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ON THE MODULUS OF ABSOLUTE CONTINUITY OF
HOLOMORPHIC FUNCTIONS IN THE BALL

PATRICK AHERN
BY

AND JOAQUIM BRUNA2

Introduction

The starting point of this work is the result proved in our previous paper
[1] according to which if f is a holomorphic function in the unit ball B of C
such that Rf H, i.e., if

(1) sup fslR’f(r)ldr() <
r

(where R Ejzj O/Ozj .denotes the radial derivative), then f is continuous
up to the boundary and it is absolutely continuous along any smooth simple
curve on the unit sphere S (a particular case had been previously proved by
F. Beatrous in [2]). Two natural questions arise. The first is to obtain a
relation between the modulus of continuityof Rnf as a function in LI(s) and
the modulus of absolute continuity of f in B. The second is to find out which
form does it take in this context the general principle first pointed out by
E.M. Stein in [7] stating that holomorphic functions with some kind of
boundary regularity are automatically twice as regular in the complex tangen-
tial directions.

In this paper we deal with these two questions (in section 1 and 2
respectively). Rather than relying on the results of [1] we carry over alterna-
tive proofs of the global continuity of f and its absolute continuity on curves
that also give the desired extra information. In some sense the methods used
here are more direct and elementary than those of [1] but as a counterpart
they just work under certain restrictions of f and the type of curves being
considered.
We will consider all curves parametrized by arc-length, i.e., (q;(t), q(t))

1; we will also consider associated to q(t) the function T(t), which we call its
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THE MODULUS OF ABSOLUTE CONTINUITY 569

index of transversal#y, defined by the relation

(q’(t), q(t) ) ir(t).

The complex-tangential curves are those for which T(t) =- O.
We will sometimes use the notation Bn for the unit ball of Cn. The

(normalized) Lebesgue measure of S is denoted dtr and that of B by dye.

1. On the modulus of continuity

Let f be a holomorphic function in B satisfying (1) and let to(6) denote
the modulus of absolute continuity of the L function R"f in S:

to(8) sup{ fe[ Rnf(sr)[ do’( r(E) _< 6}.
In dimension n 1, it is obvious by the fundamental theorem of calculus
that to dominates the modulus of continuity of f:

If(z) f(w)l < to(lz w I).

It is therefore quite natural to try to relate the modulus of continuity of f in
Bn, or which is the same, in S, with to, also when n > 1. In this section we
will obtain such a relation, under the assumption that to satisfies certain
"regularity conditions". Concretely, set

,/./() to(n).

We will assume throughout this section that r/ is regular in the sense that

and

r/(8)/6 as6 0

i(t) at < crl( ) f, rl( ) rl( )
t3/2

dt < C /-----.

Note that trivially we will have, for a > 3/2,

f’ l( ) dt < C rl( 8 )
a-1

LEMMA 1.1. Under the above assumptions, the following estimate holds"

(2) IRf(z)l= O( r/(1 r) )
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Proof. Recall ([5, p. 103]) that if f, sr S, denotes the slice functions
f(,t) =f(,isr), then Rf()= ,tf’(,). In estimating Rf(z), by the unitary
invariance we may assume that z (zl, 0,..., 0) and estimate
Of/Ozl(z1, 0,..., 0). First we will estimate nf/Oz.

Let E be any set in the zl-plane and let E0 (resp. E1) be the set of points
in S (resp. B-1)whose first component is in E. Then

IRnf(()ldo-(()--- d/n_l(-,) IRnf(’,(1- 1ff’12)1/2ei)12r
with "= (srx,..., ’n-1), by formula (2) in [5, p. 15]. By subharmonicity the
last integral is greater than

If E is the disc E {)t" ]A Zll 3(1 Iz11)}, then tr(E0) is comparable to
(1 IZl [)n and thus we obtain the estimate

o,..., o) r/(1 r) )dA(,t) O
(1 t’) n-2

By the mean value property we conclude that

ony o o)-l ( Z =0( r/(1 r) )(1 r) n r- [zi[.

Then (2) follows by integrating (n 1) times in r and using the regularity
of ,q.

