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A NOTE ON RAMANUJAN COEFFICIENTS OF
ARITHMETICAL FUNCTIONS

BY

PAOLO CODEC,

Introduction. In 1984 H. Delange ([2]) proved the following result:

THEOREM 1. Let f be an arithmetical function and f’ f I. Let q be any
positive integer. Suppose that"

(i) n xlf(n)l O(x).
(ii) For each positive integer d dividing q, the limit

lim
1 E f(n)m_a

x +oo x
nx

(n,q)=d

exists. Then the series

n=-O(q)

f’(n)
n

converges and its sum is

1
lim -1 E f(n)ca(n)q(q) x-+o X

n<x

where Cq(n) is the Ramanujan sum

q

(h,q)=l

e(hn/q).

In this note we prove (see Theorem 2 below) a simple result about the
existence of the mean value for certain convolutions. This result gives
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immediately (under the hypotheses of Theorem 1) the equality

(1) n= f n( n )
dq,=q /x(qTiq(q md

n=-O(q)

which is the main step in Delange’s proof of Theorem 1 (see [2] p. 34, first
formula).
As for the other equality of Theorem 1, namely

(2) , f’(n) 1
lim -1 E f(n)cq(n)

n
n q(q) x--,+oox

n<x
n=-O(q)

it can be checked directly as in the paragraphs 3.6.1 and 3.6.2. of [2], but it
should be noted that this is always the case, in the sense that when both sides
of (2) exist for every q then they must also be equal. This is implied by
theorem 3 below. To be precise the results we prove are the following.

THEOREM 2. Let g:[1, +o) R be a function of bounded variation on

finite intervals and let us suppose that:
(i) There is a number a > 1 such that g(x) O(x/lgx)
(ii) There is a number 0 < [3 < 1 such that Vg(xt) o(x), where Vg(y) is

the total variation of g in the interval [1, y ].
Let f(n) be a sequence of real numbers such that

(iii) n < x If(n)[ O(x) and limx + 1/x,n xf(n) m exists.
Then we have

(3) x--,+olim h(X)x mf (g(x))x-2dr

where h(x) En xf(n)g(x/n).

THEOREM 3. Suppose that, for all d dividing q, the series

E f’(n)
n

n=l
n =0(d)

converges, and that the series

E f(n)cq(n)
n
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converges for Res o- > 1. Then, for Res r > 1, we have

(4)
a , f(n)c(n)

Fq(s) C(’S) nll nS

E ----r-(d*))d*lq/8
d*

(d,q)=y

from which it follows that

(5) lim Fq(tr) q(q) E f’(d)
’1+ d=l

d
d--O(q)

This implies equality (2) if both sides exist for every q > 1.

Before proving Theorems 2 and 3 we want to show how equality (1) can be
obtained from Theorem 2.
Under the hypothesis of Theorem 1 let

/-/(x) E f’(n)
n

nx
n =O(q)

A simple calculation gives

(6) Hq(x) <xE f(dd) ( E tx(n) )n<x/d
n

n=-O(q/(q,d))

=E 1 X(E f(d)-ff E
d <x n x/d

(d,q)=6 n=_O(q/6)

/x(n)n ) E E(x)
6lq

If we remember the estimate

(7) Mq/( x) _, Ix(n)
n

nx
n=-O(q/)

(1)=0 lgax witha> 1

we see that we can apply Theorem 2 to each term of the sum in (6) and
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obtain

(8) lim Hq(x) E lim
x +o 6[q x +o

This proves (1) since

(9) Mq/(x))x dx
I(q/6)
q( ql6 )

In order to justify (7) and (9) we remember that if X0 is the principal
character mod q we have

(10) E /x(n)x0(n) 1

n=l
nS L(S, Xo) I-I (1 p s)( s) plq

From (10)we obtain, by standard techniques, the estimate

(11) E /(n) E I’(n)x(n)
n n

nx nx
(n,q)=l

=O 1)lgx a > 1,

which gives (7) with q/ replaced by q, since

(12) E /.(n) /.(q) En q
n <x n x/q

n=-O(q) (n, q)=

From (11)we see, by partial summation, that the series

(n,q)=l

tx ( n ) lgn

is convergent, and if we differentiate both sides of (10) and take the limit for
r - 1 + we get

(13)
(n,q)=

tt( n ) lgn q
n (q)

This gives (9), with q/6 replaced by q, again by partial summation.
Let us now prove Theorems 2 and 3.
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Proof of Theorem 2. We have

(14) h(x) E (f(n) -m)g +m Eg E1(x) + E2(x)
n <x nx

Because of hypotheses (i) and (iii) of Theorem 2, a variant of Axer’s theorem
(see for example, [1], p. 127, problem 52) implies that

(5) El(X) =o(x) asx +o

so that we can write

X
(16) h(x) =m

_
g(-ff ) +o(x)

xl- <n <_x

asx +.

