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OUTER AUTOMORPHISMS OF GROUPS

BY

MANFRED DUGAS AND R/0DIGER GtSaEL2

1. Introduction

In this paper we concern ourselves with the group of outer automorphisms
of groups. It is obvious that if G is a group embedded in another group H,
then any inner automorphism of G lifts to an (inner) automorphism of H.
Angus Macintyre asked whether this extension property actually character-
izes inner automorphisms. The answer is affirmative as recently shown by
Schupp [24]. He actually proved the following result which is stronger than
the one stated in [24].

THEOREM [24]. If G is a group then there exists an extension H of G with
Out H 1 (i.e., H is complete) and n/_/(G) G.

Out G denotes the factor group Aut G/Inn G where Inn G is the normal
subgroup of all inner automorphisms of G.

This theorem generalizes an earlier countable version due to Miller,
Schupp [17]. We want to put Macintyre’s question into a more general setting
which will lead quite naturally to new questions. For instance, is every group
the outer automorphism group Out G of some group G? A positive answer
to the latter will be part of our main theorem. This is in contrast with results
due to Robinson [22], [23] who showed that not every (finite) group is the
automorphism group of some group. For instance, An, n 4 2,8, is not
isomorphic to an automorphism group. In Section 3 we will provide a
completely different proof of Schupp’s theorem, which has the following
three advantages. First of all, it gives an answer to the extension of
Macintyre’s question. Secondly, we use only very elementary group theory
without "elements of order 160 or 81". The small cancellation theory used in
[24] clearly has developed into a beautiful theory over the last 30 years [16],
[25], however, some of its combinatorial details require technical computa-
tions. Therefore it might be desirable to have a "pure" group theoretic proof.
Finally, our construction is close to abelian groups. This allows our extension
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28 MANFRED DUGAS AND RODIGER G(BEL

group H to be locally soluble provided G is. The extensions H in [17] and
[24] are free products with amalgamation. Such H’s are rarely in any
"reasonable" class even if G is well behaved. Another aim of this paper is to
export ideas like Ines(G) (cf. [2]) and results on rigid systems [2], [5] from the
theory of abelian groups. We hope that this will motivate non-abelian group
theorists to occasionally study some of the work done by their poor commuta-
tive relatives.

Let us begin with the extension of Macintyre’s question. If G is an object
in some class in a category, then an endomorphism a of G is inessential if
a extends to any extension H of G with H ft. Let Ines(G) Ines(G) be
the set of all inessential endomorphisms, see [2], [6], [8]. The following
problems are guidelines for many investigations:

(a)
(b)

Determine Ines(G) in End(G) for natural classes if!
Prescribe End(G) modulo Ines(G) in ff (as a split extension)!

The following results illustrate (a) and (b) and also show that Ines(G) is
known in these special cases. If is the class of cotorsion-free abelian
groups, then Ines(G) 0 and End(G) can be prescribed, see [2], [5], [6] and
[1] for the countable case. If ff is the class of abelian p-groups, then Ines(G)
is Pierce’s ideal of small endomorphisms and End(G)/Ines(G) can be
prescribed, see [2], [4] and the literature quoted in [2]. If ff is the class of all
torsion-free separable abelian groups, then Ines(G) is the ideal of endomor-
phisms with finitely generated image and (b) is answered in [7]. If ff is the
class of fields of characteristic 0, then Ines(G) 0 and extension fields with
prescribed endomorphism monoid can be constructed; cf. [8]. In the case of
fields of characteristic p > 0, Ines(G) are the Frobenius homomorphisms,
and extension fields G with prescribed monoid mod Ines(G) can be con-
structed. Finally, if ff is the class of all groups, then Ines(G)= Inn(G) by
Schupp’s result [24].
How about other classes of groups and (b)? Before we give an answer to

this we want to recall some well-known notations due to P. Hall [10]. If ff is
a class of groups, then L ff denotes the class of all local if-groups, i.e.
G L ff if and only if every finitely generated subgroup of G is in ft.
Moreover, G Esff if G is a split extension (= semidirect product) of a
-group by a if-group and {Es, L} is the smallest class containing closed
under E and L. Observe that the class of locally soluble groups is closed
under E and L, see [21]. Our main result is the following.