In order to establish that r/ is the modulus of continuity of f we will no
longer need the original hypothesis Rnf H1, the result will apply to any
holomorphic function satisfying (2). In what follows we will closely follow the
arguments in [5, Section 6.4].
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THEOREM 1.2. Let f be a holomorphic function in Bn satisfying

(2) [Rf(z)[ O( r/(1 r) )1-r

with rl regular. Then f is in the ball algebra, i.e., f C(-B--a). Furthermore:
(a) if v is a unit direction, and Do denotes differentiation in the direction of

u, then

IDol(z) O( r/(1 r)
(1 r)1/2 sr)l r/(1 r) ](1 -r) }’

z r"

and in particular

(b)

[Dvf(z)l= O( r/(1 r) )1-r

The modulus of continuity off in S is dominated by 7, i.e.,

(c)

If(z) -f(w)[ O(n(Iz- wl), z,w e S.

If q I S is a C1-curve on S with q’(t)l 1 and index of transversal-
ity T( ), then

If(,#(tl)) -f(,#(t2))l O(
In particular f(q(t)) has modulus of continuity q(6 2) if q) is complex tangential.

(d) q is also the non-isotropic modulus of continuity off in S, i.e.,

If(z)-f(w)l=O(n(ll-(z,w>l)), z,w S.

Proof Since 7(6)/6 is convergent near 0 it is clear that f has a continu-
ous boundary value f(’), and also, by regularity of r/

(3) If(g) -f(r)l O(r/(1 r)).

To prove (e)we use that there is c such that if

IAI c
(1 r) /2

then 1 rg" + Av 12 c(1 r). Let g(A) denote the function of one com-
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plex-variable

g(A) Rf(r +

in the above disc. Then g is bounded by O[r(1 r)/1 r] and hence, by
the Cauchy inequality,

(4) iORf(rg)l=O[n(1-r) (1- r)1/2 +l(,g>l 11 -r 1 -r

Then part (a) follows by integrating this from 0 to r (use formula 6.4.5 (2) in
[5]).
Of course (b) is less precise than (d), so we proceed to prove (c). If

u(r, t) f(r(t)), part (a) gives

(5) -(r,t) =O + IZ(t)l r/(1 r) ]1-r

Now write

If(q(tl)) -f(q(t2))l-< If(q(tl)) u(r, tl)[ +[u(r, tl) -u(r, t2))l
+lu(r, t2) f(q(t2)

The first and third terms are bounded by r/(1 -r), by (3), and the second,
using (5), by

r/(1 r)
Itl t21 (1 r)1/2

"l-
r/(1-r) ftilT(t)[dt1 --r

Now it suffices to choose 1 r It t2l 2 + ftt121T(t)l dt to finish the proof
of (c).

Finally, for part (d)we use the fact that given z, w on S, there is a curve

,: [o, L] s, Iq’(t) 1,

which is complex tangential, L I1 (z, w}l 1/2, with qffO) z, (L) w
and apply part (c).

COROLLARY 1.3. Suppose Rnf H and let q(6) be define_d as above. If rl
is regular, then q dominates the modulus of continuity off in B.

To illustrate the corollary, assume that Rnf H*’ for p > 1. If q is the
conjugate exponent to p, then

O(a) O((l/q), "0() o(n/q).
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Regularity of r/means p < n/(n 1), and the conclusion of Corollary 6.3 is
that f satisfies a H61der condition with exponent n[1 l/p] (with respect to
both the Euclidean and non-isotropic distance). This was proved by Graham
[3] and Krantz [4].

If r/(6)/t 0 as 0 as for instance in the above situation when
p > n/(n 1), then f is nicer and one can estimate the modulus of continu-
ity of certain derivatives of f.

Remark. Note that, conversely, if f is a holomorphic function in the ball
algebra with modulus of continuity r/, then (2) holds. This follows by applying
Cauchy’s inequality in a suitable disc placed in the normal direction. Hence
Theorem 1.2 seems to say that a holomorphic function behaves twice as well
in the complex tangential directions. We wish to point out here that this must
be interpreted very carefully. For r/(6)= 0(6’), a < 1/2, n 2, the hy-
pothesis of Theorem 1.2 is equivalent to the condition that the slice functions

f have a uniformly bounded Lip a norm. It may happen that the restriction
of f to every transverse curve is actually smoother than its restriction to
certain complex tangential curves. For example, if n 2 and

W
f(z,w)

