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1. Introduction

Suppose that . denotes a relatively compact domain, with smooth bound-
ary, in a complete Riemannian manifold Mn. If one imposes Dirichlet
boundary conditions, then the Laplacian A defines a self adjoint operator in
L2_. The associated heat operator exp(tA) is given by a smoothing kernel
E(t,x, y), for x, y _. Elementary parabolic theory determines the
asymptotic behavior, as $ 0, of the remainder

h(t) l(4zrt) n/2 Tr E(t) vol .1.

In particular, we have h(t) of order !/2. However, the basic theory does
not provide good geometric control in this order estimate.
Our first goal is to obtain bounds of the form h(t) < t(t), valid for all
> 0. The function /(t)will be given in terms of specific elementary

functions of t, and will satisfy t(t) 0(tl/2), as $ 0. The key point is that
the bound /(t) shall have precise geometric dependence. If M Rn, the
n-dimensional Euclidean space, and

_
is convex, then this problem was

studied earlier by Angelescu, Nenciu, and van den Berg, [1], [2]. They showed
that, for this special case, (t) need only depend upon vol(0.), the n 1
dimensional volume of 0.. Their work has applications in quantum statistical
mechanics.

If M is simply connected and negatively curved, then we prove, in
Theorem 2.5, that/?t(t) need only depend upon vol(0_), a lower bound for
the Ricci curvature of ., vol(.), and an upper bound for the mean
curvature of 0_, with respect to an inward pointing normal. In particular,
one does not necessarily assume that . is convex. For dimension n 2, we
remove any assumption about the curvature of 0_. On general complete M,
one determines /(t) using in addition an upper bound for the sectional
curvature and a lower bound for the injectivity radius, on a proper neighbor-
hood of _. This is done in Theorem 3.5, our principal general result. Again,
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all hypotheses on the curvature of the boundary, O., can be dropped for
n 2. The heat kernel estimates of Sections 2 and 3 are developed from
earlier work by the first author and Li [7].

In our final Section 4, we apply our heat kernel remainder estimates to a
question of inverse spectral theory. The asymptotic formula of Weyl shows
that knowledge of all the eigenvalues --hi, 1 _< < , ofA acting on L2.
with Dirichlet boundary data, determines vol(_). One naturally asks how
many eigenvalues -Ai, 1 _< _< N, are needed to find vol(.)up to a given
error e. Li and Yau [11] answered this question for convex domains in Rn.
The second author, of the present paper, extended their work to convex
domains in complete spaces with constant negative curvature [10]. Since Li
and Yau rely upon a rather delicate subdivision into cubes and minimax
comparison, it seems onerous to develop their approach for M of variable
curvature. Our heat kernel method appears to be more flexible. We obtain
results for convex domains in quite general Riemannian manifolds M. The
precise statement of our conclusions, for approximating vol(,) by finitely
many Ai, appear as Theorem 4.3. Again, the key point is to have good
geometric control of the relevant error estimate. One requires certain infor-
mation about the ambient manifold M. The only hypothesis specific to is
that

_
is convex.

Throughout the paper we use the Greek letters oti, [3 to denote universal
numerical constants. In particular, these constants do not depend upon the
geometry of M or _.

2. Heat kernels-simply connected spaces with negative curvatures

Suppose that Mn is a simply connected complete space with negative
sectional curvatures. By a theorem of Hadamard-Cartan, the geodesic dis-
tance r defines a smooth function r 2. This globally defined r 2 is very helpful
for deriving heat kernel estimates. Let be a relatively compact domain,
with smooth boundary 0., contained in the given manifold M. Our goal is to
obtain upper bounds, with precise geometric dependence, for the remainder

ITr E(t) (47rt)-/2vol -l.

Additional hypotheses will eventually be imposed upon . and M.
As usual, E(t, x, y) denotes the heat kernel for

_
with Dirichlet bound-

ary conditions. One has the elementary upper bound:

PROPOSITION 2.1. E(t, X, X) <_ (4t)-n/2 for all x _q.

Proof This follows from a standard heat kernel comparison [6]. Since we
employ this method repeatedly, a sketch is included.
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Let Eo(t, x, y) (47rt) -n/2 exp(-rE(x, y)/4t) be the transplant of a Eu-
clidean heat kernel, where r is the geodesic distance of M. One calculates

A y - Eo( x y ) r2 + - + r 0-7- 0"{

O’ 0
0 Or E(t’ x, y).

