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COMPACT HANKEL OPERATORS ON THE
BERGMAN SPACE

BY

KAREL STROETHOFF

1. Introduction

Let D { z C" zl < 1} denote the open unit disk in the complex plane
C, and let A denote the usual Lebesgue area measure on C. For 1 < p < oo
and f: D --, C Lebesgue measurable let Ilfllp (/Dill Dr)X/P. The
Bergman space L[(D) is the Banach space of analytic functions f: D --, C
such that [Ifl[, < oo. The Bergman space L2(D) is a Hilbert space; it is a
dosed subspace of the Hilbert space L2(D, dA/r) with inner product given by

g> f (z)g(z)
for f, g L2(D, dA/r). Let P denote the orthogonal projection of
L2(D, dA/r) onto L2a(D). The map I- P is the orthogonal projection of
L2(D, dA/r) onto L2a(D) "L (the orthogonal complement of L2a(D)
in L2(D, dA/r)). For a function f L(D, dA/r), the Hankel operator HI:
L2a(D) __, L2a(D)l is defined by

H/g (I- P)(fg), g - L2a(D).

It is dear that H/is a bounded operator for every function f L(D, dA/rr).
In [2], Sheldon Axler raised the question of finding necessary and sufficient
conditions on the function f L*(D, dA/cr) for the Hankel operator HI to
be compact. Sheldon Axler answered a special case of this problem in [3]
where he considered conjugate analytic symbols. The "little Bloch" space o
is the set of all analytic functions f on D for which

(1 Izl2)f’(z) ---, 0 as Izl --" 1-.

Axler proved that for a function f in L2a(D) (perhaps unbounded) the (densely
defined) Hankel operator H! is compact if and only if f o. In [8], Kehe
Zhu characterized the functions f L(D, dA/rr) such that both Hankel
operators HI and H! are compact. In this paper we will characterize the
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160 KAREL STROETHOFF

functions f L(D, dA/cr) for which the Hankel operator HI is compact,
thus obtaining a complete answer to Sheldon Axler’s problem raised in [2].

In our characterization of the compact Hankel operators on the Bergman
space the M/Sbius functions on the disk play a crucial role. For , D let the
M/Sbius function q0x: D D be defined by

qx(z)= 1-z’ zD.

The main result of this paper is Theorem 6, which gives several necessary and
sufficient conditions on a function f L(D, dA/rr) for the Hankel operator

Hf to be compact; one of these conditions states that the Hankel operator Hf
is compact if and only if

Ill o q0x P(f o q0x)ll= 0 as Ihl 1-.

In Section 2 we will give the preliminaries needed for the rest of this paper. In
Section 3 we will discuss how the Hankel operators behave when their symbols
are composed with M/Sbius functions. We will obtain an explicit formula for
the image of the reproducing kernels under Hankel operators. This formula
will be used in Section 4, where we prove the main result. We end with a
discussion of some open problems in Section 5.

I am grateful to Sheldon Axler for many helpful conversations. The basis for
the work in this paper (Section 3) was part of my Ph.D. dissertation that I
wrote at Michigan State University under his excellent guidance.
Dechao Zheng has informed me that he has also solved Axler’s problem and

independently obtained results similar to the ones in this paper.

2. Preliminaries

Point evaluation is a bounded linear functional on the Hilbert space L2(D),
thus for every 2 D there exi’sts a unique function kx L2a(D) such that

f(h) (f, kx) for all f la2(D).

These functions kx(, D) are called the reproducing kernels for L2a(D). It is
easy to verify that for every 2 D the reproducing kernel kx is given by the
formula

1kx(z)=
(1-,z)2 forzD.

