
ILLINOIS JOURNAL OF MATHEMATICS
Volume 35, Number 2, Summer 1991

DVORETZKY’S THEOREM FOR QUASI-NORMED SPACES

BY

Y. GORDON AND D. R. LEWIS2

1. Introduction

Recall the definition of a quasi-norm I1" defined on a vector space X.
This is a map X ---> R so that

(1.1) Ilxll > o x 0,

(1.2) Iltxll Itl Ilxll, e R, x e X,

(1.3) IIx / y _< C max{llxll, Ilyll}, x, y X,

where C Cx is a constant. Cx > 2 with equality iff is a norm.
By Theorem 1.2 [KPR], if p is chosen so that 21/p Cx then the formula

Ilxll =," inf IIx/llp
i=1

defines another quasi-norm lip which satisfies

(1.4) 4-1/11xll Ilxll Ilxll, x X,

(1.5) IIx + M lift Ilxllp + Ilyllff, x, y X,

(1.4) says the two norms are equivalent and (1.5) implies that I1" I1 is a
continuous function since

(1.6) [llxllpp Ilyllffl IIx y lipp, x, y x.
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A quasi-norm lip that satisfies (1.1), (1.2), and (1.5) is called a p-norm
and (X, II lip) is called a p-normed space. Of course, (1.5) implies that (1.3)
holds with C 21/p.
We shall denote by Sn-1 the Euclidean sphere of R", Ix 1, where

is the Euclidean norm. Let p be the geodesic metric on S"- , and given a
subset A S"-, its e-neighborhood A is the set {x S"-1; p(x, A) < e}.
Given f C(Sn-1), the median My is a number M such that/x(f > M) >
1/2 and/z(f < M) > 1/2, here denotes the rotation invariant probability
measure on the sphere.

Levy’s classical isoperimetric inequality [L] states:

(1.7) For any closed subset A c Sn-t and 0 < e < 7r, if C c Sn-1 is a
cap with/z(C) =/z(A), then/x(A) >/z(C,).

It was also observed by Levy [L] that (1.7) implies the following:

(1.8)

Them

Let f C(Sn-l) and A =: f-l(Mf).

/z(As) > 1 1/’rr/2 exp(- (n 2)e2/2).

This is because (1.7) implies that the measure of an e-neighborhood of
A --f-1(Mr) is minimal when A is an equator, and the R.H.S. of (1.8) is a
lower estimate for/z(A,) when A is an equator. Using (1.8) Milman gave in
[M] a new and simpler proof of Dvoretzky’s theorem [Dvl] which gave also
an estimate for the dimensions of e-Euclidean sections in convex bodies, and
in particular, in Banach spaces. In its original form, Dvoretzky’s theorem
states:

(1.9) Given an integer n > 1, and e > 0, there exists an integer N N(e, n)
so that for any N-dimensional Banach space X there is a one-to-one
operator T: 1 X such that

1-e < IlZxll 1 +e, X-.Sn-1.

The application of (1.8) in Milman’s proof yielded the estimate

N(e, n) c exp(czne -2 log(2 + l/e)),
where c1, c2 are absolute constants.

Other proofs of Dvoretzky’s theorem, also in the Banach space setting,
were given in IF], [FLM], [LM], [Pill, [S]; in addition, the three recent books
[MS], [T], and [Pi2] contain proofs of the theorem and many diverse applica-
tions as well.
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In [G1] we showed that the log term in Milman’s estimate may be
eliminated. To prove this we used instead of 1.8 the following result of [G1].

(1.10) Let Xi, y, Y/,y, 1 < < n, 1 < j _< m, be two doubly indexed centered
Gaussian processes which satisfy the following inequalities for all 1 < i,
i’<n, 1 <j,j’ <m:

(i) E(Xi, -Xi, y,)2 < E(Y/,.- y/,y,)2 if j j’,
(ii) E(Xi, -Xi,,y,)2 > E(Y/,y y/,,y,)2 if i’.

Then, E min maxy Xi, < E min maxy Y/,y.

(A simpler proof of (1.10) and generalizations were later given in [G2]).
In comparison to the extensive literature on the applications of Dvoretzky’s

theorem in the Banach space setting, the quasi-normed space received very
little attention. Kalton proved it (unpublished [K]) in the case when X is an
infinite-dimensional quasi-normed space; i.e., N 0% 2 < n < 0% and e
e(Cx) is not arbitrary but depends on the value of Cx. The fact that e cannot
be taken arbitrarily close to 0 is clear because the general quasi-norm need
not be a continuous function. The finite dimensional setting, dim X N was
proved by Dilwor,th in [Di], who followed the [FLM] approach, and the
dependence of N on e is missing there.
The new ingredient in this presentation is the combination of the "classi-

cal" Milman approach based on (1.8) and the modern approach based on
(1.10). This combination is necessary to improve the estimates on N(e, n) for
quasi-normed spaces. On the other hand, if in 2 one uses only Levy’s
inequality instead of (1.10), then the resulting argument is a cleaned-up
version of the classical proof of Dvoretzky’s theorem which works even in the
p-normed setting.