Here 0 is the Jacobian determinant of the exponential map exp’TxM M.
Since the sectional curvatures of M are negative 0’/0 O/Or(log O)> O.
Consequently, Eo(t, x, y) is a supersolution of the heat equation problem,
(A O/Ot)Eo(t x, y) <_ O.

Duhamel’s principle states that

Eo(t x y)-E(t x y)= "
’0

s,x,z)E(t s,z, y) dz] ds.

Since (A O/Ot)E 0 and (A O/Ot)Eo <_ O, this gives

Eo(t, x, y) E(t, x, y) > [AE0(s, x, z)E(t s, z, y)

-Eo(s,x,z)AE.(t s,z, y)] dzds.

Integrating by parts twice gives

f0tf sEo(t,x, y ) E(t,x, y) > o(S,X,Z)-E(t s,z, y) dzds >0.

Here O/Ov denotes the inward unit normal derivative. The last integral is
positive, since E satisfies Dirichlet boundary conditions. Proposition 2.1
follows by setting x =y and recalling the definition of E0.
We proceed to derive a complementary lower bound for the heat kernel.

The argument here is more subtle, since we need a bound which differs from
the most basic estimate [4]. Assume now that the Ricci curvature of M is
bounded below by -(n 1)a, for some positive a.

It is expedient to prepare our argument via some elementary lemmas. To
begin, one has a lower bound for the heat kernel E_a, on a simply connected
complete space M with constant sectional curvature -a.

LEMMA 2.2.
constant 1.

E_a(t x, x) >_ (47rt)-n/2 lat-n/2+l for some positive
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Proof. Since Ma admits a transitive group of isometries, E_a(t x, x) is
independent of x Ma. If 3’ > 0, then E_a(t,x, x) is equal to
"yn/2E_a(Tt x, x). This equality follows by scaling the metric and invoking
the uniqueness characterization for the fundamental solution of the heat
equation. Choosing y a -1, one reduces to the case a 1. As $ 0, the
asymptotic expansion for the heat kernel gives

E_l(t, x, x) (47rt) -"/2 + O(t-"/2* 1).

Since the heat kernel is positive, our assertion is clear for large ’ oo. The
existence of/31 now follows from the continuity of E_ l(t, x, x).

Let Eo, d(t, x, y) be the heat kernel for a ball of radius d in Euclidean
space M0. Of course, Dirichlet boundary conditions are imposed upon Eo, d.
The following fact is well-known [2]:

LEMMA 2.3. At the center x, of the Euclidean ball with radius d, one has

Eo(t, x, x) Eo, d(t, x, x) < fl2t-n/2e -3d2/t.

Proof. If a is a suitable positive constant, then the ball of radius d
contains a cube of side ad. Duhamel’s principle gives Eo, a(t,x,x)>_
Eo,,a(t, x, x), where E is the heat kernel of the cube. It therefore suffices to
prove the inequality

E-o,,a ( t, x, x) > (4zrt)-n/2 2t_n/2e_3az/t

since Eo(t,x,x)= (47rt) -n/2. By scaling, we further reduce to the case
ad= 2.

Suppose one considers an interval of length two centered at the origin in
R1. Using Duhamel’s principle

E0,1(t, Z, y) __> (4"rrt) -1/2 exp(-Iz yl2/4t)

(4rt) -1/2 exp(-[z + y 212/4t)
-(4"rrt)-l/2 exp(-[z + y + 212/4t).

Setting y z 0, we get the required estimate in one dimension. The n
dimensional case follows since the heat kernel of an n-cube is a product of
one dimensional kernels.
Employing these lemmas, one can derive a lower bound for the kernel

E(t, x, x). Let x . be a point whose distance from the boundary 0. is
d d(x).
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PROPOSITION 2.4.
fllat-n/2+1.

E(t, x, x) > (4"rt’t) -n/2 fl4esVffdt-n/2e -3d2/t-

Proof Let B denote the ball of radius d(x)centered at x M. Since
B c _, Duhamel’s principle yields E(t, x, x) > En(t, x, x). The problem is
reduced to the case where our domain is a ball. Duhamel’s principle gives

fo o
E,( s, x) dy dsEM(t,x,x)-En(t,x,x) EM(S,X,Y)---ff y

B

where O/Ov denotes the interior normal derivative.
Suppose that Bo is a ball with radius d, centered at a point x0 Mo, the

Euclidean space of dimension n. One has the upper bounds

EM(t,x, y) < Eo(t,x, y) and En(t, y,x) < Eo, d(t, y,x).