Because of the reproducing property of kx we have kx, kx) kx(h ). Using
the above formula for kx it follows at once that Ilkxll2--- 1/(1 IXI2). For
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g L2(D, dA/,r) and z D we have (Pg)(z) (Pg, k) (g, k), so we
get the following formula for the projection Pg:

g(w)
):

for z D. (1)

For f L(D, dA/r) and g L2a(D), using (1) for the product fg and for
g Pg we get the following formula for the Hankel operator HI"

g(w) dA(w)/,r for z D. (2)

For a function f L(D, dA/rr), and a point k D we will call f o tpx f(A)
a MSbius transform of f. In the next section we will see how a Hankel
operator transforms if its symbol is replaced by one of its MSbius transforms.
First we will need some properties of the Mbbius functions tpx. The function
tpx is easily seen to be its own inverse under composition: (tpx o x)(z) z for
all z D. The following identity can be obtained by straightforward compu-
tation:

(u, X, z D). (3)1 A 1 Xz

The special case that u , yields

(1 ,K(z))(1 ,z) 1 IXl (,, z D). (4)

If we substitute u Px(z) in (3) and make use (4) we obtain the well-known
identity:

I-[qx(z)[2= (I-[X[2)(l-[z] 2) (X zD) (5)
l1 -7,zl 2

For a point k D and 0 < r < 1 the pseudo-hyperbolic disk D(,, r) with
pseudo-hyperbolic center and pseudo-hyperbolic radius r is defined by
D(,,r) tpx(rD). The pseudo-hyperbolic disk D(h, r) is also a euclidean
disk: its euclidean center and euclidean radius are

(1 r-)h/(1 r21,l 2) and (1 Ihl2)r/(1 r2lXl2),

respectively (see, for example, page 4 in [6]).
For a Lebesgue measurable set K c D, let [.K[ denote the measure of K

with respect to the normalized Lebesgue measure A/rr. It follows immediately
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that:

{./)(X, r){
(1 r2{X{)rm" (6)

For D, the substitution z (w) results in the Jaobian change in
measure given by

For a Lebesgue integrable or a non-negative Lebesgue measurable function h
on D we have the following change-of-variable formula:

fo(h,r)
(0,,) i1 ,wl , dA(w)/r. (7)

3. M6bius-transformations of the symbol

In this section we will prove that a Hankel operator transforms in a
unitarily equivalent way if its symbol is replaced by one of its Mbbius
transforms. As a corollary of the proof we obtain an explicit formula for the
image of the reproducing kernels under a Hankel operator. This formula will
play a crucial role in the proof of our characterization of the compact Hankel
operators.

TrmORM 1. Let f L(D, dA/r). For each h D the Hankel operators

Hf and Hf. are unitarily equivalent.
More precisely, there exist unitary operators

U:" La2 (D) --* La2 (D) and U2" L2a (D) " --* L2a (D) +/-

such that

Proof. Take g L2(D) and let D. By (2) we have, for z D,

(1 z)2 g(w) dA(w)/r. (8)
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In (8) make the substitution u ,px(w). Making use of identity (3) we have

1 1

(1 x(u’)z)2 I1

(1 h) 1

(1 ,z)2(1 x(z))2 l1 ,u[ 4

1 1

(1 ,z)2 (1 ,px(z))2(1 Xu)2’

so that change-of-variable formula (7) transforms (8) into

(1- Ihl2)2 u

(1-,z)2 fnf(’Px(z))-f()z)(1x(z)
1

(1 ,u)z g(px( u)) dA ( u )/ct

---(I- lhl’)kx(z)ff(x(z))-(l:(z)f()u)(I-
(1- IX[2)kx(z)Hl((l- lhl2)kx(gox))(x(z)).

Thus we have

H/.xg (1 Ihl2)kxH((1 I},12)kx(g. qx)) * q0x. (9)

Define the operator U: L2(D, dA/rr) -o L2(D, dA/rr) by

Ug (1 Ihl2)kx(go,px) for g L2(D, dA/r).

Since (1 I},12)kx -q, we have for g L2(D, dA/rr),

fn . 2II UgllZ2 (g qx)(z)121p,(z)l 2 dA(z)/rr Ilgl12,

so that U is well-defined. For g, h L2(D, dA/r) we have

<Ug, h)--fi(1- IhlZ)kx(z)g(,px(z))h(z) dA(z)/’.
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In the above integral make the substitution u q0x(z ). We get

(Ug, h) fI(1 Ihl2)kx(px(u))g(u)h(qx(u))Iq,(u)l 2 dA(u)/’.

