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HOMOGENIZABLE RELATIONAL STRUCTURES

BY

JACINTA COVINGTON

In this paper we consider certain classes of relational structures which do
not have the Amalgamation Property, and hence do not have a universal
homogeneous structure, but which can be made to satisfy the Amalgamation
Property by the imposition of some additional structure. We thus obtain a
class which is the age of a homogeneous structure, and which has the original
class as ’underlying structures.’ We show that the underlying structure of the
countable universal homogeneous structure has a model complete theory, so
is a model comparison for its universal theory.

In Section 1 we first define homogenizations and homogenizable classes
then introduce the notion of Local Failure of Amalgamation. Section 2 is
devoted to stating and proving Theorem 2.1, which gives a sufficient condi-
tion for a class of structures to be homogenizable. This condition involves
Local Failure of Amalgamation. In Section 3 we show that the theory of the
’homogenized’ structure is model complete.

1. Homogenizable structures

DEFINITION 1.1. Let be a purely relational first-order language, and
let be a class of --structures. The age of an e-structure F is the class of
structures isomorphic to finite substructures of F. F is homogeneous if every
isomorphism between finite substructures of F extends to an automorphism
of F. has the Hereditary Property (HP) if all substructures of members of
belong to . has the Joint Embedding Property (JEP) if whenever A, B ’,
there is a structure D embedding both A and B. d has the Amalgama-
tion Property (AP)if for all embeddings a: C A and /3: C--> B between
C-structures A, B and C, there is a structure D and embeddings y:
A D and : B --> D such that ay

In 1953, Fra’iss6 showed that the Amalgamation Property is a crucial
condition for the existence of a homogeneous structure with a given age.
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THEOREM 1.2 (Fra’iss6 [4]). Let . be a purely relational first-order lan-
guage. Let be an isomorphism-closed class of finite -structures. Then the
following four conditions are necessary and sufficient for there to be a countable
homogeneous structure with age .

(i) has only countably many isomorphism classes;
(ii) - has the Hereditary Property;
(iii) has the Joint Embedding Property;
(iv) has the Amalgamation Property.

Moreover, this structure is unique up to isomorphism.

We now give the notation and terminology we use to discuss amalgamation
of diagrams. We then state a Compactness Lemma for amalgamation.

Notation 1.3. Let be a class of .--structures, and let a: C A and
/3: C --, B be --embeddings between -structures. We denote the diagram
shown in Figure 1 by [a: C-A; /3: C- B] or [a;/3] or [C; A,B]
depending as the structures and embeddings involved are clear from the
context.

Let denote the class of finite (-structures.

DEFINITION 1.4. Let a" C --* A,/3: C B, ao: CO Ao and/30: CO Bo
be embeddings between (-structures and let [a;/3] and o--
[ao;/30]. Then (e, r/) is an embedding of ao in a if e: CO - C and r/"
A o - A are .--embeddings such that ea ao7 as in Figure 2. We say that
o is a subdiagram of if there are embeddings e" CO C, r/" A o - Aand st: Bo - B such that (e, r/) embeds ao in a and (e, ’) embeds /30 in /3.
That is, the diagram in Figure 3 commutes.

LEMMA 1.5 (Compactness Lemma). Let be a class of relational struc-
tures axiomatized by a set of universal sentences. Then a diagram

[a’A -o B; fl’A - C]

A B C

Ao
o

A B

Co

FIG. FG. 2 FIG. 3
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can be amalgamated in if and only if every finite subdiagram can be
amalgamated in ’. Similarly, JEP holds for C if and only if it holds for f.
We consider structures which are not necessarily homogeneous, but can be

made homogeneous by expanding the language by finitely many relation
symbols.

DEFINITION 1.6. Let .za be a finite purely relational language. Let E be a
set of universal --sentences and let be the class of models of E. (Then
there are only countably many isomorphism classes of finite .--structures and
if’ satisfies HP.) Assume satisfies JEP. Then we say that is homogeniz-
able if there is a finite relational language ’_za and a countable set
X’ X of universal axioms in .’ such that:

(i) The class (’ of models of X’ satisfies AP and JEP;
(ii) Every #structure admits a (’-structure;
(iii) If F’ is the unique countable homogeneous ’’-structure with age ’and F is its --reduct then Aut.(F)= Autj,(F’).

We call ’ (resp. F’) a homogenization of (resp. F).

Example 1.7. The homogeneous undirected graphs were classified by
Lachlan and Woodrow [6], [8]. None of the homogeneous graphs has age
equal to the class of finite bipartite graphs. But the class of bipartite graphs is
homogenizable. It is homogenized by adding to the language of graph theory
a binary relation B such that B(x, y) holds if and only if x and y lie in the
same bipartite block.

