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I. Introduction

A basic problem in Banach space theory is whether every infinite dimen-
sional Banach space contains an isomorphic copy of co or a subspace which is
isomorphic to an infinite dimensional conjugate space. This is, of course, a
first step toward the better known conjecture that every Banach space
contains an isomorphic copy of co or or an infinite dimensional reflexive
subspace. In this paper, we exhibit a new technique for constructing infinite
boundedly complete basic sequences and consequently separable conjugate
subspaces. Aninteresting feature of this method is that it involves a non-lin-
ear approach, which is in sharp contrast with the linear nature of the
problem we address. Our approach also combines techniques originating in
the local theory of Banach spaces (Dvoretzky’s theorem and concentration
phenomenon) with infinite dimensional concepts like dentability and "trans-
finite slicing" of sets.
One aPllication of this method is that Banach spaces with the Analytic

Radon-Nikbdym Property (ARNP) contain copies of infinite dimensional con-
jugate spaces. (Recall that a complex Banach space X is said to have the
ARNP if every X-valued bounded analytic map on the open unit disc of the
complex plane has radial limits almost surely). This class of spaces
containsbesides those possessing the Radon-Nikodym property (RNP) (see
[D-U])--ali Banach lattices not containing co [B-D] as well as all preduals of
Von Neuman algebras [H-P]. What is needed for the proof is the following
geometric characterization of such spaces established in [G-L-M]: Every
bounded subset of a Banach space with the ARNP has arbitrarily norm-small
slices determined by Lipschitz and plurisubharmonic functions. In the classical
RNP setting (where the slices are determined by continuous linear function-
als) the analogous statement (i.e. The existence of infinite dimensional
conjugate spaces) was established in [G-M1]. Also shown there is the case
where the "slices" are determined by a finite number of linear functionals i.e.
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when the space has the Point of Continuity Property (PCP). In Theorem (4)
below, we formulate the general principle underlying the proof of the
"analytic case" and we show how it can be used to recover these results and
also to extend the class of Banach spaces containing infinite dimensional
conjugate spaces.
For unexplained notations and terminology we refer to the books of

Lindenstrauss-Tzafriri [L-T] and Milman-Schechtman [M-S]. We just recall
that a continuous function q: X - R is said to be plurisubharmonic if

f -q dO
(x) < (x + eiy)- for all x, y in X.

II. Main result

Recall that a boundedly complete basic sequence in a Banach space X is a
sequence (x) that verifies the following conditions:

(i) For some K > 0, we have IlE=laixill <_ KllE%laixill for all choices
of scalars (ai) and integers n < m.

(ii) Eiaixi converges whenever (ai) is a sequence of scalars verifying
supNllZ/u= laixill <

It is well known that the closed linear span in X of such a sequence is
isomorphic to a conjugate Banach space [L-T, Proposition 1.b.4].
Here is the main result of this paper.

THEOREM 1. Every infinite dimensional Banach space with the Analytic
Radon-Nikodym property contains infinite boundedly complete basic sequences.

We shall need the following lemma which is actually a reformulation of
some results of V. Milman concerning the spectrum of a uniformly continu-
ous function (see for instance [M] and its list of references). We include a
sketch of the proof for the sake of completeness.

LEMMA 2. In every infinite dimensional complex Banach space X, there
exists a net (ut)/3 on the unit sphere such that for any Lipschitz function d? on X
we have

(*) lim sup sup 14(reiut) $(rei’ut3)l O.
/3 0<r<_l 0,0’T

Proofi We need to combine the following three basic results that can be
found in the book of Milman-Schechtman [M-S, Chapter (2)]. The first is the
complex version of Dvoretzky’s theorem:
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(i) Every infinite dimensional complex Banach space contains a sequence
of complex subspaces (Xn)n such that dim(Xn)= n and limn d(Xn, IZ) 1.

(ii) For any a > 0 and integer k, there exists p(k, a) > 0 such that for
every n > k, if /x is Lebesgue measure on the n-dimensional euclidean
sphere S, then for any subset A c S verifying /(S \ A)< p(k, a), there
exists a complex space Y of dimension k so that for all x in Yn S,
dist(x, A) < a.
The last fact we need is the well known concentration phenomenon:
(iii) If b is a 1-Lipschitz function on the n-dimensional complex eu-

clidean sphere S and if rn is its median on (S, ) then for each a > 0 we
have

z{x S; 14,(x) ml > c} _< 2exp(-na2).