2. Dvoretzky’s Theorem

The main result in this paper is:

THEOREM 2.1. Let n >_ 1, 0 < e < 1, 0 < p _< 1 be such that
[ce 2/p ln(1 + n)] is greater than 1. If Xp (Rn, II) is a p-normed space,
then there is an l-dimensional subspace E ofRn and a linear operator T on Rn

so that

(2.1) 1- e <_ Zxllo <_ l + e, x E cI Sn-1

(where c denotes an absolute positive constant).

Proof. Without loss of generality we may assume that the ellipsoid of
maximal volume contained in the unit ball Bp of Xp is the standard ball of
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l (Rn, l" [). It was observed by Dvoretzky [Dv2], and also used in [Di],
that the Dvoretzky-Roger’s lemma [DR] holds in this case; that is, there
exists an orthonormal basis {ei}in= and contact points yieOB Sn- (Bp is
the unit ball of Xp) so that for all 1, 2,..., n,

(2.2) Yi E toi,yey,
j=l

i-1 i--1
(2.3) Etg 1-tog <t,j t,i n

j--1

Let

f(x)

be defined for points x Ein=liei an-l, where rn [/n ].
By (1.6), if y E’= lrliei then

(2.4) If(x) -f(y)l <f(x-Y) <
m p

E ( i ’lqi) Yi

But,

aiYi E aitoi,iei + E ai E toi,jej
i=1 i=1 j=l

rn

< 2 a2tO2 +i,i
i=1 m l(mj=l i=j+l

aitoi,

<2 Ea/2+
i=1 j=l i=j+l i=j+l

mie )1+ ,j
i=2j=l

m )1+
i-1

i=2
n

m

_<4Ea/2.
i=1
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Hence

m )p/2)2If(x) f( y)l < 2
i=l

_< 2*’Ix yl*’;

this implies that the modulus of continuity of f satisfies

(2.5) or(8) --: max{If(x) f( y)l p( x, y) _< 8} _< (28)’, 8 > 0.

Hence, letting A f-l(M.f), it follows from (2.5) and (1.8) that

fo/x(lf-Mfl > (2)p) d((26)*’)

(2.6)
-< (If Mfl > toi(6)) d((26)*’)

<__ f;ld,(Sn-1 \ A) d((26)*’)

< v/Tr/2 fo exp( ( n 2) 82/2) d((26) P)

(v/rr/2 )2,,,/2F (p +22 )(n- 2) -p/2.

Using the fact that Ilyill,, 1, we obtain from (1.5) and a standard estimate

(2.7)
]’( f )

"S
f ?U-I- E q- iYi d]. >. 2 "-1 max Iilp d/.

i=l n-l<i<m

>" Cl n

where c is a constant (see e.g. Lemma 5.7 [MS]).
We will now prove that when n > n(8) (0 < < rr/2) there is a subspace

E of dimension > c2n32 such that for all f C(S"-I),

(2.8) If(x) Mfl < tof(c3a) <_ (2c3a) p x -. Sn-1 ("1 E

(2.8) will complete the proof because (2.6), (2.7), (2.8), and the estimate for l,
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imply that for all x Sn- 0 E we have

f(x) < {(2c38)*’ + IMf

(2.9) _< c ln(1 + n) + O((ln(1 + n))

<c
ln(1 +n) (sincel> 1),

and this is smaller than e provided satisfies the assumptions of the theorem
and is chosen so that n2 I.
To make the paper self-contained, we give the essential ingredients of the

proof of (2.8) taken from [G3] and rewrite it as a lemma. A weaker version of
this lemma follows from Levy’s inequality alone [M], [MS].

LEMMA 2.2. Given rr/2 > i > O, them is a function n(6), so that for every

f c(sn-1), n > n(6), there is a subspace E of dimension > -1 + [n62/4]
such that

If(x) Mr[ <_ tor(2), x Sn-1 0 E.