Now we use Euler’s summation formula with Stieltjes integral. If F(t) is a
function of bounded variation on the interval [n, n + 1] where n is a positive
integer, we have

(17) fn
rt+

fn+(t n 3) dF(t) (F(n + 1) + F(n)) 1F(t) dt

Summing over n we get

(8)
N

E F(n) (t) dt + (F(m) + F(N)) + O(VFt.,,ul)
n=m

where VFm, N1
is the total variation of F in the interval [m, N]. If we choose

F(t) gfx/t), m [x 1-t] + 1, N [x] and put x/t u in the integral in
(18) we obtain

(19) E g - =x (g(u))u -2du +o(x) asx +o
xl-t3 <n <x

because of hypotheses (i) and (ii). Equation (3) follows from (16) and (19),
and this proves Theorem 2.

Proof of Theorem 3. For the proof of (4) we may suppose Res > 2, for the
hypotheses imply that both sides exist for Res > 1 and are analytic functions
of s in this half-plane.
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Since the Dirichlet series

E f(n)cq(n)
n

n--1

is convergent for Res > 1 it is absolutely convergent for Res > 2. This
permits to write for Res > 2

(20) E f(n)ca(n)
_

f(n)ca(n)
n

n=l
n

61q
(n, --" =6

(n,q)=6

f(n)
n

Now

(21) E f(n) 1 _,f’(d)n n--7
n=l n=l din

(n,q)=$ (n,q)=$

1,f’(d) n---
d=l

(n, )=
n--O(d)

Here the change of the order of summations is justified by the fact that the
series E]=lf’(d)d- is absolutely convergent for Res > 2 and

(22) f’(d)
nE E

d>l d>l
n>l m>l

(n,q)=6 (md, q)=6
n=-O(d)

f’(d) -<() E
d=l

It is not difficult to see that

(23)
1 lE n--- st(s)n=l

(n,q)=6
n =O(d)

d*lq/,

if (d,q) q- 6,

if (d, q)16
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This gives

(24)

E f’(d)
d=l n 1__ (s) E f’(d) _, Ix(d*)nS

d=l d*lq/8
(n,q)=3 (d,q)13
n =-O(d)

(d,q)18

d*[o/6
d* Y a=l d

(d, q)=y

and the announced result follows from (20), (21) and (24). To prove (5)we
first note that

(25/

d=l8lq d*lq/8
(d, q)=y

since the hypothesis

E f’(n)
n

n=l,
n 0(d)

convergent for eve d dividing q implies

d
dl

(d,q)=y

convergent for eve y dividing q. Now we obsee that

(26) E .(q/d’) E d* " E
d’18 d*lq/6

(d’, q/8)=

d*[q/)

1.()(q)
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where the last equality in (26) is justified since every square-free divisor d of
q admits a unique representation as d d’d* with d*lq/6, d’16 and
(d’, q/) 1.

Equation (5) follows immediately from (25) and (26) by the M6bius
inversion formula.

If the limit

lim
1

_
f(n)Cq(n) l(q)

x +oo X
nx

exists we must also have

(27) lim Fq(tr) l(q)

This proves that when both sides of equation (2) exist for every q they must
be equal. This concludes the proof of Theorem 3. It should be noted that the
existence of one side of equation (2) does not, in general, imply the existence
of the other one. In fact, for the case q 1 for example, since

--1 f(n) f’(d)d x -n<x d<x

this is equivalent to saying that there exist Ingham-summable series which are
not convergent and vice versa, and this is well known (see for example, [4],
p. 376; [6], p. 10-13; [3], p. 98; [5], p. 180).

The author wishes to thank the referee for his very valuable suggestions.
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