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THE EQUIVALENCE PROBLEM FOR COMPLEX
FOLIATIONS OF COMPLEX SURFACES

BY

T. DUCHAMP AND M. KALKA

1. Introduction

In [4] we began a systematic study of the geometry of complex foliations (a
complex foliation is a foliation of a complex manifold by complex submani-
folds). In the case where the complex dimension of the underlying manifold M
is 2 and the foliation #" is not holomorphic we showed that its leaves come
equipped with a metric of constant curvature. In this paper we continue this
study by examining in detail the local geometry of complex foliations of
complex 2-dimensional manifolds. More precisely, we will solve the Cartan
equivalence problem for complex foliations of complex surfaces (see [3], [5]
and [7] for discussions of the equivalence problem).
Note that when the foliation . is holomorphic the equivalence problem is

trivial in the sense that for any point p M there is a biholomorphism :
U A2 between a neighborhood of p and the polydisk A2 c C2 sending the
leaves of the restriction of #" to U onto sets of the form {(z, w) AZlw
const}; i.e., all holomorphic foliations are locally equivalent to the foliation of
Cz by parallel lines.
When the foliation #" is non-holomorphic the geometry of " is determined

by the anti-holomorphic torsion tensor introduced by Bedford and Bums [1],
[4]. To define it let L denote the complex tangent bundle of " and let pr:
TM -, Q be the projection map onto the complex normal bundle of #’. The
anti-holomorphic torsion is the the section of the vector bundle

L*(R)Q*(R)Q

defined by the map

(1.1) "r:
Y (R) X pr(

where Y is any vector field extension of the vector Y and X’ is any vector such
that pr(X’) X. One easily checks that is well-defined. It is easily shown [1]
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that #" is holomorphic at all points if and only if the tensor z vanishes
everywhere. Consequently #" is said to be non-holomorphic at p if zv 0 and
#" is said to be non-holomorphic on M if it is non-holomorphic at all points of
M. Unless expressly stated all foliations will be assumed to be non-holomor-
phic.
The importance of the anti-holomorphic torsion is that it gives a way of

choosing a distinguished class of framings of the holomorphic tangent bundle
of M.

DEFINITION 1.2. A pair of independent vectors X, Y TI,oM based at a
point p M is called an adaptedframe if (i) Y L and (ii) z(Y (R) pr(X))
pr(X). A coframe dual to an adapted frame is called an adapted coframe. The
bundle of adapted frames, denoted by P(M, ) - M (or simply by P when
no confusion is likely to arise), is the bundle of all adapted frames. It is a fight
principal G-bundle where G c GL(2, C) is the group of matrices of the form

To see that P is a right G-principal bundle just observe that if (X, Y),
k 1, 2 are two adapted frames based at p then condition (i) above shows
that there are uniquely defined complex numbers a O, b and c 0 with the
property that

X2 aX + bY1, Y2 cY1
but condition (ii) implies the further restriction c/a 1.

Note that if f: (M, ’)---, (M’, #") is an isomorphism of two complex
foliations (i.e., a biholomorp.hism respecting foliations) then the derivative of f
defines a diffeomorphism f: P ---, P’. Our main result is the following theo-
rem.

THEOREM 1.3. Let (M, ) be a pair consisting of a complex two dimen-
sional manifold and a foliation by complex curoes which in non-holomorphic on
M. Then the manifold P(M, ) has a complex structure with respect to which

r: P(M, .’) -o M

is a holomorphic fibration and there is a global framing (t9, , , ) of the
cotangent bundle of P P(M, ) by forms of type (1, 0).

Let ( M’, ") be another such foliation. Then the mappingf f is a bijection
between the set of all isomorphisms between (M, ) and (M’, ’) and the set

of all diffeomorphisms between P and P’ satisfying the condition

f’.((0,, ,’, ,,)) (0, ,, ,).
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The importance of Theorem 1.3 is that it enables us to identify dements of
Aut(M, -) with the set of automorphisms of P(M, ) which preserve the
framing. We can now employ the fundamental theorem on the automorphism
group of manifolds with global framings, Theorem 3.2 of [6], to obtain the
next corollary.

COROLLARY 1.4. The group Aut(M, ’) has the structure of a Lie group. In
fact let p P(M, ) be any point, then the mapping

Aut(M, ’) P(M, ’),

is an embedding of Aut(M, ’) as a closed submanifold of P(M, ). In
particular, the inequality

dim Aut(M, -) _< 8

holds.