THEOREM. Let K be a cardinal and H, B groups of cardinality <_ . If
o , then there exists a group G of cardinality + such that:

(1) B c G, riG(B)= B.
(2) AutG=InnGHandHB= 1.

Moreover G {E, L}{H, B, Z}. (+ denotes the least cardinal larger than
and H B is the restriction ofH to B).



OUTER AUTOMORPHISMS OF GROUPS 29

Observe that G is locally soluble (torsion-free) if H and B are locally
soluble (torsion-free) and that Out G can be prescribed arbitrarily. If G is
abelian, then the class of finite groups of the form Aut G Out G is very
restricted. This follows from the work of Hirsch as corrected by Corner; cf.
[5] and the literature quoted there. The construction in the proof of our
theorem uses two kinds of building blocks. From abelian group theory we use
the existence of rigid families {Alv < t/} of abelian groups of cardinality to;
i.e., Hom(Av, Ag) 0 if v =/x and End(Av) Z. The existence of such
families below 20 follows from [1] or [9] and above 2 from [2], [5] or [6].
The non-abelian framework is provided by wreath products. Their use is
suggested by the existence of characteristic subgroups [19], [12], [10] and the
Kaloujnine-Krasner theorem [15], see [18] or [25]. (Observe that cardinal
numbers are ordinals; cf. [14, p. 24]. Hence cardinals are sets, cf. [14, p. 15]
and we can enumerate groups by ordinals less than a given cardinal. This is
standard in set theory or model theory and we will use this convenient
notation through this paper.)

2. Properties of P-adic wreath products

Products and sums

If (A, ) is a group and B is a set, then I-I Aex denotes the (unrestricted)
xB

cartesian product of IBI copies of A, i.e. if f 1-[ Ae, then

f axex (axex)xB
xB

with f( x) ax for all x B.

(We want to use E in the representation of f. This makes some formulas
easier to read and in our setting A will be abelian.) Hence f is a vector with
entry ax at the x-coordinate. Moreover

Aex I-I Aex
xB xB

denotes the (restricted) direct sum, consisting of all

f I-I Aex with f(x) 1 for almost all x B,
xB

f= axex andax
xB

1 for almost all x B.
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Then clearly f. f’= axa’ex with f as above and f’=
xB

1-I Ae and Ae into groups.
xB xB

aex makes
xB

Wreath products

If B is a group, then B __. Aut( VI Aex)via
xB

lb.... E axexb - axb-lex
xB xB

Clearly, the group generated by VI Aex and B is a semidirect product
xB
xB

I-I Aex B of the normal subgroup 1-[ Aex and B, and this group is called
xB xB

the unrestricted wreath product A "" B of the basis A (or. 1-[ Aex) and B.

Obviously i Ae is B-invariant and B _. Aut( I Ae) acts faithfully on
xB xB

the direct sum. The group generated by i Aex and B is the semidirect

product of the normal subgroup I Ae and B, which is called the (re-

stricted) wreath product A B with basis A (or I Aex) and B; see H.

Neumann [181 or Serret [261.

P-adic (Z-adic) completions

If (A,+) is an abelian group with p"A =0 and p a prime (or

[ n!A 0), then {p"A" n w} ({n!A: n o}) used as a basis of neighbor-

hoods of O A defines a Hausdorff topology, p-top (Z-top) on A so that
addition is continuous. Moreover A can be embedded as a pure subgroup in
its completion

(A, p-top)^ ( (a, Z-top)^),

pnA =A qp’ (n!A =A n

We will say A is p-reduced whenever p"A 0. We will always assume

that A’s in this paper are abelian, p-reduced, and not elementary abelian
2-groups, i.e., not vector spaces over Z/2Z. Under these conditions A c
where (A, p-top) is the p-adic completion and is abelian and
p-reduced.
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P-adic wreath products

Let A be a p-reduced abelian group and B a group. Then I) Aex is a
xB

B-invariant subgroup of I-[ ex and B acts faithfully on I Ae. The group
xB xB

generated by I Aex and B in A B is a semidirect product of the normal

subgroup I Ae and B and this group will be called the p-adic wreath
xB

product A B. Clearly

A B c_ A " B cA-B.
We will mainly work between A B and A B.