Now using identity (4) it is easy to verify that kx(,px(u))lP’x(u)l 2 kx(u), so
that

(Ug, h) fog(u)(1 l,12)kx(u)h(px(u))dA(u)/rr (g, Uh).

Hence U is a self-adjoint operator on L2(D, dA/r).
Take g L2(D, dA/,tr) and put h Ug. Differentiating the identity

x(x(z)) z we see that for each z D, (1 1hl2)2kx(z)kx(qx(z)) 1, so
that

(Uh)(z) (1 1,[2)2kx(z)kx(px(z))g(z) g(z),

and thus U U I. Hence U is a unitary operator on L2(D, dA/rr).
Observe that U(L2a(D))c L2a(D) and U(L2a(D) -L) c L2a(D) +/- The first of

these inclusions is obvious from the definition of U. The second inclusion
follows from the first since the operator U is self-adjoint. Let

U" La(D) --, L2(D) and U" La(D) +/- ---, L2(D)"

be the restrictions of U to La2(D) and L2a(D) +/- respectively. Then both U1 and
U2 are unitary operators. We claim that

Let g L2(D), then it follows from (9) that

H/.xg (1 IXl2)kx(Hf. Ut)(g)o

so that

(U2oHf.,,)(g) (1 Ihl2)kx((H/.,xg)ox)
(1 Ihl2)2kx(kx. qox)(H/. U1)(g)

(n: O Vm)(g),

and our claim is verified. This completes the proof of Theorem 1. ra
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The following proposition, a corollary of the proof of Theorem 1, gives a
formula for the image under HI of the reproducing kernels kx for h D. This
formula will play an important role in the proof of our characterization of the
compact Hankel operators.

PROPOSITION 2. Let f L(D, dA/r). For each h D we have

ny(kx) (f P(focpx)ocpx)kx.

Proof. Since (1 IAIZ)9-kx(kx x) 1, it follows from (9) that

Hyox(kx) kxHi(1) * x kx(f* x p(f)o x)-
Replacing f by f x we get formula (10).

(10)

4. Compact Hankel operators

In this section we will state and prove our main result, Theorem 6. To show
that the operator HI is compact we will actually consider the operator HHf.
The following proposition gives a convenient way to represent this operator.

PROPOSITION 3. Let f L(D, dA/r). Then for h H(D) and D,

fn I/(z) p(fopx)(cpx(z))l2

(1 -x) h(z)dA(z)/.

Proof Let f L(D, /, h H(D) and fix a point h D. Then

(H:H/h)(A) (HfH/h, kx)
(: e(:), nlkx)
(#, H/kx) (since P(#) X Hkx).

Now, P(f o x)o x L(D), thus (P(f x)o x)h L](D), so that we
have

((e(: 1o )h, :) 0.

Using ts wc get

((/- e(/.).),(/- e(f.)o))
: If(z) e(/. )((,))I

(1 x)
() ()/"

(by (10))
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Remark. The formula in Proposition 3 also holds for h La(D): it can be
shown that the operator given by the integral in Proposition 3 is bounded, and
thus agrees with HH/on La(D).

The following lemma will be used in the proof of Lemma 5. For an
elementary proof we refer the reader to [3].

LEMMA 4.

sup f 1

xD [1 X]6/5(1 [WI2)3/5

In the proof of Theorem 6 we will use the following estimate.