More is true. The group G embeds as a subgroup of SL(3,R) and the
framing (0, r/, , k) can be used to define an (3, R)-valued 1-form H on P.
Let H denote the subgroup of G consisting of matrices of the form

(a 0)0 a/

and set E P/H. The fibration P E is an H-principal bundle.

THEOREM 1.5. The I(3, R)-valued 1-form H: TP --, I(3, R) is a Cartan
connection on the right principal H-bundle P E. Moreover, when the funda-
mental inoariant A in the structure equations (1.6) vanishes H is in fact a Caftan
connection on the right principal G-bundle P M.

The outline of the paper is as follows:
In Section 2 we construct the framing (0, /, , k) and derive the following

structure equations:

(1.6)
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The complex-valued functions A, B and C are the fundamental invariants of
a complex foliation.
A foliation for which A, B and C all vanish is called flat and in Section 3

we construct one. It is easily described: Let M be the complement of real
projective space RP2 in complex projective space CP2. Every real line in RP2

is the restriction of exactly one complex line in CP2 and there is exactly one
such line passing through each point of M; hence this construction defines a
complex foliation ’. Note that the group SL(3, R) has dimension 8 and acts
transitively and effectively on (M, ’). It follows that " is a fiat foliation
(this can also be checked directly) and that the total space P(M, ) is
diffeomorphic to SL(3, R). By applying the results of Section 2 we are able to
relate the framing (0, 1, , k) to the Maurer-Cartan form of the group
SL(3, R) and to show that in the fiat case the structure equations 1.6 reduce to
the structure equations for the Lie algebra g (3, R).

2. Solution of the equivalence problem

In this section we prove Theorem 1.3, derive the structure equations (1.6)
and determine the transformation properties of the fundamental invariants, A,
B and C.

Local coordinates
Many of our computations will be done in local coordinates which we

choose as follows. Coordinates for C2 are (w, z) and holomorphic coordinates
on an open set U c M are chosen so that the z-axis is transverse to ’.
Consequently, there is a smooth function h h(z, w) defined in the neighbor-
hood of the origin such that the form

(2.1) 0o ----’def dZ t dw

is a normal form defining - and the vector field

Y0 =def " q" X

is tangent to - is holomorphic if and only if Y is a holomorphic vector field.
It is straightforward to check that the local framing
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is an adapted framing whose dual coframe is

This frame gives a local trivialization of the bundle of adapted frames

Ply -- U G.

The tautological 1 forms on P are the forms 0 and / characterized by the
property that for every local adapted frame, say s F(U, P), the coframe
(s*O, s*) is dual to s. With respect to the above trivialization the identity

(2.3) =g- o g= b a/8

holds.

First reduction
We start by considering local frames of the cotangent bundle of M

(coframes) consisting of pairs of forms of type (1, 0) whose first entries lie in
the conormal bundle of #’. In local coordinates we may write such a coframe
in the form

(2.4)

where

(2.5) g ( ab O

is a matrix valued function. The set of all such matrices forms a subgroup of
GL(2, C).

LEMMA 2.6. There is a natural reduction of the bundle offrames to a principal
subbundle P P(M, ) with structure group G GL(2, C) (see Definition
1.2).

Proof Actually, we have already proved this lemma; but we will have need
of expressions for the exterior derivative of the dual coframes so we will adopt
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a slightly different point of view which exhibits Cartan’s method of reduction
of structure group and prove it again. Let 00 be as in (2.1) and note that the
integrability condition [Y0, Y0] 0 written in local coordinates assumes the
form

(2.7) X, + X)t, 0

from which the identity

(.8) 00 x, aw ^ Oo + x,, aw ^ Oo,

follows easily. Choose a coframe as in (2.4) and compute as follows:

d -g-Xdg A + g-X
rt rt 0

(cX,z)r/- (bX,/a)O
(b:ZX,/ac)

This can be written in the form

The last term of this equation is an invariantly defined torsion term and a
reduction in the structure group can be made by choosing only those frames
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whose dual coframes satisfy the normalization condition,

(2.10) (f/a) cX , 1.