Proof Let A f- 1(Mr), 1 < k < n. Given any x (A26)c =: Sn- \

A2 and y Sk-l, we define the two Gaussian processes

E hii + E gjrtj x iei, y
i=1 j=l i=1 j=

and

n k

gx,y E E gi,jij (G(x),y>
i=1j=1

where &, hi, gi, are independent N(0, 1) Gaussian variables and G =." (gi, j)
is the induced Gaussian operator from Rn to Rk. It is obvious that

E(X,, Xx,,y,)2 E(Y,y Yx,,y,)2 2(1 (x, x’})(1 (y, y’}) >_ 0

with equality to zero if x x’. By (1.10) and since h (hi) is a symmetric
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Gaussian vector

(2.10)

x(A2,3) x.(A2,s) y.Sk-1

k

=E Eg]-E
j--1

max
x(Z2a)

(x,h)

fak an] max
n-1 x(A2a)c

(x,u)g(au)

where

ak=:E Egj2< E g
j=l j=l

Note that by evaluating ak in terms of the F function, we obtain aka, + k,
therefore

k
ak> /k+ 1

> v/k- 1.

We now estimate the integral of (2.10). Since u (A)c implies

maxx(A)c(X,U) < 1, and if u A, then maxx(A:,)c(X,U) < cos6, it
follows that if 0 < 6 < rr/2,

max
n--1 x(Z2)c

( x, u)tx( du) f(A)C -[- fA)
< 1 tz(A)(1 cos 8)

2
< 1 --/.L(Aa).

By Levy’s inequality (1.8),/x(Aa) > 1 1/rr/2 exp(-(n 2)62/2), hence

max
n-1 x_(A2,s)c

2(x u)tx(au) < 1 --(1 v/rr/2 exp(-(n 2)62/2))
2 (if n > n(a) 100/82).
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Therefore,

E( min
x(A26)

IG(x)l >a-a, 1--T

> /k-1 -v- 1--
which is positive if k 1 > n(1 2/4)2; i.e., if n k < [82n/4] 1.
Hence, there is a subspace E; namely, G-l(0), of dimension (since a.e.

)" i.e., E S"-1 c A28G-1(0) has dimension l)which misses the set (A2
This completes the proof of the lemma and the theorem.

Remark. In Theorem 2.1 we could have chosen the function f to be

then obviously the same proof would work with some slight changes. Clearly,
wf(6) < 6p (since > lip), but in (2.7)we would get

/(f) >_ 2p-ln_ll<i<mmaX IIieill; dtx,

and we can estimate Ilellff from below by

lie/lift IIooi,ieilll Ilyillpp E ooi,jej
j=l

p/2
m ) p/2>1- -h-- i=1,2,...,m.

The final result is then a weaker estimate for the value of Theorem 2.1 in
terms of p > 0 only. However, if Xp has cotype 2; for example, when Xp is
any n-dimensional subspace of lp (0 < p < 2), then this choice

with m [n/2] would yield a better result for in terms of n, and we would
have the conclusion of Theorem 2.1 for [cpneZ/P], where Cp > 0 depends
only on p and the cotype 2 constant of Xp.
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COROLLARY 2.3. In the notation of Theorem 2.1 and inequality (1.4), if
[[. is a quasi-norm on Rn with constant Cx=: 2l/p, then there is an
l-dimensional subspace E and a linear operator T on Rn so that

1 e < rxl[p 4(1 + e) for all x E C Sn- 1.

The constant 4 above cannot be replaced by 1 for a general quasi-norm
I1" II, but we can show that every n-dimensional quasi-normed space X
contains a big /-dimensional subspace E with the property that close to any
point in E there is a point in X where the norm is "almost" Euclidean. To
make this precise, denote by dx the ellipsoid of maximal volume contained
in the unit ball of Xp (Rn, II" lip), and let Px be the geodesic metric on

THEOREM 2.4.
integer so that

Let 0<6, e < 1, O < h < 1/2, O < p < 1 and n be an

n/2t4 _. 100 In 5 and e > c(ln(n + 1)) -p/2.

Let X (Rn, II II) be a quasi-normed space with Cx 21/p. Then there is a
subspace E of dimension [62An/4] and an operator T on Rn so that for
every y E N Ox there is a point x Ox such that

(1) px(X, y) < ,
(2) (1 e)(1 21) < Ilrxllp _< (1 + e)(1 + 21).

The proof of this is lengthy and requires some additional results based on
measure estimates for Gaussian processes.

REMARK 2.5. If in the definition of the quasi-norm we replace (1.2) with
the weaker condition

Iltxll tllxll, 0 < R, x X,

this implies that Bx is no longer assumed to be symmetric about the origin.
Then all the results above still remain true. Thus we can start by taking Bx
to be any bounded starshaped surface in Rn, not necessarily continuous, so
that Bx contains a Euclidean ball about 0 with positive radius, and Theo-
rems 2.1-2.4 hold for the corresponding quasi-normed spaces X (Rn, II)
and X, (R, I1" I1),

[Di]

[DR]
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