Properties of p-adic wreath products

Let A and B be as above. Then elements in the p-adic wreath product
have the crucial property:

(2.0) if 1 4 f Aec_A B, then cB(f) is finite, where cB(f)de-
notes the centralizer of f in B.

This observation is established as follows.
If f-- fxex and n o, then h(fx) > n for almost all x B. Here

xBhpA(a) denotes the p-height of a (= maximum p-power which divides a)
in A. Suppose C on(f) is infinite; then fx is constant on all left cosets of
C. Thus each entry in f gets repeated infinitely often. Hence fx 1 for all
xB,i.e.,f=l, rq

LEMMA 2.1. Let A be abelian, not an elementary abelian 2-group and let B
be any infinite group. If F is a B-invariant group with

( Aex c_F c_ ( Ae,
xB xB

then F is the largest abelian normal subgroup of W F > B.

Proof Let N be an abelian normal subgroup of W and hb N with
h Fand bB. IfgF, then

g lhbg =g lhgb-1b No
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Since N is abelian, we have

( g-lhgb-lb)( hb) g-lhgb-lhb-lb2 ( hb)( g-lhgb-b) hg-b-hb-gb-Eb2

and since F is abelian we conclude

g- lgb- g-b-lgb -2,

Let 1 4: a be an element in A not of order 2 and g ae1. Then

a-lel + aeb-a a-leb_l aeb_

and

a-lel + a2eb- aeb-2.

This implies b 1, since a 2 1. Thus h b h F and N
_

F. Thus F is
the largest abelian normal subgroup of W.

COROLLARY 2.2. If A, B, F are as in (2.1), then F is a characteristic
subgroup of W F > B.

We will also need some well-known elementary facts (2.3) on wreath
products; see e.g., C. H. Houghton [12] or H. Neumann [18]. If f is a map
and X a subset of the domain of f, then f X denotes the restriction of f to
X. The following remarks are easy to prove.

REMARK 2.3. Let a Aut A and fl Aut B.
(a) There exists a* Aut(A B) such that a* B id and

( )"E axex E aex.
xB xB

(b) There exists 13" Aut(A B) such that 13" B [3 and

(
xB xB

We adapt the following convention: a*,/3*, etc. will always denote the
extended automorphisms as in (2.3) and also their restriction to suitable
subgroups of A B.
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LEMMA 2.4. Let H be a subgroup of Aut B and N an infinite subgroup ofB
satisfying"

(a) If h H and h N is conjugation by an element in B, then h 1.
If I4"= F > B _A B (as in (2.1)) and H* ={h*" h H}AutW(asin
(2.3)), then:

(a*) If h* H* and h* N is conjugation by an element in W, then h 1.

Proof Let x N, fb W with f F and b B, and suppose h* H*
h*is inner on N, that is x xyb for all x N. Then

h* lf-Xh X Xfb b lxfo f-bb-ixfb f-bfx-lbb-ixb

is in B. Thus fb fx-lb and f fx-’ for all x N. Since N is infinite and
f F by (2.0) we conclude f 1. Therefore xh x b for all x N. Hence
h 1 by hypothesis (a).

LEMMA 2.5. Let H Z B with B infinite. Then:
(a) There exists a countable subgroup Y

_
H such that on(Y*) 1 for all

subgroups Y* offinite index in Y;
(b) nn(B) B.

Here rill(B) denotes the normalizer of B in H.

Proo (a) Let F be the basic subgroup of Z x B and let Y0 be any
infinite, but countable subgroup of B. Set

Y= ) Zex > Yo _Z B
xY

and choose any Y*_ Y of finite index. If fb cn(Y*)with f F and
b B, then there exists 0 # a Z, ae Y* and ae ae(b aebl aeb,
hence b 1. Thus

f cn(Yo* ) with Yo* Yo n Y* and Yo* - CB(f).

Since Y0* is infinite, f 1 follows from (2.0). Therefore on(Y*) 1.
(b) Let h B and f F with hf an(B). Then Bhy By and f

rte(B). If x B, then f-lxf f-lfx-x and f fx-1 for all x B. Since B
is infinite, we have f 1 from (2.0) and rtn(B) B follows.

LEMMA 2.6. If B is a finite group, there is a canonical embedding

B c B’= (Z B)/C
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with

Zex" fl fx for all x e B} 8B’
xB

and rtB,(B) B. Here B’ denotes the center of B’.