Here E0 is the transplant of the Euclidean kernel to M, Eo(t,x, y)--
Eo(t, r(x, y)). Similarly, Eo, d(t, x, y) is a transplant from the ball B0, ob-
tained by identifying x and x0. It follows that

f:fBE O
EM(t,X,X)-En(t,x,x) < (s,x,y)-Eo, a(t-s,r,x)drds.

Using the lower bound on Ricci curvature to obtain an upper bound for the
volume element, one finds

EM(t,x,x) --EB(t,x,x)

6 et3CdEo(s, xo, z) Ov , d(t s, z Xo) dzds.
OB

We apply Duhamel’s principle to evaluate the integral on the right hand
side. This yields

EM(t,X,X ) EB(t,X,X ) < fl6e#N’d(Eo(t, Xo, Xo) Eo, d(t, Xo, Xo) ).

Invoking Lemma 2.3 gives

EM( t, X, X) EB( t, X, X) < fl4eCls/dt-n/2e -o3d2/t.

Duhamel’s principle and the lower bound of Ricci curvature establish
EM > E_a. Thus, if x Ma is arbitrary,

EB( t, X, x) > E_a( t, x 1, X1) fl4eO5dt-n/2e -o3d2/t.

Proposition 2.4 now follows from Lemma 2.2.
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Suppose that c >_ 0 is an upper bound for the mean curvature of O., with
respect to an inward pointing unit normal. The main result of this section is a
remainder estimate:

THEOREM 2.5.

[Tr E(t) (4rt)-n/2vol

< o- eSe ds 1 +1-
+ a4at t ’/ vol .. t-n/2+ 1/2 vol,

Here the a are positive constants.

Proof By integrating the estimate of Proposition 2.1, we get

TrE.(t) fE.( x x ) dr <_ (47r t ) n/2 vo .q

So Tr E(t) (4rt)-n/2 vol

_
0. It remains to give a lower bound for the

heat kernel remainder.
To prove this complementary bound, we use the exponential map exp:O.
R+ ., along an inward pointing unit normal. Let W c O. R+ be an

open neighborhood of O. 0, so that _- exp W has measure zero and
exp:W - exp W is a diffeomorphism. If (y, u) denotes the Jacobian deter-
minant of exp, at (y, u) 3. R +, then

Tr E(t) fwE( t, x, x)( y, u) dy du

where x exp(y, u).
From Proposition 2.4, we get

TrE(t) > (47rt)-n/2vol . fllat -n/2+ vol .
f14t-n f eOCUe-u:/t( y, u) dy du.

W
(2.6)

The comparison theory of [8], gives the bound

,f( y, u) < 7el8vu (1 +
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with the immediate consequence

Tr E(t) (4rt) -n/2vo1 .. > --lat -n/2+ vol .
-fl9t-n/2(felovUe -#3u2/t du)
x 1 + volO..

Theorem 2.5 follows after making the change of variable s x/-du in the
integral.

In the two dimensional case, a variation of our method allows one to
remove any assumption about the curvature of the boundary 0_. Let X(-)
denote the Euler characteristic of our domain _. One has:

THEOREM 2.7. /f n dim M 2, then

ITr E(t) (47rt)-lvol -l -< -- ea6Se-a7s/at ds 1/2 vol 0.

l(fo -t7s2/at)+ a81X(-)l - se6Se ds

+ a9a vol ..
Proof. We follow the proof of Theorem 2.5, with n 2, verbatim until we

reach formula (2.6). Let W(u) be the n 1 dimensional slice of W, where
the second coordinate u is fixed. Define

According to (2.6) and Fubini’s theorem

Tr E(t) (4rt)-lvol
_

>_ --illa vol . f14t-1 fo esVffUe-3u2/tL(u) du.

From [3] and [9], one has the remarkable upper bound L(u) < vol 0. +
2rlx(-)lu. The key point is that this estimate requires no hypotheses about
the curvature of 0..
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Substitution yields

Tr E(t) (47rt)-1vol
_

>_ --illa vol

_
f14 vl(O-) t-1 f eO5Ue-O3u2/t du

"0

f142zrlX(’)lt-1 fo ueSV/-Ue-3u2/t du.

Theorem 2.7 now follows from setting s fh-u in each integral.