We can now prove the following result.

Claim. Let (IN)N be a sequence of positive reals that decreases to O. For
every N-tuple

of 1-Lipschitz functions on X, there exists a complex subspace Yt with d(Yt, lv)
< 1 + eN such that if St denotes the unit sphere of Yt, then
maxl_<< N osc(4., Sty) < eN.
For that, use (i) to choose n large enough so that d(X, l2) < 1 + ev for

some subspace Xn of X, and in such a way that

2Nexp -n-- <p N,-

Here p(k, a) is the function given in (ii). Since d(X,, In2) < 1 + ev, we can
find an euclidean norm Ill III on Xn such that Ilxl[ < Ill x Ill < (1 + -eN)IIXI[
for all x in X,. The functions (b)JV=l are then 1-Lipschitz on the euclidean
sphere S,. If mj denotes the mean value of bj on (S,/z), from (iii)we obtain

Let A 71 =l{lb.- m.l < ev/8}; by (ii) there exists a subspace Yt of
dimension N such that for each x in Yt n Sn, dist/2(x, A) < eN/8. It follows
that

N14 ml < -- on Y Sn
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since the bj’s are 1-Lipschitz. Hence osc($y, Y n Sn) < ev and osc(bj, S)
< eN for each j 1, 2,..., N. The claim is proved.
This now clearly implies the existence of a net (u) on the unit sphere of

X such that for every Lipschitz function b we have

lim sup h(ei’u) O.
/3 O, O’T

To get the full statement (,), it is enough to apply the above to the
functions b.(y) b(G.y ) whenever b is Lipschitz and for Q
O, 1/J, 2/J,...,1. Then one can use the Lipschitz property to get the
statement for all r in [0, 1].

LEMMA 3. Assume X is a separable Banach space with the Analytic Radon-
Nikodym property. Then for every positive integer k, there exists a countable
ordinal Yk and a family (F, k, dp k), < where (F, k), is a decreasing family of
closed subsets of the unit ball of fg and (dp,, k) is d family ofplurisubharmonic
and 1-Lipschitz functions on X such that

(a) Fo, k Bx,
(b) F, k n {b, k > 0} , diam(F,,k {th,k > 0}) < 2 -k and F,+I, k

F,k \ {.,k > O} if a < /k,
(C) F,, k f’) < F, k if a is a limit ordinal,
(d) F,k for all k N.

Proof. By the results of [G-L-M], for every non empty closed bounded
subset F of X and any e > 0, there exists a Lipschitz and plurisubharmonic
function b such that

F (th>0} =g= and diam(F (th >0}) <e.

For any e 2 -k, one can proceed with a straightforward transfinite
inductionstarting with Fo, k Bx---to construct the family (F,,g, b,k) <
claimed in the lemma.

Proofof Theorem 1. Since the ARNP is hereditarily stable, we can assume
without loss of generality that X is separable. For each x in Bx and k > 0,
we denote by Ogk(X) the first ordinal a such that x Fa, k (q {ta,k > 0} where
(F,,k, b,k) <k a.re given by Lemma (3). If x q Bx we let ak(x) -1.

Let R be a 2--net in the unit disc A of the complex plane C. Let (u)t be
the net of points on the unit sphere of X constructed in Lemma (2).

Start with x 0. Set e bo(0),0(0) > 0 and b bo(O), 0. Use (.) to
choose/3 large enough so that

I((reiu) h(rei’u) < e/4 for all r in [0, 1] and 0, 0’ in T.
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But b is plurisubharmonic, hence

l f2=rk(reiut)dO< for all r.