(Note that the requirement that " be non-holomorphic is essential here since
in local coordinates it is equivalent to the condition , 4= 0). One checks that
the condition is satisfied if and only if the function g takes its values in G. m

Note that the Lie algebra of G consists of all complex matrices of the form

We want to write structure equations for the exterior derivatives of the forms
and rl which incorporate the structure of the Lie algebra. The next lemma
shows how to do this.

LEMMA 2.11. Given a local adapted coframe (0, )t there are one forms
and such that the identity

(2.12) d - 0

holds. Moreover, the forms q and p are determined up to the transformation

(2.13) P k -fO

where f is an arbitrary complex valued function.

Proof A straightforward computation using the integrability condition
(2.7) gives the equation

rio o o- o o 0

where

(x,,/x,,) n0 + (x,,,/x,,)eo
+0 (x,,,/x,, + x,,,/x,,) no.

Equation (2.14) can be used to derive a similar structure equation for the



66 T. DUCHAMP AND M. KALKA

exterior derivative of the adapted coframe g-x(00, %)t, can now be computed:

d =-g dgA
1

(-g-Xdg-g-X(qo
+ g-(,o ^ o)0

-l d( 0)%
,t,o ,o g ^ ( ’

o ,o- ,o g ^
^ 0 + (b/a)O A O

+
-(,/a), ^ - (,/a):O ^

-(,/) + (?/). (?a/)o- (,/.)

Note that this is of the form (2.12) where,

(2.15)

g_ldg+g_l(tkOo 4#o_o0 g

0 + ( b5/a )
+

(b/a)2 + (a/)1

0 )(a/)0 (b/a )

To see that the forms and for which the relation (2.12) holds are
determined up to a transformation of the form (2.13) assume that is



THE EQUIVALENCE PROBLEM FOR COMPLEX FOLIATIONS 67

replaced by the form ’= - gO, g a complex valued function and that

’ + (a 1 form). (This is the most general transformation that preserves
the form of the structure equation, dO - A + *1 A /.) Now expand the
second row of equation (2.12):

a - ^ o- (,- ) ^
^ 0 (,’ + go + ’ + g,) ^
-( + g) ^ o (,’- ,’) ^ go ^ ,.

The choice k’ k + g*l yields the equation

from which we see that the term / ^ r/cannot be removed. Hence we must
choose g 0. Having shown that the form is uniquely determined, it is clear
that k is determined up to a change of the form k- f/, where f is an
arbitrary complex valued function, m

Prolongation
We have shown that given an adapted coframe it is possible to find forms

and p so that equation (2.12) holds. In order to remove the ambiguity in the
choice of the forms and tk we have to move from the base space M to the
total space of the bundle P (doing so is called prolongation).
We seek a canonical trivialization of the cotangent bundle of P. Since P is 8

dimensional we must find four complex 1-forms whose real and imaginary
parts are independent. Two forms already exist, the tautological 1-forms 19 and
1. Using the local trivialization Ply -- U G induced by local coordinates, we
may reinterpret formula (2.15) as a formula on the total space of P defining
two more forms on P, and k. The collection//, 1, and k is a complex
framing of the complexified cotangent bundle of P (i.e., the real and imagi-
nary parts of these forms yield a framing for the real cotangent bundle of P).
There is a problem: this framing is not canonical--it depends on the initial
choice of coordinates. The dependence is given by Lemma 2.11 which (reinter-
preted as a statement about forms on P) shows that the set of forms satisfying
(2.12) are only defined up to transformations of the form

(2.16)
f0

1 0 0 0
0 1 0 0
0 0 1 0

-f 0 0 1

where f f(w, z, g) is a complex-valued function.
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The next step is to show how to make a canonical choice of the form k. The
following lemma shows that this is possible and concludes the proof of
Theorem 1.3.

LEMMA 2.17. There is a unique complex framing (0, 1, k, P) of the cotangent
bundle of P characterized by the equations

(2.18)
(2.a9)
(2.20)

d= -A+/AO- ^ o- (- ) ^
d=p A 0- 20 A k--r/ A ]-- 3A0 A

where 0 and 1 are the tautological 1-forms on P and A is a complex valued
function.

Proof. We already know that q is determined by the first two equations of
the lemma; we need only show that k is determined by the third equation.
One way to do this is to differentiate (2.12) and then to use (2.12) to

simplify the resulting expression. The computation goes like this:

O= d2(O)

+ A A

A A dA-Ad- o o
--dAOAAO

(- + ) o a( ) +

+((-)o+)"
Collecting terms results in the two identities

(2.21) {--d@+A--A} AO=0

(2.) (a + } 0 + (-(a, a) } 0.