3. Heat kernels-general Riemannian manifolds

Let

_
be a relatively compact domain, with smooth boundary, in a

complete Riemannian manifold M. Suppose that I is a finite positive
number so that, for each p ., the exponential map exp:B(p, I) ---> M is
a diffeomorphism. Here B(p, I) denotes a ball of radius I in the tangent
space to M at p. Let D’= LI pexp B(p, I). Then .’ is a relatively
compact open set containing .. Choose an upper bound b for the sectional
curvatures of M at points in .’. Set I min(I,r/v/b-). Assume that
-(n 1)a is a lower bound for the Ricci curvature of M at points in ..
Our purpose is to generalize the results from Section 2. The first step is to

extend the preliminary work on upper and lower bounds for the heat kernel.
Let Eb denote the heat kernel of the sphere Sn with constant curvature b.
One has:

LEMMA 3.1. Eb(t X, X) < (4t)-n/2 + fllbt -n/2+1 + fl2bn/2+lt.

Proof. Since Sn admits a transitive group of isometries, the diagonal
restriction of the heat kernel, Eb(t, x, x), is independent of x. If one scales
the metric and notes the uniqueness property of the heat kernel, one has
Evb(t, x, x)= yn/2Eb(Yt, x, x), for all , > 0. We reduce our task to estab-
lishing the lemma when b 1, simply by setting y b -1. The asymptotic
expansion of Minakshisundaram-Pleijel guarantees that

El(t, x, x) (47rt) -n/2 q. O(t-n/2+ 1) as $ 0.

For large t, the kernel El(t, x, x) decays to a constant. Lemma 3.1 follows
from the continuity of El(t, x, x).

Let E(t, x, y) denote the heat kernel of ., where one imposes Dirichlet
boundary conditions. If x is sufficiently close to y, we transplant Eo(t, x, y)
to _, as a function of the geodesic distance. This transplanted kernel is then
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defined on some neighborhood of the diagonal in . .. The crucial lemma
required for the upper bound of E is:

LEMMA 3.2.
upon b and I.

E(t, x, x) <_ Eb(t, x, x) + dot. Here the constant do depends

Proof This result was established in [7]. The idea of the proof is to
construct a supersolution for the heat equation problem of

_
with Dirichlet

boundary conditions. If p(x, y) is an appropriate cut-off function, then a
calculation verifies that (A O/Ot)(p(x, Y)Eb(t, x, y)) is bounded above by a
positive constant. Thus, for suitable do, p(x, Y)Eb(t, x, y) + dot is a superso-
lution. Lemma 3.2 then follows from Duhamel’s principle.
Combining the two previous lemmas, one immediately deduces:

PROPOSITION 3.3. E(t, x, x) <_ (4t)-n/2 + fllbt -n/2+l + dt. The con-
stant d depends only upon b and I.

The complementary lower bound can be quickly dispatched. Let x . be
a point of distance r(x) from the boundary of . We may write

PROPOSITION 3.4.
fl6at-n /2 +1.

E.(t, x, x) > (4t)-n/2 3e4vCre-sr2/tt-n/2

Proof.
bound,

In their paper [4], Cheeger and Yau proved a remarkable lower

E.(t,x,x) > E_a,r(t,x,x ).

Here E_a, is the transplant of the Dirichlet heat kernel on a ball of radius r
in the simply connected complete space M_a having constant sectional
curvature -a. The notable point is that r need not be less than the
injectivity radius at x M.

It now suffices to prove the required lower bound in the special case where. is a ball of radius r in M_a. This is achieved simply by quoting
Proposition 2.4.

Let c > 0 be an upper bound for the mean curvature of 0., with respect
to an inward pointing unit normal. Our principal general result is

THEOREM 3.5.

ITr E(t) (47rt)-"/2vol
1 _ot3s2/at C /2+ 1/2< a- e"e ds 1 + -a t- volO.

+ a4(a + b)tt-n/ vol(.) + dt vol ..
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Proof. One may integrate the upper bound of Proposition 3.3 to get

TrE.(t) (4zr ) n/2 vo . f_ E( t x x ) (4"rr ) n/2 dx

< fllbt -n/2+1 vol

_
+ dt vol ..

It remains to give a lower bound for the remainder TrE(t)-
(4zrt) -n/2 vol .. For this one follows the analogous part, in the proof of
Theorem 2.5, almost verbatim. The only small change is to quote Proposition
3.4 instead of Proposition 2.4.
We now assume that the dimension of . is two. Again, it is possible to

remove any hypothesis about the curvature of the boundary 0.. If X(-) is
the Euler characteristic of ., then we may write:

THEOREM 3.6. If the dimension n is 2, one has

vol

_
Tr E(t) 4-t

< - e6Se-TSz/at ds 1/2 vol(0.)