Proof. Clearly B q C 1 and B _.c B’ is obvious. We have to show that

rtw( C B) C B forW=ZtB.

Letftnw(C.B) withfF-- Zex,tBandcbC.B.Then
xB

(cb) ft t-lf-lcbft f-tt-lcbft f-lct(t-lb)ft f-lctfb-lt t-lbt

is in CB. Hence f-tfb-’t C and f-lfb-’
components of f that

for all b B. We get for the

-fx + fxb- d(b) e Z

for some d(b) and all x B.
Let xl B with fx minimal among the components and let x2 B with

f_ maximal. Then

-fx +fxb-=d(b) >0 and -fx: +fxzb-=d(b) <0,

hence d(b) 0 so that f =fb for all b B, i.e. f 8B’ C.

In order to control many automorphisms simultaneously, we will need the
following centralizer condition c.

DEFINITION 2.7. We say that a group B is in c if and only if there exists a
countable subgroup B’ c_ B such that CB(B*)= 1 for all subgroups B* of
finite index in B’.

LEMMA 2.8. Let B be an infinite group and let H be in c. Then we can find
a countable subgroup Y

_
H B such that the following holds:

If h H and h* Y* is inner for some Y*
_
Y offinite index, then h 1.

Proof. Since H c we can find a countable subgroup H’
_
H such that

cH(H*) 1 for all subgroups H* of finite index in H’.

Let B’__c B be infinite but countable and set Y H’x B’, which is a
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countable subgroup of H x B. If Y* is a subgroup of finite index in Y, then
Y’ Y* n H’el has finite index in H’el. Hence

(**) cn(Y’) 1 from(,).

Suppose h Y* is a conjugation with db H B, where d F

and bB.
Since H’ is infinite and Y’ has finite index in H’el, there exists

( Hex
xB

1 4 a H’ with ae Y’
_
Y*.

From the definition of h* we derive

( ael) ab adeb ( ael) h* ahel"

Hence b 1 and h* B id implies x x h* x d for all x B. We obtain
d c e(Y’). On the other hand CF(Y’)= 1 since ’ is infinite. Thus d 1,
hence h* Y* 1; i.e.,

h CH(Y’n H’el) CH(Y’) 1

by (**), and h 1. D

LEMMA 2.9. If H is any group, then H’ Z (Z H) c and
nn,(H) H.

Proof. Because of Lemma 2.5 we only have to show that Z H c for
any infinite H. Let Y’ be any countable, infinite subgroup of H and consider
Y Z Y’. If Y* has finite index in Y, then Czn(Y*) 1. t3

Next we will use a non-abelian version of P. Hill’s [11] favored "axiom-3-
families" for totally projective p-groups.

DEFINITION 2.10. Let G be a group and a class of groups. A family
of at most countable subgroups of G is called a (countable) -cover of G if:

(i) r__. ;
(ii) If F r (i o) is an ascending chain in G, then

(iii) If X is a countable subset of G, then there exists F r with
Xc_F.

LEMMA 2.11. LetA be an abelian group and G be an infinite subgroup ofB.
Then cB(G)= CAB(G).
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Proof
Then

Suppose gG and h Aex, b B with hb c.in(G).
x.B

g ghb (gh-gh)b gb(h-gh)b.

Hence g gb and h-gh 1. This holds for all g G and G is infinite.
Hence b cn(G) and hg h for all g G implies h 1 by (2.0). We
derive cA in(G) cn(G) and (2.11) holds. D

All our set theoretic notations are standard and may be found in [14]. As
usual we identify an ordinal , with the set of all ordinals less than A, i.e.,
A {a On la < A}. If is a cardinal, then we identify with the least
ordinal K such that I1 . If h is an ordinal and G, a < h, are sets, we
call {Gla < A} an ascending continuous chain if

(a)
(b)

G,
___
G for all a </3 < A,

Gg G, for any limit ordinal/z < h.

Some authors call chains like this smooth or complete. For the definition of
the cofinality, cf(K), of a cardinal K we refer to [14, p. 26]. Note that K is
called regular if cf(K) .

If K is a cardinal, then K
/ denotes its successor cardinal, i.e.,

On" I1

Note that K + is regular [14, p. 27], i.e., cf(K +) K /.