We would like an analogy of Fra’iss6’s theorem for homogenizable classes.
We will replace the Amalgamation Property in his theorem by the following
property. This gives us sufficient conditions for a class to be homogenizable.

DEFINITION 1.8.
many diagrams

Let ( be a class of structures in which there are finitely

j [j,o" Xj -> Yj, o’ j,l" Xj --> Yj,1] (J 0,...,p),

such that any diagram in fails to be amalgamated in ( if and only if
one of j (j 0,..., p) is embeddable in . (Note that each j must fail
AP.) Then we say that ( has Local Failure ofAmalgamation (LFA).

Example 1.9. The class of N-free graphs has LFA. A graph is N-free if it
has no subgraph isomorphic to the graph shown in Figure 4. There are two
complementary diagrams which fail AP, and any diagram which fails AP in
the class of N-free graphs contains one of these as a subdiagram. They are
the diagrams [C; A, B] shown in Figures 5 and 6, where C {c0, c 1, c2},
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Co, / a
a

/ C O

ClC2
b

C 2

FIG. 4 FIG. 5 FIC. 6

A C d (a) and B C LJ {b). Thus, for any triple {x, y, z} carrying com-
plete (resp. null) induced subgraph, there is a distinguished vertex in {x, y, z}
such that any vertex joined to exactly one (resp. two) of x, y and z is joined
(resp. not joined) to the distinguished vertex. This class can be homogenized
by adding a ternary relation to distinguish one vertex from each triple
carrying null or complete induced subgraph [3].

Example 1.10. The class of bipartite graphs does not have LFA. For each
pair of positive integers (m,n) consider the bipartite graphs A and B
consisting of paths of length 2n + 1 and 2m + 2 respectively. Then the
induced subgraphs on the two endpoints of each of A and B are null, but
cannot be amalgamated, while any proper subdiagram can be amalgamated.

2. Homogenization theorem

This section is devoted to proving the following theorem:

THEOREM 2.1. Let ’ be a finite purely relational language. Let i, be a set

of universal -sentences. Let be the class of models of ,. Assume that f
satisfies the Joint Embedding Property and that it has Local Failure ofAmalga-
mation. Then is homogenizable.

The idea behind the proof is as follows. We homogenize by adding to
a relation for each of the embeddings involved in the diagrams j (j
0,..., p). The relation R associated with the embedding :j,k: X. - Y’,k will
hold on the tuple in a ’-structure F’ if and only if the (-structure induced
on $ is isomorphic to X and $ acts as if it were already embedded in Y.,g.
That is, for any (’-structure A’ containing F’, the diagram [$; A’, Y’,k] in
Figure 7 can be amalgamated.
We now define the terminology and notation used in the proof.
By the Compactness Lemma, we may assume that all the structures X, Y., k

(j 0,..., p, k 0, 1) are finite. We use to denote a tuple of arbitrary
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F’
k

x---X

FIG. 7

length, the length being clear from context. We also abuse notation by
identifying the ordered tuple $ (Xo,...,x) and the unordered set
{x0,..., x} whenever convenient.

Let {6i: C Ai}’= 0 be an enumeration of the distinct (up to isomorphism
of embeddings) embeddings involved in 0,..., p. Let qi ICil and r
[Ai[. Let

,a, ’U R 0 <_ < n},

where each R is a new relation symbol of parity qi. The relation R is to be
defined so that Ri(2) holds if the induced -structure on is isomorphic to
C and can be extended to be embedded in Ai.

Let {cij: j 0,..., qi 1} be a fixed labelling of C and {aij: j 0,...,
r 1} a fixed labelling of Ai, with aij cij( (j 0,..., qi 1). Let Ci()
denote the formula which says that @i: xj cij (j 0,..., qi- 1) is an
--isomorphism, i.e., says that carries the induced -structure C with the
chosen labelling. Similarly, let Ai() denote the formula which says that i:
Xj aij (j 0,..., r 1) is an --isomorphism. Note that Ci() and Ai(Yc)
are quantifier-free --formulae.