(1 z,,,)
0 <

then

IRf(z,w)l o(1- Izl- Iwl) -/z-=

so that f is in LIP[1/2 a]. Now suppose qfft) is a transverse curve. We claim
that f q is of class Lip(1 a). We may assume that q(0) (1, 0), transver-
sality implying then q(0) 4: 0. So if q (ql, q2),

1 l(t) ct + O(t2), q2(t) O(t)

and hence for near 0,

In an analogous way

f( tp( t) ) o( tl-a).

d
-d-[f( qg( t)) O( -a)

and the assertion follows. On the other hand

f(cos t, sin t) sin t

(1 cos t)"
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is in Lip(1 2a) (as indicated by Theorem 1.2) but vanishes exactly to order
1 2a as t 0 and hence it cannot be in Lip(1 a). Since 1 a > 1 2a
this shows that f is less smooth on the complex tangential curve (cos t, sin t)
than it is on any transverse curve. The reason, of course, is that the
Lip(1 a) norm of all the slice functions is not uniformly bounded, whereas
the Lip(21-a) norm is uniformly bounded.
Another example of the same type is the following. Consider in BE the

function f(z, w) w/(1 z). A similar analysis shows that the restriction of

f to any transverse curve is C but the function is not even bounded on the
complex-tangential curve (cos t, sin t).

2. On the modulus of absolute continuity

Suppose Rnf H and to(), r/() are as in Section 1. We know that the
modulus of continuity of f is dominated by r/. In this section we will prove
that f is absolutely continuous on any real-analytic curve and that the
"modulus of absolute continuity" can be estimated in terms on r/ and the
index of transversality. This result gives the estimate r/() for a general curve
and the estimate r/( 2) for a complex-tangential curve, thus giving a precise
meaning to the phrase "twice as absolutely continuous". We emphasize that
the method of[l] proves absolute continuity on any C2 curve but without any
estimate of its modulus of absolute continuity.
To simplify the development we will just consider the case n 2.
We introduce the "disc" YI {z rq(t), 0 < r < 1, I} and the mea-

sure d/z supported on II defined by

f ffolF(rq(t))((1 -r2) 1/2 +lT(t) l)drdt.
For F HI(B 2) we let

tOF(6) sup(felF()ldtr(s)" E S tr(E) <_ 8).
LEMMA 2.1. The measure dl is a Carleson measure, i.e.,

and if

flFI d CIIFII,

TF() "--sup(flFI dl" E c H" I.(E) < )
then TF(() CtOF(t).
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Proof If q(t) (qgl(t) q92(t)) we introduce

,(t) (-q2(t),ql(t)).
Then b(t) is a unit vector and ((t), @(t))= 0; i.e., it spans the complex
tangent space at each point rq(t), 0 < r < 1.
The idea to relate ZF(,)with tOF(8) is the same used in the proof of

Lemma 1.1, where there II was the slice z2 0. That is, we would use
subharmonicity along complex tangent directions to write, with x2 1 r 2,

(6)
1 ff ioq(IF(rq(t))l <_ ]F(rq(t)) + xe t))idO.

Then we will integrate in dr, dt. To compare dr on S with dr dt dr we first
study the properties of the map

P(r, t, 0) rq(t) + (1 r2) 1/2eig/(t)

from (0, 1) I [0, 2,r] to S.

LEMMA 2.2. Suppose q" I [a, b] - Rn is a real analytic curve. Let V be
the smallest linear subspace of R that contains {q(t): I}, and let W be the
orthogonal complement of V with respect to the usual inner product, ( ), on
Rn. Then there is an integer m >_ 0 such that if x q W then the equation
( x, q(t)) 0 has at most m solutions in I.