+ a8(lX(.-)l + b vol _) - se"6Se ds

-1- a9( a + b)vol

_
+ alo dt vol ..

Proof. The upper bound of Tr E(t) (47rt)-1 vol

_
is obtained exactly

as in the proof for Theorem 3.5. To bound the heat kernel remainder below,
one employs the method from Theorem 2.7. Of course, one again uses
Proposition 3.4 as an alternative to Proposition 2.4. More significantly, when
quoting [3] and [9], an additional term appears because our sectional curva-
tures need not be negative. More precisely,

L(u) <_ vol(0_) + 2’lx()lu + ub vol ..
The proof is completed as before.

4. Applications involving eigenvalues

Suppose that

_
is a relatively compact domain, with smooth boundary

in a complete Riemannian manifold M. The Laplacian n acts on L2., with
Dirichlet boundary conditions. According to standard elliptic theory, the
operator n has pure point spectrum, consisting of eigenvalues -hi, > 1. If
one knows all of these eigenvalues, then the volume of . is determined. This
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follows from the asymptotic formula of Weyl. Li and Yau [11] raised the
question of approximating the volume of . by using a finite number of
eigenvalues. The point is to determine how many h are needed to find
vol ., to a given accuracy e. This problem was resolved, by Li and Yau, for
convex domains in Euclidean space.
We assume below that . is a weakly convex domain in M. More precisely,

let p, q 0. be any two points which are joined by a unique minimizing
geodesic, denoted 3’. Our assumption is that y c ., the closure of .. Using
normal coordinate charts, centered at points p 0_, one sees that the
principal curvatures of 0_ are non-negative, with respect to an outward
pointing normal. The boundaries of weakly convex domains may include pairs
of points which are not joined by a unique minimizing geodesic.
Our purpose is to extend the results of Li and Yau to weakly convex

domains in general Riemannian manifolds. We achieve this goal by relying
upon the heat kernel remainder estimates derived earlier in the present
paper. The approach of Li and Yau is quite different. It employs careful
subdivision into cubes and comparison using the minimax principle. This
subdivision approach was developed by the second author, of the current
paper, for domains in complete simply connected M of constant negative
sectional curvature, [10]. There seem to be serious obstructions hindering the
extension of the Li-Yau method to general Riemannian M.
The weak convexity of . is used essentially in the following

LEMMA 4.1. (i) If M is compact, then vol(&)_< c vol M. Here c de-
pends upon an upper bound for the sectional curvature and a lower bound for
the convexity radius of M.

(ii) IfM is noncompact, assume . is contained in B(p, R), a geodesic ball
of radius R. Then

vol(O.) _< c2 vol B(p, R + 1).

The constant c2 depends upon an upper bound for the sectional curvature and a
lower bound for the convexity radius of B(p, R + 1).

Proof Let e < 1 be a lower bound for the convexity radius. Thus e is
less than the injectivity radius, for all appropriate initial points q, and all
geodesic balls B(q, s), s < el, are strongly convex. Here q M, for case (i),
and q B(p, R + 1), for case (ii). By strongly convex, we mean that if
Xl, x2 OB(q, s), then x and x2 are joined by a unique minimizing geodesic,
y c M. Moreover 3’ xl x2 c B(q, s), the open ball.

Since

_
is weakly convex, the principal curvatures of O. are non-negative,

with respect to an outward pointing normal. Also, we have an upper bound
on the sectional curvatures of M, assuming (i), or the curvatures of
B(p, R + 1), assuming (ii). For e2 depending upon these curvature bounds
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and if u < e2 < 1, then the comparison theorem of Warner [12] guarantees
that the Jacobian determinant of exp: O. (0, u) M is greater than 1/2,
at every point in 0_ (0, u).