It follows that rb(zut) > 0 for all z A.
Set e U/3 and note that ao(Ze) <_ a0(O) for all z in A since ze

Fa0(0) + 1, 0"

We now construct by induction a sequence of norm one elements (en)n in
X and an increasing sequence of finite subsets (An)n in Ball(X*) such that
for each n >_ 1,

(i) SUPx,nn(X*, x) >_ [[x[[ for all x in the linear span of {el, e2,... en}
(ii) SUpx,[(x*, e+l) < 2-(+x,
(iii) aj(Z,7=lZlel + zen+ 1) _< aj(Z,’=lzlel)for all j 0, 1,...,n, all zi R

and all z A.
To do that, suppose {el,... en} and An_ have been obtained and let En

be the linear span of {el,...,en}. Find a finite subset A of Ball(X*)
verifying (i). Consider the finite family Dn of 1-Lipschitz and plurisubhar-
monic functions defined by

I](y) ()aj(Zlel +z2e2 + +Znen), j(Zlel +z2e2+ +Znen+Y,

for j 0, 1,2,..., n and zy Ry.
By the definition of aj we have q(0)>0 for all in Dn. Let e=

min{2-(n+ 1); min{0(0); 0 Dn}) and use (.) to find /3 large enough so that
for every gt in A U Dn,

(**) Iq,(reiu) ,(l’ei’ul)l ( el4 for all r in [0,11 and 0,0’ in T.

Let en+ U and note that the above inequality applied to the elements
of An implies (ii).
On the other hand, since each 0 in D is plurisubharmonic, (**) also

gives that q(zut) > 0 for all z in A, which in turn gives (iii). This finishes the
construction.
The proof that (i) and (ii) imply that (en)n is a basic sequence is standard

and is left to the interested reader.
To show that (en)n is boundedly complete, consider a sequence of complex

numbers (z)g such that suPNll I2Y= lzell < 1. We can suppose without loss of
generality that z R for each j.
Now fix the integer j and note that the sequence {otj(Eln= lZlel); n > j} is a

decreasing sequence of ordinals and hence there is no so that it becomes
stationaryusay equal to amfor n > n0. But this implies that for all. n > n0,

the points ]2ln__lZlel belong to the slice F, C {b, > 0} whose diameter is
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less than 2 -j. It follows that the sequence of such partial sums is Cauchy and
consequently convergent.

We shall now formulate the general principlemfor constructing boundedly
complete basic sequence--which underlies the above proof. This will allow
us to recover the known results and will also permit a further extension of the
class of Banach spaces containing infinite dimensional conjugate spaces.

Let be a class of functions on a Banach space X. Say that X is
-dentable if for every bounded subset F c X and any e > 0, there exists
q so that

F {>0} : and diam(F {>0}) <e.

A careful consideration of the above proof gives the following result.

THEOREM 4. Let X be a separable real (resp. complex) Banach space and
let -’ be a class of continuous functions on X that contains all the affine
functions. Assume that

(a) X is (-dentable and
(b) (up) is a net on the unit sphere ofXso that (x) <_ lim inft (x + Auto)

for every x X and any A in R (resp. C).
Then there exists an infinite countable subset (un) that forms a boundedly
complete basic sequence in X.

Here are some situations where Theorem (4) is applicable.

Examples. (1) Assume (1 is the space of affine and continuous func-
tions on X. In this case, l-dentability is equivalent to the Radon-Nikodym
property [D-U]. On the other hand, any weakly null net (u) which is not
norm convergent automatically verifies condition (b) for the class (1. Actu-
ally, the class of functions verifying (b) for a fixed net (u), is stable under
suprema, finite infima, finite linear combinations with positive coefficients
and of course uniform convergence on the unit ball of X. If we denote by (2
the "closure" of ’1 under these operations, one can easily see that the
(2-dentability of X is equivalent to say that X has PCP: that is, bounded sets
have relative weak neighborhoods of arbitrarily small diameter. Theorem 4 then
allows us to recover some of the results in [G-M1] and [G-M2], in particular,
that Banach spaces with PCP are hereditarily separable duals.

(2) The conclusion of Theorem 1 can of course be obtained by applying
Theorem 4 to the set 3 of plurisubharmonic and 1-Lipschitz functions. Any
net (u) verifying (,) of Lemma (2) would satisfy condition (b) of Theorem
(4), in view of the plurisubharmonicity of the functions in the class 3. Again,
analogously to the linear case, if we denote by 4 the closure of (3 under
the operations described in Example 1)we obtain that 4-dentable Banach
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spaces contain infinite boundedly complete basic sequences. Such spaces
could be called spaces with the Analytic-PCP. Larger classes of spaces can be
shown to contain infinite dimensional conjugate spaces via Theorem (4).
Whether one can reach the class of spaces not containing co is still an open
question.
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