LEMMA 2.12. Suppose G G is the union of an ascending, continu-
a<K

ous chain of subgroups G with GI < K + and K is an infinite cardinal.
Suppose G G+ such that

A G
_
G+ F > G _A G

for some p-reduced abelian group A,, 1.
Then G has a c-cover ,-and c(F*) 1 for all F* F - with [F" F*]

finite.

Proof. Let be the set of all countable c-subgroups of G. Since c is
closed with respect to unions of countable chains, we only have to verify
(2.10) (iii) for o- to be a c-cover.

Let X
_
G be a countable subgroup. Since K + is regular and uncountable,

cf(r /) / > to. We can find an ordinal a < / with x __. G,,. We may
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assume that X is infinite. Pick any infinite but countable subgroup A of
and set Y A X _c G,+ 1. We claim that Y c. Suppose Y* is a subgroup
of finite index in Y and

ax ca/l(Y*) witha D Aex and xG,.

We can find some 1 : be Y* and be bex= baex, hence x 1 and
aY*cx= a where Y*(3 X is infinite. We conclude a 1 from (2.0) and
ca,/l(Y*) 1. In particular c,(Y*)= 1 and Y r.
However we.get more as stated in (2.12). In order to derive ca(Y*) 1 we

apply induction on /3 < +. If ca(Y*)= 1 for all , </3 and /3 is a limit,
then-clearly cao(Y*)= 1 by continuity. If/3 is discrete, we apply (2.11) to
derive CG(Y*) "----- ca_l(Y*)= 1.

Recall that a subset X of Y is cofinite in Y if the complement of X in Y,
i.e., Y- X, is finite. If A is a subgroup of B, [B" A] denotes the index of A
in B.

LEMMA 2.13. Let L be an infinite group and Li, 1 < < n subgroups of L.n

Assume there are elements a L such that (.J aiLi is cofinite in L. Then there
i=1

is an i, 1 < < n, with L" Li] < oo.

Proof. Induct on m, the number of distinct subgroups in the list
n

L1,..., Ln. If rn 1, i.e., [,.J aiL is cofinite in L, then obviously [L" L1] <
i=1

Let rn > 1, assume that [L’L1] is infinite, and set

W {i" 1 < < n, L Li}.

Since W is finite, (.J aiL q= L and we may pick x L [,.JaiL 1. Then
iW iW

xL q aiL b for all W.

Thus I,.J (aiL1 N xL1) is cofinite in xL 1. If aiL xL d we fix b aiL
iqW

L and for any y aiL xL we obtain b ly Li L1" Thus

bi( Li L1) aiL xL

and J x-lbi(Li f’)L) is cofinite in Lx. Now we may use our induction
iW

hypothesis and conclude [Lx: L t")Li] < o for some W. Since
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[LI"L N Li] is finite, we may write every coset ajL1, j W, as a finite
union of cosets mod L L and this finite union is naturally containe,d in a

union of finitely many cosets mod Lj. We now rewrite the union J aL
j=l

avoiding the use of L1. We now apply our induction hypothesis again and
obtain a k with [L’Lk] < o and 2 < k < n.

LEMMA 2.14. LetA be an abelian p-reduced group and B any infinite group.
IrA B cc_ W cc_A B, then rtw(B)=B.

Proof. Suppose fc rtw(B) where f F, c B with W F >a B. Then

bc f-cfcb-cbC B,

hence fc fcb and b -c cB(fc). The centralizer cB(fc) must be infinite,
hence fc 1 by (2.0) and f 1 implies nw(B) B. rq

3. The construction

We call an (additive) abelian group A cotorsion-free if for any prime p the
group A contains neither Q, Z/pZ nor ,, as subgroups where the latter is
the p-adic completion of Z,, the integers localized at p. Thus A is
cotorsion-free iff A is torsion-free, reduced and contains no subgroup =/= 0
which is complete in the p-adic topology for any prime p.
The following technical lemma will be our weapon to "kill" unwanted

automorphisms:

LEMMA 3.1. Let B be an infinite group and H
_

Aut(B). Let K be a
countably infinite subgroup of B such that the following holds:

(,) If K* is any subgroup of K with finite index then on(K*)= 1, and if
h HwithhK* =yK*,andyInnBthenh 1.