Proof. If x W then x x + x2 where x ( W, x2 ( V and x2 :# 0.
The equation (x, (t)) 0 is equivalent to the equation ((x2)/(Ix21), (t))

0. So we will show that there is an m such that if x V, Ixl 1, then
there are at most m solutions to the equation (x, (t)) 0. First we do this
locally. Fix x V, Ixl 1 and o I. Since (x, (t)). 0, it follows from
the fact that 9 is real analytic that there is a least rn m(tO, x), such that
(x, m)(to)) 0. And from this it follows from Rouche’s theorem that there
is a neighborhood O of x and an ex > 0 so that the equation (y, 0(t)) 0
has at most m solutions in t, It tol < ex, for each y Ox. By compactness
of the unit sphere in V it follows that there is an e > 0 and an integer m so
that for each x V, Ixl 1, the equation (x, (t))= 0 has at most m
solutions t, It tol < . Now by compactness of I, there are a finite number
of intervals I U LI IN D_ I and integers m, j-- 1,..., N, so that the
equation (x, (t))= 0 has at most m solutions in I, for each x V,
Ixl 1. Now just let m m + +ms and the lemma is proved.
Note that if (t). 0 then the real dimension of W is less than n. This will

be used in the next lemma.
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LEMMA 2.3. Suppose that q is a real analytic curve.
(a) There is an integer m such that /f U (0,1) I [0,2) then dtr

almost all points in dp(U) have at most m preimages.
(b) Let A(t), B(t) be defined by

q’(t)q(t) q(t)q(t) =A(t) + iB(t).

Then, up to multiplicities,

dtr() =l-T(t)r + x(A(t)sin 0 B(t)cosO)ldrdtdtr

(here and in the following, x stands for (1- r2)1/2). In particular for any
measurable set V in U and any function h,

f h() dtr() < f2(dp(r,t,O))
l-T(t)r + x(A(t)sin 0 B(t)cosO)ldrdtdtr

Remark. Part (b) applies whenever part (a) holds. This follows from the
Jacobian formula for surface integrals, see, for example, Theorem 1.2 on
page 388 of [6].

Proof. Note that if (r,t, 0) sr then (’,q(t)) r and hence
Im(’, p(t))= Re(i’, p(t))= 0. Since the real part of the complex inner
product in C2 is the real inner product in R4, the last lemma applies. We
conclude that there is a proper real linear subspace W in C2 and an integer
m so that if r iW the equation Im(’, p(t)) 0 has at most m solutions in
I. Note that once t and " are given, the equation rq(t)+ xei$(t)=
determines r and 0 uniquely, 0 < r < 1, 0 < 0 < 2zr. This shows that if

iW then the equation (r, t, 0) sr has at most m solutions in (0, 1) I
[0,2zr). Since the intersection of iW and the unit sphere in C2 has tr

measure zero, the proof of part a) is complete.
Now we compute the image of dtr under . Let

dx r
2 rtP2 + xeil, x
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Then

0 0 0
0-7 ( rq’l xei) + (rq. + xeil) C92

i02
0

iO-e + e 12"

From this it follows immediately (recall that Iq’(t)l 1) that

For the mixed terms,

O O } r2

-ff’-7 rqgll --xeiqglqg + --ei21 rEqgx

r2+ rq2 + xe-iq92qg ---eiol rlq.
Let us write (2 1 A(t) + iB(t). Note that this is the component of
q’(t) in the complex tangent direction, hence A2 + BE 1 T2. Then,

0 0 } r2 eio(-’ O 2irT + xe-i( A’-- + iB) + A _,iB]
X

and taking real parts, and noting that T is real, we have

r2O___Or O__Ot x( A cos 0 + B sin O) + --(A cos 0 + B sin O)

A cos 0 + B sin 0

Also

bY’ O--O =/xe 12 + irlq2[ ixe-iq2q91 + irlql[ 2 ir,

hence
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and finally- -3 ixr e -/x2@]@2 ixre q qg /xEqgl

TX2 + ixre-i( A + iB ),

Ot 00 TX2 + xr(A sin 0 B cos 0).

Now we have to compute

A det

1

A cos 0 + B sin 0

A cos 0 + B sin 0

Tx + xr(A sin 0 B cos 0)x

0 Tx2 + xr(A sin 0 B cos 0) x

Easy manipulations and use of the identity

1 ( A cos 0 + B sin 0)2 T2 + ( A sin 0 B cos 0)2

yield

A= Tr + x( A sin O B cos O ) ]2.

Hence we conclude that dtr is mapped onto

I-T(t)r + x(A(t)sin 0 B(t)cosO)ldrdtdO

and part (b) follows.

If E c H, E {rp(t), (r, t) E0}, from (6) it follows that for all F H1,

fE 1 f/S02= i0(7) IFId z <_ 7;f IF(r(t) +xe @(tl)l[x +lT(tllldOdtdr.