It follows that d can be written in the form

(2.23) d=-n
+(3a + B+ Cn + D + E + F + G) 0
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where A, B,..., G are complex valued functions to be determined (the coeffi-
cient of A is chosen to simplify later calculations). Wedging equation (2.22)
with 0, substituting into it the above formula of dq} and the conjugate formula
for dq} and simplifying we arrive at the identity

(2.24) (++q+ffff+(r-2)) A^r/AO=0.

The independence of the forms 0, 0, rl, , q, q,, and p yields the equalities

C=D=E=F=O and G=2;

and equation (2.23) assumes the form

(2.25) dq} A 0 20 A rl A 3AO A gl BO A O.

This equation can be used to make a canonical choice for the form p--for
replacing 6 by k- fO yields the equation

d, tk A - 20 A - l ^ 3AO ^ l + (-f + 2f B)O A

and the choice f- 2] -B fixes the form ff uniquely. With this choice we
arrive at the identity (2.20). This concludes the proof of the lemma, m

The function A is an invariantly defined function on P and as such is an
invariant of the pair (M, #’). To determine the complete set of invariants the
formula for the exterior derivative of must be computed.

PROPOSITION 2.26. The canonical framing of the cotangent bundle of
P(M, ) satisfies the structure equations

(2.27)

where

(B + 2 + C + 2.q + A) ^ O

and A, B and C are complex valuedfunctions satisfying the identity C OA/OO.

Proof It remains to consider the last structure equation. Substitution of
(2.20) into equation (2.22) yields, after simplification, the formula

(d + tp A +r A + 3A! A) A 0=0
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from which it follows that d@ can be written uniquely in the form

(2.28)

where the one form (I) is to be determined.
By computing the exterior derivative of equation (2.20) it is possible to

determine the form of . Specifically, expand as follows

employ formulas (2.12), (2.20) and (2.28) and simplify to obtain the identity

(2.29) ((I)-2+3A) AOA
+3(-dA +2/+A) ^0A=0.

Denoting the framing of the manifold P dual to the coframe 0, rl, , k by

O a a a
00’ 0’ 0,’ aq’

we can write dA in the form

OA OA OA OA OA OA OA OA-o + - + -,t, + -, + -+- + -g + -.
which can be substituted into (2.29) to obtain the equation

3{ (2,- OA OA

+ -2+3Aq,+3-- ^0^0=0.

^0^

This equation can be partially solved for and dA to yield the identity

(2.30)
OA

BO + 2C1 + C7 + -rl2ay + 2 +A
where B is a new complex valued function. (Note that this equation can also
be used to derive the formula for the exterior derivative, dA, given below
(2.32).) a
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Using the structure equations (2.27) it is possible to derive explicit formulas
for dA, dB and dC.

(2.34)

Proof The formula for dA was derived in the proof of Proposition 2.26. To
determine dB and dC expand the exterior derivative of the fourth structure
equation in (2.27) and use equations (2.30) to obtain the equation

{ 0A }0=d(d)-- ddP + dP ^ rk + O A k- 3-I A I 3A A I A O.

Expand and dO in this equation and rearrange terms to arrive at the
identity

Expanding dB and dC and collecting linearly independent terms results in the
formulas for dB and dC in the lemma.

Remark 2.35. The special case in which the invariants A, B and C are
constant is of particular interest because in this case the group Aut (M, #’)
has maximum dimension. In fact the only case to consider is the flat case
where A, B and C vanish for from Lemma 2.31 we can extract the formulas

OA OB OC
=A =B and --=-=2C

0q, 0q, 04,

which clearly force vanishing of A, B and C.
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3. The Cartan connection

In Riemannian geometry the curvature tensor of the Levi-Civita connection
can be interpreted as the deviation of the metric from the flat metric on
Euclidean space. Similarly, the analysis of this section will show that the
structure equations 1.6 are those of a Cartan connection with values in the Lie
algebra (3, R). The fundamental invariants A, B and C can then be
interpreted as curvature components and measure the deviation of a complex
foliation from the flat foliation.

The fiat model
We begin with an investigation of the flat foliation. Let Mo denote the

complement of real projective space in complex projective space and let o"0
be the foliation of M0 whose leaves are the restriction to Mo of the complex
projective lines in CP2 which intersect RP2 in real projective lines.