Let Wit(; 6i) Ci()/ (:q)Ai(Yc"). This formula says that Ci() holds
and there is a tuple which is a witness for the embedding (i extending the
structure C on to Z i. Note that Wit($; 6i) is an existential --formula.
Now, any diagram [a: C A;/3: C - B] can be amalgamated unless it

embeds one of the diagrams j [j, 0; j, 1] (J 0,..., p) from Definition
1.8. In particular, if a (i then there is an embedding (r/, X) of sCj, k in 6, as
in Figure 8. Then

[6i" Xj -’> Ai; j,l-k" Xj Yj, l-k]

cannot be amalgamated in . We call such a diagram an incompatibility
diagram and we say that j,l-k is 6i-incompatible.
There may be more than one embedding of j,k in 6i, but since C and A

are finite there are, up to isomorphism, only finitely many subembeddings of
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Ai B

Ai

Ci A(i,j)

Cs(i,j)

FIG. 8 FIG. 9

ti, hence only finitely many incompatibility diagrams. List these as (ij:
j 0,..., mi). Since each 8i-incompatible embedding is one of 80, 1,.-., 8
the 8i-incompatible embedding in ij is ts(i,j) for some 0 < s(i, j) < n. (See
Figure 9). This defines a function s(i, j) (0 < < n, 0 < j < mi). If F w Ci(Yc)
then the structure induced on is isomorphic to Ci. Then r/ embeds Cs(i,j
in Ci, hence in $. Let $(i, j) denote the image of C(i, in $.

Let

Againstj(; i) Ci() / Wit($(i, j); ,(i,j))"

If F w Against.(; 6i) then [; Ai, F] cannot be amalgamated. That is, the
witness for iSs(i,y) on :(i, j) is a witness against t on .. Let

mi

Against(S; i) V Against(
/=0

This says that there is some witness against t on $. Note that Against(; ti)
is equivalent to an existential _W--formula.

A structure F is existentially closed in ( (see [5]) if any existential formula
consistent with A(F) is realized in F. The next lemma says that unless
there is a witness against i on in F then a witness for i can be added to
F and that an existentially closed structure will already contain such a
witness.

LEMMA 2.2. Let F be a --stmcture and let A(F) be the elementary diagram
of F, i.e., the set of all atomic r-sentences and negations of atomic r"
sentences tree in F. Then F Ci() A -Against(; 8i) if and only if A(F) U
Wit(; 6i) is consistent.

In particular, if F is existentially closed then

F Wit(Yc; i) <"-> Ci() /k -Against($; i)"
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Proof
only if

Since has LFA, [; F, Ai] fails to be amalgamated if and

r Against( X: i)"

But fails to be amalgamated if and only if A(F) u Wit(2; i) is inconsis-
tent.
Now assume F is existentially closed. Then, since Wit (if; 6) is an existen-

tial --formula, A(F) Wit(; 6) is consistent if and only if F Wit(if; 6).

Now, if F Ci(ff) then there are three possibilities.
(a) There is a witness for 6, i.e., ff is already embedded in a copy of A

in F;
(b) There is a witness against 3i, i.e., some sub-tuple of is already

embedded via one of the 3-incompatible embeddings in Ag,.);
(c) There is neither a witness for 6 nor one against, i.e., ff can be

embedded in A, but is not.
We are now ready to state the axioms which homogenize . The relation

R is to be defined in such a way that F Ri(Yc) if a witness for i on : can
be added to F. So we need axioms to say that when Ri(Yc) holds the structure
behaves as if it already had a witness for t on ;. We eliminate problems
caused by possibility (c) with axioms saying that either Ri(Yc) holds or one of
the relations Rs(i,j) corresponding to a 6i-incompatible embedding holds.
Note that (c) does not arise in an existentially closed structure. We will use
this fact to impose a ’-structure on an existentially closed (-structure.

AXIOMS 2.3. Let i,’ consist of the following set of axioms in the language
and let ’ be the class of models of X’.

(I) X;
(II) Ri($) Ci($) (i 0,...,n);

(III) Wit(S; 6i) --, Ri($) (i 0,..., n);
(IV) Ci(,) ---> ni($) V V mi Rs( j)(’(i, j)) (i 0,..., n);

j=o(Li =o.2) is a quantifier-free --formula and(V) Whenever k > 0 and q

X A wit(.; iy) "--> 0 j
j=o j=o

then

k

A Ris(j) --’>

j=O

k

j’----O "j
is an axiom.
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By (I), the underlying -structure of a ’-structure is a -structure.
Axioms (II) say that Rg() holds only when the -structure induced on $ is
Ci. Axioms (III) say that if $ is already embedded in an isomorphic copy of

Zi then Ri($) must hold. Axioms (IV) ensure that whenever $ has induced
substructure C then either R or one of the relations corresponding to an
6i-incompatible embedding holds for $. Scheme (V) means that Ri(’) is
consistent with the existence of a witness for t on ..