But according to Lemma 7.2, the right hand side is comparable to

f<i, IF(C) do()
(Eo [0, 2r])

only when A B 0, i.e., when T 1 (slices). Thus in the general case we
need to use subharmonicity more accurately. This is the content of the next
lemma.
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LEMMA 2.4. If h HI(B 1) and u is real, let

Iu [h(ei) 1 + u sin tl dO.

Then
(a) Iu > max(lul), 1 lul)lh(0)l >- max[(lul)/2, 1/2]lh(0)l and
(b) I > glul Ih’(0)l.

Proof If z ei, then I1 + u sin 01 12iz +/,/(7,2- 1)1/2. Letting g(z)
h(z)12iz + u(z 2 1)/2 we see that

Iu ff-f Ig(e )ldO >-Ig(0)l Ih(0)l.

On the other hand, if 0 < ul < 1 it is obvious that

1 f,Iu > (1 lul)- Ih(ei)ldO (1 u)lh(0) I.

lul 1 lull >This proves (a) since it is clear that max[
For (b) note that

f u
h’(0)

1
h(ei)(1 -t- U sin 0) dO h(O) +2-

and so

Zu >-Ih(O) / (o)[ >  lh’(O) Ih(O)

> ]h’(0) 3llul, by part (a).

Part (b) follows.

End of proof of Lemma 2.1.
bound from below

Let h(h) F(ro(t) + xh(t)). We will

(8)
1 f-ih(eiO ) x(A(T)sinO B(t)cosO)ldO.I" [-T(t)r +

Recall that X 2 1 r 2, and A(t)2 + B(t)2 1 T(t)2. Let A iB a

lalein. Then

A sin 0 B cos 0 Im a ei lalsin(0 + r/).
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Changing from 0 to 0+r/, we thus may assume that B=0 and A
V/1 T2"
Now I IT(t)lrIu, with u -xA/Tr. Applying Lemma 2.4 it is immedi-

ate that

V/i_T2 IT(t)lr]I > max 2 3 Ih(0) I.

If r > 1/2, this is > c(x + T(t)l)lh(O)l. Hence we conclude

(x

<c [f(rq(t) +xeiO(t))[I-T(t)r+x(AsinO-BcosO)iao.

If E {rq(t), (r, t) E0}, integrating in r, t and using Lemma 2.3 we obtain

felfl dlz < c IF(’)l&r() < CtOF(tr(dP(Eo [0,2zr]))).
(E0 [0, 2zr])

Also, by Lemma 2.3, and since IA sin 0 B cos 01 < 1,

tr((Eo [0,2,rr]))

ffefo [2-T(t)r+x(A(t)sinO-B(t)csO)ldrdtdO

This finishes the proof of Lemma 2.1.

With Lemma 2.1 we can now measure the absolute continuity of f along
curves, when F R2f is in H1"

THEOREM 2.5.
Define

Assume that f is holomorphic in B2 and that R2f H

to(6) sup(fe[ RZf(()[ dtr(sr), E c S, tr(E)_< 6),
,() ,,,().

Assume also that rl is regular in the sense of Section 1. Let q: I --, S be a real
analytic curve such that Iq’(t)l 1, with index of transversality T(t). Then, if
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Ik [ak, bk] k 1,..., m are disjoint subintervals of I,

E [f(q(b)) -f(q(a))[ <_ Cw [T(t)[dt + _, (b- at: )
k=l k=l

Note that the estimate is entirely analogous to the one in Theorem 1.2 (c)
and gives the precise meaning of the term "twice as absolutely continuous".
If the curve is transverse, then

fvik r(t)ldt = _, (bk ak)

and the modulus of absolute continuity is r/(Ekm= l(bk ak)). If the curve is
complex tangential, then T 0 and the modulus of absolute continuity is
then

rl

_
( bk ak)

k=l

Proof. Write u(r, t) f(rq(t)). For an interval [a, b],

and hence

lu(x,b)- u(x,a)l < j lut(x,t)ldt,
lUt(X,t) ut(s,t)l < lUrt(r,t)ldr

lu(x,b) u(x,a)l <_ u,(s,t)ldt + lu,(r,t)ldrdt.