LEMMA 5. Let f L(D, dA/r). Then there exists a finite positive constant
C (depending on f) such that for every X D,

If(z) e(So x)(x(z))I’
I1 Xl(1 Iz12)z:

(z)/ <
C

(1- IXl=)

Proof.
of-variable w x(z). Using (5) and (7) we get

Let f L(D, dA/rr). In the integral at the left make the change-

If(z) P(fo n0x)((z))14
I1 X19-(1 Iz[Z)

(z)/

(1- IX12)x:

fl(f o x)(w) P(f +x)(w)14 1 aa(w)/
I1 hl(1 Iwl-)/:

Let M denote the quantity of Lemma 4. Applying Htilder’s inequality using
conjugate indices 6 and 6/5 we see

ly(z) e(y o )((z)) I’ft} I1 X1z(1 IzlZ)
(z)/

( iXl:)X: I/x-- V(fox)I=’

C
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since the Bergman projection P maps L2(D, dA/,r) boundedly into L2a4(D)
(for an elementary proof see [4]), and [If o Px[[24 < Ilfll oo for all , D. D

Now we are ready to prove the main result of this paper.

THEOREM 6. Let f L(D, dA/,r) and 1 < p < oo. The following state-
ments are equivalent"

(a) H/ is compact;
(b) Ill %, P(f o q:’x)llv 0 as [A[ --, 1-;

1 fo If-e(/*x)oxlv dA/,r 0 as Ihl-o 1- for all(c) z(x, )1 x,)
r (0, 1).

Proof (a) , (b) Suppose that H! is compact. It is well known that
(1- 1hl2)kx --, 0 weakly in Lz(D) as Ihl--’ 1- (for a proof see [3]). The
compactness of H! implies that

(1 IXl2)lln/kxll2 --, 0 as Ihl 1-

Using Proposition 2 and change-of-variable formula (7) we get

lifo mx- P(f* q0x)I1 (1 Ihl2)lln:kxll2 0 as IXl -* 1-

For 1 < p < oo, and application of Htlder’s inequality yields the inequality

Iif wx p(fo x)I1
f o qx P(f x) ll(llf +x P(f qx) I1=- =) -1.

Using the boundedness of P we have

Ill x e(Yo )I1- c2_211f mxl12-2 < c2-211fll oo.

Thus

II/ x v(fo qx)I1 - 0 as IXl 1-.

(b) (c) Suppose that (b) holds, and let r (0,1). Using change-of-varia-
ble formula (7) and formula (6) it is easy to verify that

ID(X, r)l (h,r)
If- V(f* +x)* +x dA/rr

4
lifo + V(fo )I1 (11)

r2(1 r)2

so that (c) follows.
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(c) = (a) The proof of this implication is divided into several steps. To
show that H/is compact it suffices to show that HH is compact. We will do
this by defining Hilbert-Schmidt operators So (0 < p < 1) for which we will
then show that So --+ HH/in operator norm as p 1-.

Step 1. Suppose that (c) holds for some p (1, o). To prove (a) we will
need (c) for p 4. Let q p/(p 1) be the conjugate index of p. HSlder’s
inequality, (11) and the fact that

f P(fo Csqllfll

give the inequality

1 fo If P(Y tPx) tPxl a da?rID(X, r)] (,, r)

( fD )X/p< Cv rllfl[ 3
1

If- P(f* qx) tPx [v dA/rID(X, r)l (h,r)

and our claim that (c) holds for p 4 follows.

Step 2. Let 0 < p < 1. Define the operator S: L2a(D) L2(D, dA/r) by

for h L2(D), , D. We claim that S is a Hilbert-Schmidt operator. To
prove this claim we need to show that the kernel of S is square-integrable
over D D. Using Fubini’s Theorem we have

fo( fxn(A) [f(z) P(f ocpx)(cpx(z))
,1 d4(z)/r)

1
0 (1 1,12)2

{(fo qox)(w ) p(fo tpx)(w ) 14
(by (7))

p2
1 p2 hpD

and our claim that S is Hilbert-Schmidt is verified.
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Step 3. Now let 0 < r < 1. Using Proposition 3 and the definition of Sp we
see that for h H(D) and h D,

h() a(,)/.

By Minkowski’s inequality,

tt (n?n- S)htt

If(z) P(fo +x)(vx(z))[2 2 ]1/2Ih(z)l dA(z)/r) dA(X)/r

If(z) V(fo x)(x(z))I2 2 ]1/2th()t aA()/) aA(X)/

(12)

We will estimate the two expressions at the right hand side of (12) separately.
This will be done in steps 4 and 5 respectively.

