=0
for ¢ small. Use Ahern’s inequality (6) to see that

7 f eH,{(MF)" > em} < f eHd{zk‘,Aka,;“uk > em}

m=0 m=0

M ka
<CY eHd{ Y )\,ﬁ,:“ukz:zm}

m=0 k=1

for an integer k,, depending on M, where we have used Lemma 4 and the
continuity of each u,.

We need now to define approximating capacities HY, N =1,2,3,... . Our
notation will refer back to the proof of Theorem 1. For a positive integer N
and s =1,2,..., My let

x(5) = s 5%\ U e[t x)

The collection { X($¥)}™», is therefore pairwise disjoint and the union of all
such sets (for fixed N)is S.If0 </ < N, l aninteger,and s = 1,2,..., my_,,
let

YML3==LJX(QN)
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where the union is over all indices for which { € S¥-'. If E C S define

. 1\
HY(E) = mf{z(—z-m) tEcC UYN’,’S}.
It is easy to see that if E = UY_, E, and E, C E, ,,, then
H)(E) = H)(E))
for all j > I, where [ is sufficiently large.

It is also immediate from the construction that if any two sets Yy , ; (with
fixed N) intersect, then one is contained in the other. These last two properties
and R. Fefferman’s argument in [5] prove the following result.

LEMMA 5. Let F and G be non-negative functions. Then

Jy(F+ G) < Jy(F) + Jy(G)

where
00
Ty (h) .—.f HY{(h >t} dt
0

for h > 0.

We now estimate J((MF)?). With M fixed as in (7), choose N, so large
that for N > N,,

M Ky, M kg
Y eHd{ Y NS Mu > em} <CY sHj’{ Y A u, > em}
m=0 k=1 m=0 k=1

ky
< CJN( )y }‘ksk_2duk)
k=1

»
<CY >‘k")\l(ﬁl:zd“k)
k=1

L2%

<CY A,
k=1

provided N is sufficiently large so 27~ <« §,, k = 1,..., k,,. Since this holds
all M we have proved the following strong type capacitary inequality.
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THEOREM 3. There is an absolute constant C such that
J((MF)”) < C||RP|Z,
for all functions f holomorphic on B".
The remainder of the paper concerns the proof of Theorem 2.
The proof of Theorem 2 requires some preliminary lemmas. The first two

follow from standard estimates of the type found in [7], Chapter 5.

LEMMA 6. Let m > nand 0 < r < 1. Then for t large and r close to 1 there
is an absolute constant C such that with { € S,

a-n"" nem
fx|1 — <:’§>Imdo(z) < Cthm

where X = {z € Sand |1 — (z,{)| > t(1 — r)}.
LeMMA 7. Let {,n € S and suppose B(§,8) N B(n, p) = ¢. Assume that

0<1—-7r<98,0<1—r,<p and let z € B(n,p/2). Then for & and p
sufficiently small,

1= (2, = 11 =, i) = 1= (m, 8.

LeMMA 8. Let { B({;, 8,)} be a collection of pairwise disjoint balls contained
in 8. Set

{= (1 - %)g,. wheret > 1,

and let

Then there is an absolute constant C = C(m) such that if m > n then

1-r)""1-r)"
L gor S

ct™m.

Proof. By Lemma 6, with X = {z € S and |1 — (z,{;)| > §,},

(1 - ri)’”"” 81' o n—m
fii = gypde(@) < C( T- ) T
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Let B, = B({;, 8;/2). Since the collection { B;} is pairwise disjoint,

a-n"" .
Jgi‘[l’ﬂ—lwd“(z) <Ctm .

Lemma 7 now allows the estimate

(1 — ’i)m_n n—m
Li—qg.oreB=c

and therefore

1-r)" "27"8"
X Q=) L < crm
J#i 11— <§j’§i>|

Since §; = (1 — r;)¢, the result follows.

LEMMA 9. Let €= {B(;,0,)} be a finite collection of pairwise disjoint balls
in S. Then there exists a function F = F(z, %, t) defined on B" associated with €
and the number t with the property that, for t sufficiently large,

& 1
IF(E) = 3
where
- S,
&= (1- 3
as in Lemma 8.
Proof. Reorder the sequence {§;} so 8, >8,> ---. By Lemma 8 it

follows that

@ > (1-r)

L= by = Cme

where 1 — rp = 8j/t as in Lemma 8, and m > n. Define

B 2'”(1—)'].)'”
gj( ) (l_<z,{:j>)m
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and notice that
lg,(§) = 1.
Let w; = 1 and define w,, w,,..., inductively by the rule

0 if

E wjgj(fk) =

j<k

> wjgj(fk)

<k

1
2
wk=
1 if <%.

Let F(z) = Lw;g;(z). Using (7) and the definition of w,, it follows that, for
k = 2, in the case where w, = 0,

F(E) = 5 - C(m)e~

and in the case where w, = 1,

~ 1 B
[F(E) >1- 5 = C(m)t=".
For k =1 it is also true that
|F(§) > 1= Cc(m)t=.

For a fixed m > n, we may choose ¢ sufficiently large and get the desired
function.