If Ik [ak, bk] are as in the statement, making x 1 and adding on k, we
have

m

(9) E If(u(b)) f((a))l
k=l

lut(s, t) ldt + lUtr( r, t)ldrdt

:=I1 +I2"

where s will be chosen later.
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Let Vr denote the tangential gradient, i.e.,

Oh Oh
Vrh(z) -22--1-(z) + 21-(z).

The derivative is the derivative in the direction of q’(t). Since

we can write

Utr(r,t) (qg’(t),q(t))R2f(rq(t)) + (q’(t),d/(t))VrRf(rq(t)).

Therefore

lU,r(r,t) _<lr(t)l IRf(r(t))l / (1- Z(t)2)l/2lVrRf(r(t))
and

I2 < IT(t)] IR2f(rq(t))ldrdt

fu,kfsl (1 T(t);2t1/2+ VTRf( rq(t) ) dr dt

t + t4.

In the dr integral of the last term we use the following lemma (see [1] for a
proof).

LEMMA 2.6. fig(r) is differentiable in (0, 1) then

f f ’(llg(r)l _< (1 r)lg r)idr + (1 s)lg(s)l, o < s < 1.

We obtain

14 -< ft,/k(1 s)lVRf(s(t))ldt

+ (1 r)(1 T(t)2)ll21VTR2f(rq(t))ldrdt

I5 +I6

In conclusion, the left hand side of (9) is bounded by I + 13 + 15 + 16. By
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estimate (5),

I1<_ c{ fl(1-- s) k(1 s)1/2 II1 /
7(1-s) fu }1 s [T(t)ldt

and by estimate (4)with D VT,

I5 < c
7(1 s) m

(1 S) 1/2

If E {rq(t), 1 s < r < 1, UIk}, by Lemma 2.1,

<_ c((E)).

Now let us bound 16. For IAI 1 let

h(A) R2f(rp(t) + xh(t))

and let I be the integral in (8). Recall that I IT(t)lrI with u -xA/Tr.
Applying Lemma 2.4 (b), we get

that is,

V/1- Txlh’(O) <_ SI,

1 r(t) 2 (1 r2)lVTR2f(rq(t))
3 f l< R2f(rqo(t) + xei(t))

l-T(t)r + x( A( t)sin 0 B(t)cos O) dO.

With F R2f this is exactly the same bound obtained in the proof of
Lemma 2.1. Integrating in dr dt we thus obtain for 16 the same bound as
for 13:

_< c,,(,(E)).

On the other hand,

/z(E) fslfui,[(1 r2) 1/2 + IT(t)l] drdt

m

(1 s)fcilT(t)ldt + c(1 s)/2 E II1.
k=l
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Hence, we finally obtain
m

E If((bk)) f((ak))l
k=l

__<C( Y/(1 S) m q(l_s) fvlklT(t)ldt)(1--s)x/2k=lllkl
/

1-- s

(fUlk m)+ tO (1 S) Ir(t) ldt + (1 s) 3/2 E Ilkl
k=l

Now, it just remains to choose 1 s (Ek=lIkl)2 + fvIlZ(t)l dt to finish
the proof of the theorem, m

Remark. The constant C in Theorem 2.5 depends on the curve q(t). In
fact, from the proof we notice that it only depends on the integer N in
Lemma 2.3. In particular, the constant can be chosen the same for two curves
ql(t), q2(t) related by a real orthonormal transformation; i.e., there exists a
linear transformation U O(2n) such that Ul(t) 2(t). For example, it is
the same constant for all slices of B2 and the curve tl (cos t, sin t), so
generally speaking, the function f is twice as absolutely continuous along
complex tangential directions.

Remark. The assumption that is real analytic is probably not necessary.
Indeed, we can prove the theorem for any transverse curve that is of class C2.
For this problem the complex tangential case seems more difficult.
To check the sharpness of the theorem, let us consider the example

f(z, w) (1 z), a > 0. Then it is immediate that R2f H(B2). Also,

tO()= sup felRy’()ld()=
r(E)<8

Here dA denotes the area element. Now

sup fe f"( z) dA( z).
A()<

f lf"(z)lda fr -lxE(re drdO

using polar coordinates centered at (1, 0). From this it is clear that the
maximum will occur when E is a disc centered at z 1 and in this case
tO(6) O(8/2), and hence r/() O(8). This shows that the last theorem
cannot be improved.
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