Let (A, +) be a rigid cotorsion-free abelian group of at least countable rank.
Then there exists a group W with A B _W _A B such that for any
r/ Aut W with B B we have l K (H Inn B) K. Moreover there
exists H H*

_
Aut W with H* B H.

(Recall that A is rigid if End(A) Z. id.)

Proof For xK we fix axA such that {ax" xK} is a linearly
independent set in A. We also fix a p-adic (or Z-adic) zero-sequence

{ZxlX K}
__
Z\ {0}
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and define

D Aex,

Notice that (vti- 1)r//-1

Thus

SW--U 1 Si Zxaxex
i= xK
n

E E SiZxaxexmti
i=1 xK

SiZ(vt_l)ni_la(vt[.1)ni_1)ev.
{i: tiKnv}

since K’v.

rn L, Zxaxex
xK

the p-adic (or Z-adic) closure of I Aex. Let

xB

be the pure subgroup of I Aex generated by I Aex together with
xB xB

Mnt" rl H, t B}.

This is the smallest (pure) subgroup F of I Ae that contains I Ae and
xB xB

is invariant under H and Inn B and has F/ Aex divisible. Herem, we
xB

identify h H with its extension h* to A B, i.e., (ae)h= aexh. Our
desired group W is simply W F B. Clearly

A B c_ Wc_.A .B.
Suppose Aut B lifts to some r Aut W. Then Fn F by (2.2) and we
set y r F. 3’ is determined by its action on Ae1. Since A is rigid, there
are integers y, y B, and (ae) aye for all a A.

yB
Next we want to study representations of elements in F. Let

wF\ Ae.
xB

Then there are non-zero integers s, si Z and distinct pairs (ri, i) H X B,
1 < < n with

SW E Simrliti + U and u ) Aex.
i=1 xB
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Let v B and call To {(vt/-1)n71". t Kniv} the v-support of sw u.
Note that for t Kmv, we always have z(/-b,- O. Fix v B and some
and let B with (vt/-1)nFl T. Then there is a j with (vt/-1)n71---
(tj-1)n- which implies (vtl)ni-nJtj. Hence

(-) (" (ut/-1)//-1 r) is finite.

Let w, be the e:component of sw u, i.e., sw u w,e,. Then (+)
vB

implies that for each v B with w, 4:0 we have only finitely many B
such that {w,, wv} is linearly dependent in A. Since

( ael) "r
a3"rey F and 3’y Z

yB

we may conclude 0 for all but finitely many y. Let

Bo= {yB’3,y:#O}.

Note that B0 is finite. We are now ready to compute

my= _, (Zxaxex)
xK., x-’(Zxaxel)’/x
xK

x-’( Zxax3"ye,) x’
xK yB

E - Zxax3"yeyx’
xK yB

--vB( E Z(y-lv)’-la(y-lv)’-13"y)ev
yBot vK

Note that for fixed v the map y (y lv),- is one-to-one. Since my F,
we compare the v-components of my and sw u above and obtain:

For almost all v B,

( "l" "1-) ((ut?l) r//-l" t Krliu) ) ((y-lu)a-l"y - n0 N uKa).
Note that my ) Aex since (I) Aex)

_
) Aex

xB xB xB
phism. The same argument applied to 3’- yields

and 7 is an automor-

( l) Aex Aex.
xB xB



OUTER AUTOMORPHISMS OF GROUPS 41

Thus the set at the right hand side of (+ + ) is not empty. Fix a y B0. For
k K we have y (yk")K. Hence for almost all k K, we find i(k)
and k ((yk’)t-l)n;-1. This implies

k y- kniti.
Let

K {k K" k y-lkniti}, 1 < < n.

n

Then I,.J Ki is cofinite in K. Let rn be the minimal number of Ki’s with the
i=1

m

property that K is cofinite in K. (We may have to renumber the
i=1

(r/i, ti)’s.) Let L {k K: k kniti}. For a, b K we have

( a-lb) t-la-niyy-lbniti ( a-lb) iti.

Thus (a-lb) 5 L and it is easy to see that K aiL for some a - Ki.