Step 4. To save some writing we introduce the notation

I(h, r) ID(A, r)l
4If- V(fo (px)o (Px dA/rr.

By Cauchy-Schwarz

f,, I’(z) ’(/o)((z))l )(x,O 11 X[ 2 [h(z)[ dA(z)/rr

fo I’ fo Ih(z)l< If- P(f +x) Px dA/rr X
(A., r) (h, r) I h21 4 da(z)/,’il"

(using (6)).
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Integrating the above inequality and applying Fubini’s Theorem we get

If(z) p(fo x)(x(2))12

2

sup
(1 r2)2

2

A change-of-variable shows that the inner integral is less than

which is easily seen to be bounded by r2/(1- r2)2. Hence we have the
following estimate for the first integral at the fight hand side of (12):

\.a (x,.) I1 XI - Ih(z)l dA(z)/r dA(X)/r

r 2

< sup I(X, r)1/2 llhl12. (13)
(1 r2)2

Step 5. Now we estimate the second integral at the fight of (12)"

(/)\(x, r)

If(z) P(fo m)(mx(z))12

< fD\D(X, r)

If(z) P(/o mx)(,,(z))l’
I1 X-;I(1 Iz12)/

dA(z)/.

x fa ih(z)t: (1 IZI)x/
\D(h, r) I1 X12

dA (z)/,r (by Cauchy-Schwarz)

c
)x/,_ fa Ih(z)l (1 Izl")

(1 Ihl 2 n(k,r) I1 hl2 dA (z)/cr (by Lemma 5).
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Integrating the above inequality and applying Fubini’s Theorem we get

fD\pD( fD\D(h, r)

If(z) v(fo x)(x(z))12
I1 hl 2

< Cfolh(z)12(1- iz12)/2

2

Ih(,)l da(,)/) d(X)/.

1 )x dA(h)/r dA(z)/r. (14)
\,0 (1 IXl2)/211 XI 2

In the inner integral in (14) make the change of variable , %(u). Using
formula (7) and identity (5) we see

fi 1
dA (A)/r

\o(,, o I1 X12(1 IX12)/2

1 f 1

(1 Izl-)’/2 \,11 zl(1 lu12)’/2
da(u)lr

1 1

(1 Izl2)/2 I1 ul/s(1

5/6

dA(u)/fr [D\rD[ 1/6

(by H/51der’s inequality)
1 Ms/s(1 r)X/6<

(1 Izl2)1/2
(by Lemma 4/.

Combining this with (14) we get an estimate on the second integral in (12):

\pD \D(h,r) l1 Xl
Ih(z)l dA(z)/r dA(X)/r

< C(1 r2)x/x2 Ilhll2. (15)

Step 6.
that

Combining our estimates (13) and (15) with inequality (12) we see

r 2

sup
(1 r:): I(2k, r)x/2 Ilhll2 + C(1 r2)X/x211hll 2.
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Since H(D) is dense in L2a(D) we can conclude that

2r
supIIH/*H: Sll -<

(1 r2)2 XD\ot
I(, r)/2 + C(1 r2):2.

Since I(h, r) --> 0 as I’l - 1- for every 0 < r < 1 (by step 1) it follows easily
that Sp ---> HHs, in operator norm as p--+ 1- Because the Sp are Hilbert-
Schmidt, thus compact, it follows that HH! is compact, and therefore HI is
compact, t3

To state a corollary we need to introduce more notation. For f
L(D, dA/r) define, f the Berezin symbol of f, by f’(X)=
(fkx/llkxll2, kx/llkxll2> for h D, so that

fof 1f’(X) (1 17tl2) 2 (z)
i1 zi4 dA(z)//" for D.

As a corollary we get some of Kehe Zhu’s results [8].