Let the group SL(3, R) c SL(3, C) act from the left on CP2 in the standard
way by complex projective transformations. Because SL(3,R) maps RP2 to
itself and maps real projective lines to real projective lines it embeds in the
group Aut(M1, #-0). In fact because SL(3, R) is 8 dimensional it follows from
Corollary 1.4 that the manifolds SL(3,R) and P(Mo, #’0) are diffeomorphic,
that SL(3, R)--Aut(Mo, o), and that the invadants, A, B and C are all
constant. Finally, by Remark 2.35 the constants A, B and C vanish and 0
is a fiat foliation with structure equations

(3.1) dO= --k A O + A O

^ 0- ^

By virtue of the isomorphism between SL(3,R) and P(Mo, o) =-
Aut(Mo, o-o) these equations are equioalent to the structure equations for the Lie
algebra (3, R). In particular, the framing (/9, , , k) can be expressed in
terms of the components of the Maurer-Cartan form of SL(3, R), osL. (Recall
that if g denotes a variable 3 3 matrix in SL(3, R) then os g-X dg.)
To derive the form of this expression we must introduce some notation. Let

[.1, .2, .3] be homogeneous coordinates on Cp2, let (w, z) be the aftine
coordinates, w [2/x, z .3/x and fix once and for all the point x0
[1, i,0] Mo. Let g (a/) denote an arbitrary element of SL(3, R) and let to.
denote the ijth entry of OsL. Finally, let ,r be the surjective map

SL(3,R) M0
,r"
gg .xo [a + ia2, a2x + ia22, a + ia]

and observe that #" SL(3, R) M0 is a right G’-principal fiber bundle where
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G’ is the subgroup of SL(3, R) defined by the formula

G’= -b a d a,b,e,f
0 0 1/(a 2 + b2)

Consequently, Mo can be identified with the homogeneous space SL(3, R)/G’.
To construct a framing of the complexified tangent bundle of SL(3, R) for

which the structure equations (3.1) hold start with the local adapted coframing
of TM’ given by the 1-forms

z- -1
Oo dz w dw and %= w dw.

At the point x0, the equations 00 dz and 1o 1/2i dw hold. These covectors
pull-back to a pair of covectors at the identity element of SL(3, R) and extend
by left translation to left invariant forms, denoted by 0 and 1. We leave it to
the reader to check the identities

(3.3)
(3.4)

0 6031 + it32
+ +

The forms and k are uniquely determined by (3.1) and can be found by
computing dO and d/using the structure equations for SL(3, R)"

(3.5) dwj. -a ^ to
(3.6) t + t22 + a33 0.

The result of the computation is

(3.7)

(3.8)

The skeptical reader can check directly that the forms do indeed satisfy the
identities (3.1).

Remark 3.9. There is an inclusion of Lie groups G SL(3, R). Start with
the Lie algebra isomorphism ’ --- between the Lie algebras of the groups G’
and G given by the formula

-b a d c+ id
0 0 -2a 2 -2ib
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and exponentiate to give the Lie group isomorphism

A B C
-B A D

0 0 (A2 + B)- (A2 + B2)(A + iB)
C+iD

+ A+iB

The inverse map gives the sought after inclusion G SL(3, R)"

10) (a(3 b o)a/

Re(a)/lal4/

Im(a)/lal’/

0

-Im(a)/lal 4/3 2Re(a)/lal 4/3

Re(a)/lal 4/3 2Im(a)/lal 4/3

0 lal /3

and allows us to identify the group G with the subgroup G’ c SL(3, R).

The connection
Now let (M, r) be an arbitrary complex foliation of a two dimensional

complex manifold. The formulas (3.3), (3.4), (3.7) and (3.8), applied now to the
canonical framing of P(M, at) by complex 1-forms can be inverted to furnish
a canonical g (3, R)-valued 1-form, to.

DEFINITION 3.11. The Cartan connection of the foliated manifold (M, #’)
is the I(3,R)-valued 1-form, to, on the total space P(M, ), given as
follows:

Re( ,/- /3) Im( 1 ) 2 Re( )
Im(/+ ) Re(-,1 /3) 2Im()
Re(0) Ira(0) 2 Re(o/a)

It remains to make precise the sense in which to is a CaFtan connection. Form
the quotient bundle E P/H where H c G is the group of matrices of the
form

(a 0)0 a/

A section of E M is a splitting of the exact sequence of complex vector
bundles

O - L TM Q O.
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The bundle r’: P --, E is a right H-principal bundle and the forms 0, and
are horizontal with respect to the map r’.