Suppose there are i, j < rn with [K Li] < o and [Li, L N Lj] < . Since

liti and r/yty coincide on L 0 Ly and [K: L ( Lj] < we obtain (*li, ti)
(r/y, ty) by ( * ), and j follows.

m m

Since I,.J Ki--- [,J aiLi is cofinite in K we may apply 2.13 and without
i=l i=1

loss of generality we may assume [K: L1] < . Suppose m > 1. Because of
the minimality condition on m, there is some

x K- alL with xL alL .
rn

Thus (xL f alL1) is cofinite in xL and xL (3 aiL bi(L ci Li) for
i=2

rn

some b whenever xL t aiL . Now (x-lbi)(L1 Li) is cofinite in
i=2

L1. We apply 2.13 once more and conclude that there is some i, 2 _< _< m
with [L 1" L Li] < . As we saw above, this implies L L and 1 i, a
contradiction. Thus m 1 and alL is cofinite in K. Since all cosets of L in
K are infinite, [K: L1] 1 and K L follow, ra

We are now ready to prove our main theorem.

THEOREM 3.2. Let B and H be groups, K a cardinal with IBI, IHI < and
o . Then there exists a group G of cardinality / with

B_G, n(B) B and AutG=H>InnG.

Moreover H B 1 and G (Es, L}{H, B, Z}.
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Remark. An obvious modification of the rigid family {A,," v K +} leads
to 2K/pairwise non-isomorphic groups G as in the theorem. We use ter-
minology from Hall [10] (see also [21]): {Es, L}{H, B, Z} denotes the smallest
local class of groups containing H, B, Z and closed under split extensions
(= semidirect products).

Proof. Let G LJ G,, be a continuous (cf. remark after 2.11) chain of
v<K

sets such that GI G+I \ GI r and GI K+. Note that K + is
regular and (K+)s0 / since 0 . Let E c_ K+ be a stationary set (cf.
[14, p. 58]) such that cf(v) o) for each v E. Due to a well-known result by
Solovay there is a partition E U E,, of E into disjoint stationary sets

<K
E,, c.f. [14, Theorem 85, p. 433]. We may assume E,,

___
{, < x+: u > a}. Let

{K,," v < K /} be a list of all countable subsets of G. We may assume
for all v < +. Choose a rigid system of cotorsion-free abelian groups
{A: v < +} where IAI K for all v < +, cf. [2]. Inductively we will define
group structures on the G,,’s such that G,, is a subgroup of G, for all
V<lX <K+.

First we define the group GO
Without loss of generality we may assume B infinite since otherwise (2.6)

shows the existence of a countable group B’_ B such that nB,(B)= B.
Moreover (2.9) shows that we may assume B c. From (2.5) H c__ H’ c
and we set GO H’ x B. Note that H c_ Aut GO and H B 1 by (2.8).
There exists a countable subgroup Y

___
Go such that for all * __. Y of finite

index, h Y* =y GO implies h 1. We fix this Y throughout the con-
struction. Note that Y c.

If A < / is a limit ordinal we define Ga LJ G,, whenever the chain of

groups {G,," v < A} is already defined. Suppose G,, is already defined. Then
we have to explain how to define G,,+ 1.
The group G,,+I will be either .A x G,, or else will satisfy

as in 3.1.

A,, G,, c_ G,,+I c_A,, ;, G,,

Case 1. If v ff E, then a,,+l =A,, G,,. If v E,, but K does not
contain Y then we set G,,+ A,, G,, also.

Case 2. There exists an a < K+ with v E, and K, contains Y. Then
we define G,,+ to be the group W of 3.1 with A,,, K,,, G,, for A, K, B resp.
Thus A,,’t G,, c_ G,,+I c_A,, G,,.

This finishes the construction of G and it remains to be shown that G has
the required properties.
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An induction with the help of (2.3b) and 2.14 shows that

H__.AutG, HB= 1 and rta(B ) =B.

The construction of Y shows that whenever h Y* y Y*, y Inn G and
Y* a subgroup of finite index of Y, then h 1. Let

a (Aut G) \H" Inn G.

By 2.12 our group G admits a c-cover -’ for its countable subgroups. Let

= {F e .,ga-’lY g F}.

Since a Aut G and K + regular, a standard back and forth argument shows
that C {u < r+I(G) G} is a cub in r+ (i.e., a closed unbounded
subset of K /, cf. [14, p. 56]). (The set C is closed since if A sup X, for some
XCwithA <r+ then

The set C is also unbounded: if v vo < + then there exists vo </1 < K+
with a(G,,o)

_
Gv, since IGvol < += cf(r+), cf. [14, p. 26ff]. This leads to a

sequence

vo<v1< <vn < <K+ witha(G,) c__G.+,.