COROLLARY 7. Let f L(D, dA/rr) and 1 < p < . The following state-
ments are equivalent:

(a) HI and H]~are compact;
(b) IIf +x- f(t)!l--+ 0 as I’1,--> 1-

Proof. First observe that f(h) ftlf tPx dA/r (by change-of-variable
formula (7)), and thus

f’(A) V(f +x)(0) V(]o +x) (0) for h D.

We will also make use of the fact that for an analytic function h on
D, P(h) h(O).

(a) = (b) Suppose that both HI and Hi are compact. Since Hi is compact
we have

Using the boundedness of P as an operator of L(D, dA/r) into La(D) we
get

II,: I1,>(: o ,><: )11,-0 as IXl --, 1-
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The compactness of HI implies that IIf * qox P(f * x)ll 0 as Ihl 1-,
which combined with the above statement gives that (b) holds.

(b) (a) Suppose that IIf Px- f(h)ll--’ 0 as Ihl--’ 1- Again using
the boundedness of P it follows that IIP(f o x) -f(X)ll, ---’ 0 as IXI 1-,
thus

Iif P(f  x)I1 0 as Ihl 1-.

By Theorem 6 Hf is compact. Since also Ill * Px f(h)I1 --’ 0 as I’1 --’ 1 -,
/-/! is compact, rn

5. Remarks and open questions

In this section we discuss some open questions and directions for further
research.

(1) For f LI(D, dA/r) (so f is not necessarily bounded) we can consider
HI as an operator L2a(D) L2a(D).L densely defined by Hig (1- P)(fg),
g H(D). It is possible that even for unbounded f the operator HI is
bounded. The question is to find necessary and sufficient conditions on f for
the operator HI to be bounded. For conjugate analytic functions on D the
answer is known. The Bloch space is the set of all analytic functions f on D
for which

sup (1 -lzl2)lf’(z)[ <
zED

In [3], Sheldon Axler proved that for a function f in LZa(D) the (densely
defined) Hankel operator Hi is bounded if and only if f . The proof of
Theorem 1 shows that for every h D the (densely defined) Hankel operators
HI and Hf.x are unitarily equivalent (in the sense that there exist unitary
operators U: and U2 as in Theorem 1 such that also UI(H(D)) c H (D)).
Consequently, a condition on f that is necessary and sufficient for the
operator Hf to be bounded has to be MiSbius-invariant. I conjecture that an
answer for the general case is that for any 1 < p < oo,

sup f

(2) Find necessary and sufficient conditions on f for the operator HI to be
in the Schatten p-class S’. For conjugate analytic functions on D the answer
has been found by Jo Arazy, S. Fisher, and J. Peetre [1]. Theorem 1 implies
that the class of f in L(D, dA/r) for which HI belongs to S is again
MSbius-invariant. Without proof we mention that for f in L(D, dA/r) the
Hankel operator HI is Hilbert-Schmidt if and only if

dA(,)/rr < o0.

(1- I,12
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For a conjugate analytic function f on D the above condition is easily seen to
be equivalent to fDIf’(z)l 2 dA(z)/vr < 00, i.e., f belongs to the Dirichlet
space (a special case of Arazy, Fisher and Peetre’s results).

(3) For f, g L(D, dA/r) find necessary and sufficient conditions for
the operator HH to be compact. For conjugate analytic symbols f and g
this question was raised in [3]. In this special case a necessary condition was
found by Sheldon Axler and Pamela Gorkin [5] and, independently, Dechau
Zheng [7] proved that this condition is necessary and sufficient. They found
that for bounded analytic functions f and g the operator H/’H is compact if
and only if (1 Izl 2) rain { If’(z)l, [g’(z)l } 0 as Izl --’ 1-. It follows from
the results in Zheng’s paper that this condition is equivalent to

frlf o q0x f(X)Ilgo qx g(X) dA/,r 0 as IXl 1-.

The proof of Theorem 6 can be adjusted to show that for f, g L(D, dA/r)
the operator HHs is compact if

fl/ q0x v(f o ,vx) llgo wx V(go wx) d,4/,r ’" 0

It is my guess that this condition is also necessary.

as IXl 1-.
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