In particular, since 8s(i,j) is i-incompatible,

Wit(S; i) -mgainst($; 8g).

Thus

Wit(; ti) / mgainstj($; i) > X0 X0

Then by Axiom Scheme (V),

’ Ri( Yc) --> Rs(i,j)(.( i, j) ) (1)

for 0 < < n and 0 < j < mi.

Note that all the axioms are equivalent to universal ’-formulae.
We now show how to put a (’-structure on an existentially closed ’-struc-

ture.

LEMMA 2.4.
ture

Any existentially closed C-structure F admits a unique "-struc-

Proof. We first show for any ’-structure F’ on F,

F’ Ri() Wit(2; i).

By (III), F’ Wit(S; ti) --’> Ri(Yc). So assume now that F’ Ri(). Then by
(II), F Ci(Yc) and by Equation (1), F’ Rs<i,j)(Yc(i j)). But then again by
(III),

F -Wit(Yc(i,j);t3s(i,j)) forallj O,...,mi,

i.e., F -Against(:; ti). Then by Lemma 2.2, F Wit(:; ti).
So define an ’-structure F’ on F by

F’ Ri() if and ony if F Wit(S; ti) (2)

We need to verify that this structure satisfies the axioms E’.
(I) F’ E since F E.

(II) F’ Ri(Yc) - Ci($) because Wit(S; i) holds only if Ci($) holds.
(III) F’ Wit(S; i) Ri(Yc) by the definition.



HOMOGENIZABLE RELATIONAL STRUCTURES 739

(IV)

That is,

By Lemma 2.2,

F Ci(2) Wit(2; ti) v Against(2; 6i).

mi

F Ci(2 ) ---> Wit(2; 6i) A V wit(2(i,J);6s(i,j)).
j=O

Then by Equation (2),

mi

r’ Ci(2 ) ---> Ri(2 ) V V Rs(i,j)(2(i,J))
j=o

(V) This follows directly from Equation (2).
Thus (2) defines a d"-structure. 1

The following three lemmas show that (’ is a homogenization of vz. Note
that Lemma 2.5 implies that E’ is consistent.

LEMMA 2.5. Every model of E can be expanded to a model of E’.

LEMMA 2.6.

LEMMA 2.7.
age ’ then

has AP and JEP.

If F’ is the unique countable homogeneous ’-structure with

Aut.(F) Aut,(r’).

Proof of 2.5. Let F be a model of . By [5, Corollary 3.2.2.], F can be
embedded in an existentially closed -structure h. By Lemma 2.4, Zk admits a
unique ’-structure A’. Since E’ consists of universal formulae, the restric-
tion F’ of A’ to F is a d’-structure, m

Proof of 2.6. Let [C’; A’, B’] be a finite diagram in ’. Let A, B and C
be the -reducts of A’, B’ and C’ respectively. We first embed A and B in
-structures and / respectively, such that any d"-structures on and /
coincide with the original ’-structures on A and B, i.e., if 2 A then

Wit(2; 6i) if and only if A’ Ri(2) and similarly for/ and B’. We then
amalgamate the diagram [; ,/] in , and show that any ’-structure
on the amalgam yields an amalgam of [’; A’, B’].
We show that A can be embedded in such a structure . Let {a i"
0,...,/9} be a fixed labelling of A. Let A(2) denote the formula which
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says that q: x a (i 0,..., p) is an -isomorphism, and let A’(2) be the
formula which says that q is an ,’-isomorphism. Consider pairs (i, ) where
0 _< _< n and is a subtuple of 2 such that A(2) Ci(). List such pairs
as {(ik,2k): k 0,..., t} so that

A’(2) Rik(2k) for 0 < k < s and A’(2) -- Ri(2k) for s + 1 < k < t.

We need to show that

UA(2) U {Wit(2k; 6ik)" k 0,..., s}
{-Wit($k; ik )" k =S + 1,..., t} (3)

is consistent.
By Axioms Scheme (IV), for each (k s + 1,..., t) there is some 0 _< Jk <--

mi such that

A’(2) Rs(i,O(2k(ik, Jk))-

We show that

U A(2) U {Wit(2g; ik )" k 0,..., S}
{Againstj(2k; tik)" k "-s -[- 1,..., t} (4)

is consistent. Clearly, any model of (4) is a model of (3).
Assume (4) is inconsistent. Then

Wit(2k; ik ) A
k=0

A Wit(2k(ik, Jk);a,(i,,hO) -’ A(2)
k=s+l

A(2) is a quantifier-flee .-formula, so by Axiom Scheme (V),

’ A Rik(2k) A A Rs(i,,h,)(2k(ik, Jk)) -- A(2).
k=0 k=s+l

That is, we have replaced each Wit(2; 8i) by Ri(2). But this contradicts the
fact that A’ 5;’. Thus (4) is consistent, as required.
We now embed A in a model A of (3)and similarly embed B in a

structure/. Assume the diagram [C; ,/] cannot be amalgamated in .
Then by LFA, there is a tuple 2 in C such that for some 0<i<n,
C Ci(2) and A Wit(2; 8i) and/ w Againsty(2; 8i) for some 0 < j < mi.