For a sup{vnln < w} we have a(G,) Ga since Ga U Gn"
n=l

Next we show that there is an F e with a F (H" Inn G) F. We
identify InnG=G and pick any F qa-. If aF=(h’y)F, h H,
y G, we may pick v e C with y G and F __. Gv. Since a H. InnG,
a h "y and there exists an element x e G with x =# X hy. Since - is a
cover there is F’ e r with F U {x} __. F’. If again a F’ h’y’, we pick
v<v’Cwith y’G,.

Since Y___ F we have hy Y= h’y’ Y= a Y and h’-lh Y= y’y- Y
implies h h’ and y y’. Thus we obtain the contradiction xhy #= x xh’.
This shows the existence of the desired F. There is an ordinal/x < x + with
F K, and C c3 E is again stationary in x+. For v C 3 E, we have
(G)" G and a lifts to a monomorphism

a Gv+ 1" G,,+I "-+ G.

If a(Gv+ 1) Gv + then 3.1 implies a G H. Inn G.
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What’s left to show is the following:

Claim. If a Aut G with G G then Gva+l Gv+ 1"

Proof of Claim. Let F F with Gv+ F ) G and set X F. Since
Isl < / there exists a h < K + with X __. Ga. Note that X is abelian,
Xa=Xand XnG= 1.

Step 1. If X q (G/+I \ G/3) , fl >_. o, then X (G+ \ G) is infi-
nite.

(G+ X)\G,, lfF,and bA.To see this suppose x
fafb t

Then G
_
G and xa

_
bG

_
X and fa is infinite by (2.0).

Step 2. If X Gt is infinite, then X
_

Gt.
Pick x fb X as above. Then {fb} {x} x(x co)

_
f(xOb(X

and we conclude f--fxo. Since X t G is infinite 2.0 implies f-- 1.

Step 3. There exists/3 < K+ and a finite normal subgroup N of G such
that X _c F N and FX-- FtN.

Because of Step 1 and Step 2 we find a /3 <+ with Xc_G+I, and
X g: G. Let x fb X as above and a G. Then faba S. Since X is
abelian we derive

fabafb fafb-abab fbfaba ffab-’bba"
Hence farb-a "-ffab-’. Fix x Gt with f, 4:0 and let n hAp(f,) denote
the p-height of f in As. For a cofinite subset A of G we have h(fxa) > n
for all a A. Again for some cofinite subset A’

___
A we have h(f.-) > n.

Since fafb-" ffab -1
implies

La
q- La-lb-la L -Jr" Lab-1

we obtain

0 fx fxa-lb-la mod pn+1 for all a A’.

Thus ba’ is finite and A’ is cofinite in G. This shows that co(b) has finite
index in G. This implies that b G and X __. F G. Let N be the image
of the projection of X into G modulo Ft. Since N < G and G normalizes
X, N is normal in G. If fa X, then a N and (fa)a faa X. There-
fore

fafaa ffaa-la2 f2a2 faafa fafa-aa2
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which implies 2fx fxa + fxa -1 for any x and all a N. Fix x with f 1
and n hp(f). If N were infinite we could come up with N’, a cofinite
subset of N and f,, fa- =- 0 mod pn+ 1Z and the contradiction 0 f
fxa "[- fxa -1 0 mod pn+1 would follow. Thus N is finite. This completes
the proof of step 3.

In order to prove the claim, note that F X
_
F. N, N finite implies

the existence of a non-zero homomorphism

Ot e

Ave >--> F,, >--> F N F ---> Aex

where .k is the multiplication with k INI and e is the projection of

Ae)into A--x. Observe that Fex c_ Ae. Since
xB

Hom(A,A)=0 forv/3,

we obtain a =/3 and

av% fvaa c (F g)a av+l.

The same line of reasoning applied to a-1 gives us Gv+l Gv+l and we
conclude Gva+l Gv+ 1. This finishes the proof of 3.2.

Remark. In a forthcoming paper we will give an alternative proof of the
above claim avoiding the use of a rigid family. We will construct locally finite
groups utilizing just one "rigid" abelian p-group.
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