Notice also that with F constructed as above, there is the easy pointwise
estimate

27(8,)"
(8) |F(2)| < Z——(—’LW for |z| < 1.
j 1 -z
In what follows, the letters m and ¢ and the notation
= 8
£=(1-3)¢

refer back to Lemma 9.

Now suppose that the hypotheses of Theorem 2 hold, ie., d =n — Bp,
0<p<1, B>0and E is a compact subset of S for which H,(E) = 0. We
are ready to construct the function fe€ H;(B") whose existence proves
Theorem 2.
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We first claim that it is possible to find a sequence of finite open covers of
E,%,,%,,%,,..., and positive constants K, m,, m,, m,,..., satisfying the
following conditions: ‘

9 % ={B({ ., K§; M. where {B(:) 8,.1.)}f’f=‘1 is a pairwise disjoint
collection of balls in S.

(10) If F, is the function associated with the disjoint collection obtained
from % as in Lemma 4, then

m.
(1) =8 Tminn.)
i<j
N,
m ’ m 1 1

12 — =Y (8,)"'m, < —
(12) (1 _ |§il|) agl( J) J = 941,000
forl <i<N,1<1<j—1, where

~ 3,

$u= (1 - '}l)fu-
(13) m;>m;_;+1.

IVj
(14) m? Y (8,)" " <27,

i=1

To prove the claim, first set m, = 0. That K, ¥, and m; may be found is
clear from standard covering arguments and the fact that H,(E) = 0.

Assume inductively that €, %,,..., %,_, and m;, m,,..., m;_, have been
chosen. Choose m;. so

(15) m,>m,_;+1
and
m
(16) T > 8 T miElL),
i<k

which is possible since each F; € H*. Now use the hypothesis that H,(E) = 0
and the standard covering argument to obtain a finite cover of E by balls
{ B($ix, K8;,)} where { B({;;, ;.)} is a pairwise disjoint collection and the §,,
are so small that (11), (12), and (14) hold with k replacing j. By induction, the
claim is proved.

The desired function can now be constructed. Set

f(z) = :Zj:lmka(Z)
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where m, and F, are as in (9)—(14). From the construction above and Lemma
9 as well as the pointwise estimate (8), it follows that

|f(§;'k)| 2 mk|Fk(fik)| -1 X ij}(fik) -1 X mjf}(fik)
Jj<k j>k
my 1 1
2 5k — NEllw — oo ¥ =
3 Jgkm,“ j"oc 1000 jgk 2/
> Cm,,.

Using this last inequality we show that M, f= oo on E, provided a is
sufficiently large. Let { € E. Fix k and find a ball B(,,, K§,,) in the cover of
E, €,, which contains {. Since
b
1= (8§l < K8y and 1— |{,| = e

it follows that

1 - <§,fik>| =1 = (&8> + & 8w — (6, fik>|
S =8 Sl + 18— fikl
< (K+ )
and therefore

K+7

(1= 1§1) > ———511 - & &1,
K+ 1)

e., £, € D,(?) for a sufficiently large independent of ¢ or k. Thus

(M)(@) 2 If(§4)l = Cm,

and M,f= oo on E.

From the construction of f it is also apparent that f extends to be
continuous at every point { € S \ E. Therefore E = E(f).

Finally, we must show that R?f € HP(B™). Since

T G
1= Tl (1- ¢z E)"

where w,;, = 1 or 0, the fact that 0 < p < 1 and the triangle inequality shows
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that
IRFfIZ < CEmEL (3)™IRAC(:, iy
where
C(z r{) = ;
’ (1 =<z, 78))"

for z € B” and { € S. By (14), it is therefore sufficient to obtain the estimate
/ (1 - r)™REC(-, r})P do < C(1 — r)" PP
s

for a constant C depending only on m, where 0 <r <1 and { € S. We will
consider only the case where 0 < 8 < 1 since only simple modifications of our
argument are needed in general.

Let g(z;) = X¥.,a,z{ be holomorphic for z; in the unit disk of the
complex plane. The classical ‘fractional derivative’

o0

(DPg)(z) = ¥ (n+1)a,zr, B>0

n=0

has the well known representation

(0%)(z0) = g5 [ [loe 3] ()1 a

valid if 0 < B8 < 1, which follows from the formulas

a7) (n+1)*"= I,L(”l-i_% fo 1[1og%]_ﬂtndt

for n =0,1,2,.... Fix z € B" and let A € B'. If f is holomorphic B” with
homogeneous polynomial expansion f(z) = £¥.,f(z), then

(RFf)(A2)

Il

T (@ + 0P (:)

= fﬁ’/:[log%—]_ﬁD}\f(tz}\) dt,

where Dj is the classical derivative operator defined above and is applied to
the function (of A)f(#zA); here we have used formula (17) above. Letting A go
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to 1 yields an integral representation for (R?f)(z) analogous to the one for
(D*g)(z,) mentioned before. If we apply this representation to f(z) = C(z, r)
we obtain the estimate

1
|1 = t(z, rg)|m+t

IREC(z; r¢)| < cfol[log%]_ dt

1
<C .
|1 - <Z’r§>|m+p

Since

a-r" c-r)""
f|1 - de(z) <

(z, r§>|(m+ﬂ)p z) = (1 _ ,.)mp+ﬂp*n

if (m + B)p > n, we have the desired inequality.
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