THEOREM 3.12. The I(3,R)-valued 1-form to: TP --, (3,R) is a Caftan
connection on the right principal H-bundle P E. Moreover, when the funda-
mental invariant A in the structure equations (1.6) vanishes to is a Cartan
connection on the right principal g-bundle, P M.

The curvature matrix, fl dto + to A to, is of the form

(3.13)

with

(3.14)
(3.15)

3fxx + ifi 3AO A 1

+ 2(B/ + 2(r/+ C + 2 + A) A 0.

Proof. Begin with the definition of a Cartan connection (see [6a, 127-128]).
Let Rg denote fight multiplication by an dement g G and recall that the
fight action of G on P can be used to associate to each element X a
vertical vector field X* I’(P, TP); more precisely, for p P, X is the
vector

X =- (dRexp(tX)Pdt)
The form to is a Cartan connection on P E (resp. P --, M) if the following
three conditions hold:

(a)
(b)
(c)

The components of to form a framing of the cotangent bundle of P.
For all X b (resp. X g), to(X*) X.
For all g H (resp. g G), Rto Ad(g-t)to.

Condition (a) is almost immediate. By construction, the real and imaginary
parts of the forms 19, , and k form a framing of T*P and the components
of to are obtained from them by a non-singular linear transformation.
To prove condition (b) work over a trivializing neighborhood, U M, so

that PIt --- U x G and recall that with respect to such a trivialization, X*
0 x X where X is now thought of as a left invariant vector field on G.
Examining formula (2.15) and recalling that subsequent modifications to the
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forms and k only involved the addition to k of a multiple of the form
reveals that the restriction to a fiber (i.e., to x G, x U) of the matrix

is precisely the Maurer-Cartan form g-ldg and condition (b) becomes obvi-
ous, because g-1 dg(X) X for all X g.

It remains to check condition (c). Because G and H are connected we need
only check the infinitesimal version

#x.tO ad(X)

for all X b (resp. X g), where .e denotes Lie differentiation. But by
virtue of property (b) the equation ad(X)t i(X*)t ^ t holds and
o(X*) X is constant. Therefore, from the standard formula for the Lie
derivative

(do i(X*) + i(X*)o d)o,

condition (c) reduces to the identity

i( X*)(d + o A o) =- i(X*) O,

for all X [9 (resp. X g). In other words, condition (c) holds if and only if
the curvature 2-form fl is horizontal. Inspection of the formulas for the
components of fl given previously reveals that all components are linear
combinations of the forms 0, /, and their conjugates. Hence is horizontal
with respect to the fibration P - E. When A 0 all curvature components
are linear combinations of 0 and 1 and their conjugates and [ is horizontal
with respect to the fibration P M.
The curvature identities are simply a translation of the structure equations

(2.27). m

I:EFEKENCES

1. E. BEDFORD and D. BURNS, Holomorphic mappings of annuli and the associated extremal
function, Ann. Scuola Norm. Pisa, vol. VI (1979), pp. 381-414.

2. E. BEDFORD and M. KAt.KA, Foliations and complex Monge-Ampre equations, Comm. Pure
Appl. Math., vol. XXX (1977), pp. 543-572.

3. D. BURNS and S. SNIDe.R, Real hypersurfaces in complex manifolds, Proceedings of Symposia
in Pure Mathematics, vol. 30 (1977), pp. 141-168.



THE EQUIVALENCE PROBLEM FOR COMPLEX FOLIATIONS 77

4. T. DUCHAMP and M. KALKA, Inoariants of complex foliations and the Monge-Ampre equation,
preprint.

5. R. GARDNER, "Differential geometric methods interfacing control theory" in Differential
geometric control theory, Progress in Math. Sci., vol. 22, R.W. Brockett, R.S. Millman,
H.J. Sussmann eds. Birkhiuser, Boston, 1983.

6. S. KOBAYASHI, Transformation groups in differential geometry, Spdnger-Verlag, New York,
1972.

7. S. STERNBERG, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.

UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON

TULANE UNIVERSITY
NEW ORLEANS, LOUISIANA