Consider the exponential map exp" 0. R+ M, along an outward
pointing normal. Suppose u R+ is the second coordinate in 0_ R+. If
u < min(e 1, e2), then exp: . (0, u) - M is one to one. This follows easily
from the fact that .. is weakly convex and all B(q, u) are strongly convex.
Again q M for (i), or q B(p, R + 1), for (ii).
Assume u < min(e 1, e2). By combining the above results, we see that

exp: 0_ (0, u) M

is 1-1 with Jacobian determinant bounded below by 1/2. Thus

7 vol(0-)min(el, e2) < vol M,

in case (i). For (ii), we similarly deduce

gl vol(O--)min( e 1, e) _< vol B(p, R + 1)

LEMMA 4.2. Let e > 0 be given. Then for 6 sufficiently small and for all
O < < 6, one has

1(47rt)"/2Tr E(t) vol-1 < C3tl/2 < e/2.

Here Tr E(t) fE(t, x, x) dr is the trace of the heat kernel for Dirichlet
boundary data.

Moreover:
(i) If M is compact, then 6 and Ca depend upon an upper bound for the

volume and the sectional curvature of M, a lower bound for the Ricci
curvature of M, and a lower bound for the convexity radius of M.

(ii) If M is noncompact, assume . is contained in a ball B(p, R). Then 6
and ca depend upon R, an upper bound for the sectional curvatures of
B(p, R + 1), a lower bound for the convexity radius of B(p, R + 1) and a
lower bound for the Ricci curvatures of B(p, R + 1).

Proof. If e a is less than the convexity radius at q M, then by definition
the exponential map exp:Bo(q,ea) --, B(q,e3) is a diffeomorphism. More-
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over, the image is strongly convex. Of course, Bo(q,e3) denotes a ball
centered at the origin in the tangent space TqM.

Since

_
is weakly convex, we may apply Theorem 3.5, with c 0. This

reads

1(4rrt)n/2TrE(t) vol.l < O1"-"- e"2Se ds vol(&)

"+" O4( a + b) vol(.) + dt vol( _q ) n/2.

Assume we are in case (i), where M is compact. Obviously vol . < vol M.
From Lemma 4.1, vol 0_ < c vol M. So

[(47rt)n/2TrE(t) vol_[ <Oll e2Se ds tl/2 volM

-" a4( a + b)t vol M + dt vol Mtn/2.

As $0, the right hand side is of order 1/2. Moreover, all the constants
occurring can be bounded using the geometric properties of M, specified in
our hypothesis (i).

In case (ii), a similar argument gives

[(47rt)"/2 Tr E(t) vol _1

l(fo -a3s2/at)O1- e2e tl/2c2 vol B(p, R + 1)

+a4(a + b)t vol B(p,R + 1) +dtvolB(p,R+ 1)t n/2

Standard comparison theory [8] gives an upper bound of vol B(p, R + 1),
employing R and a lower bound for the Ricci curvature of B(p, R + 1). It
follows that 6 exists and has the required geometric dependence.
Our main result on approximating the volume using finitely many eigenval-

ues is:

THEOREM 4.3. Let e > 0 be given. Then for 6 > 0 sufficiently small and a
positive integer N(6) one has

N(3)

(47r) n/2 E e-Zig vol.
i=1

< C4t 1/2 < e.
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Furthermore:
(i) If M is compact, then 6, N(6), and 174 depend upon an upper bound for

the volume and sectional curvature of M, a lower bound for the Ricci
curvature of M, and a lower bound for the convexity radius of M.

(ii) If M is noncompact, assume . is contained in a geodesic ball B(p, R).
Then , N(6) and c4 depend upon R, an upper bound for the sectional
curvatures of B(p, R + 1), a lower bound for the Ricci curvatures of B(p, R
+ 1), and a lower bound for the convexity radius of B(p, R + 1).

Proof. In [7], it was shown that there exist constants m and c5 so that
A > csi 2/n for all > m. Moreover, m and cs depend upon the given
geometric data. Consequently, if is taken from Lemma 4.2, we may choose
N(6) so that

=N()+ i=N(6)+

e -c5i2/’ < c61/2 < e/2

where c6 and N() again have the required geometric dependence.
Applying the triangle inequality,

N(6)

(4’rrt) n/2 E e-’Xi vol
i=1

--< c6i 1/2 -k- l(4’t3)n/2TrE.(6) vol.l

since TrE(t) 2= e-’it. Theorem 4.3 now follows by quoting Lemma 4.2.
If M Rn, and . is convex, then a lemma of Li and Yau [11] estimates

the outradius of . using a finite part of the spectrum of A, acting on L2.
with Dirichlet boundary conditions. This provides a significant improvement
of Theorem 4.3(ii), when M is Euclidean. It would be quite interesting to
extend the Li-Yau lemma on more general Riemannian manifolds M.
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