Then A’ Ri(2) and B’ R(i,y)(2(i, j)). Since C’ is a substructure of both
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A’ and B’, we now have

C’ Ri(2 ) A Rs(i,y)(2(i,j)).

By (1) this contradicts the fact that C’ is a model of E’.
Thus, there is an amalgam D of [C; .,/] in . By Lemma 2.5, D

admits a ’-structure D’. We must show that the restrictions of D’ to A and
B coincide with A’ and B’. So take 2 _A’ such that A’ Ri(2). Then
A Wit(2;ti) and so since Wit(2;i) is an existential formula, D
Wit(2; ii). Then by Axiom (III), D’ Ri(2). If A’ Ri(2) then for some
0 < j < mi, A’ Rs(i,j)(2(i, j)). Then by the above,

D’ R(i,i)(2(i,j)),

and so by (1),

D’ - Ri(

Similarly for B’.
The proof that has the Joint Embedding Property is entirely analogous.

Proof of 2.7. Let F’ be the countable homogeneous structure with age
and let F be its e-reduct. We need to show that Aut_e,,(F’) Auto(F).
F is existentially closed so by (2),

F’ Ri( x) Wit( 2; i).

Take q Auto(F). Then, since Wit(2; i)is an .-formula,

F Wit(2; 8i) if and only if F Wit(2q; i)"

Thus it follows that F’ Ri(2) if and only if F’ Ri(2q), and hence q is an
’-automorphism.

3. Model completeness

In this section we show that the --theory of the ’homogenized’ structure is
model complete. Thus it is the model companion (see [5]) for the theory E of
the class

COROLLARY 3.1. Let ’, _’, and ’ be as in Theorem 2.1. Let F’ be
the countable homogeneous structure with age " and let F be its -reduct.
Then Th(F) is model complete.
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Proof A theory T is model complete if every formula is T-equivalent to a
universal (or to an existential) formula. (See [2, p. 111].) Thus, every _"-for-

mula q is Th(F’)-equivalent to an existential .z’’-formula, i.e.,

for some quantifier-free formula . We can assume that q is in disjunctive
normal form.
Now, for each relation R of "\, we have

and

F’ _,Ri( Y) Wit(2; a,)

r’ R (2) Against( 2; i)

Thus we can replace each occurrence of R or - R (i 0,..., n), in q by
an existential ..--formula and then bring all the existential quantifiers forward
to obtain a quantifier-free .--formula t’ such that

In particular, this is true if q is an e-formula. Thus

r ,-,

This proves that F is model complete.

Given a class ’ of structures, we would like to choose a ’favourite’
countable structure with age . When ’ satisfies the hypotheses of Fra’iss6’s
Theorem, we choose the unique countable homogeneous structure. Homoge-
neous structures are model complete, so are their own model companions.
When there is no homogeneous structure, the model companion, when it
exists, is a candidate for favourite. But a homogenizable structure is also a
possibility. However, there is no unique homogenizable structure associated
with a homogenizable class. Thus we need to compare homogenizations and
to choose a favourite homogenization of each class. In particular, we would
want this to be the homogeneous structure when it exists.

Albert and Burris [1] have studied model companions of universal classes.
They too looked at the ways in which AP fails. They defined the Strong
Bounded Obstruction Property (SBOP) for classes of finite structures to hold
whenever any diagram [C; A, B] which fails to be amalgamated contains a
subdiagram which fails AP whose size depends only on the size of C. Thus
LFA implies SBOP. Albert and Burris proved that a class satisfying SBOP
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and JEP has a model companion. The results of this paper show that if LFA
holds then the model companion is homogenizable.
Now, every homogenizable structure is 0-categorical, and D. Saracino

proved in [7] that every 0-categorical theory has a model companion. This
raises the following question. Is there a homogenizable class whose model
companion is not homogenizable? If so, then we have two different countable
structures having a good claim to be our favourite countable structure for the
class. If not, then we have arrived at the same structure in two seemingly
different ways.
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