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REARRANGEMENT TECHNIQUES IN
MARTINGALE SETTING

BY

RUILIN LONG

The concept of rearrangement function was introduced by Hardy-
Littlewood [5] about sixty years ago. It played a remarkable role in Lorentz
space theory and its related interpolation theory. But for a long time, people
preferred the distribution function technique to the rearrangement one. It
was Herz [6], Bennett-Sharpley [2] and Bagby-Kurtz [1], etc., who showed
that there was no reason for this preference. In this article, we will study
some examples to show what are the superiority or inferiority of the rear-
rangement technique in obtaining several typical inequalities in martingale
theory.

Let (f, 9-,/z) be a complete probability space with {}n 0 a nondecreas-
ing sequence of sub-it-fields such that r= V, and each (12, ,/z) is
complete, f (f)0 is said to be a martingale (with respect to {’}z0), if
each fn LI(, q,/z), and E(f+11) f, Vn. The Doob maximal func-
tion and the square function of the martingale f-- (f)0 are defined as

Mf sup Ifl, Mnf sup Ifl, (1)
n k<n

Sf-- lA#fl2 S#f--" IAkfl 2 (2)
0 k=O

where Akf=fk--fk-1, k >_ 1, Aof=fo. In what follows, we make the
convention that for any process A (A)n 0, A_ is taken to be equal to O,
unless otherwise specified. Let f be a measurable function on (f, r,/z). Its
distribution function, rearrangement function, and averaged rearrangement
function are defined respectively as

cry(A) I{co " If(co)l > A}I, ---I{Ifl > All,

f*(t) inf{A" err(A) < t}, > 0,

l ff*(s) ds t>0.f**(t) 7

A>O, (3)
(4)

Received December 19, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 60G42; Secondary 60E15.
1Supported by the National Science Foundation of China.

1991 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

506



REARRANGEMENT TECHNIQUES IN MARTINGALE SETTING 507

We will need a few results about convex functions and Orlicz spaces. Let
(u) be a non-decreasing, non-negative function on R/ such that (0) 0,

and limu.oo (u) oo. If is also of moderate growth (i.e., (2u) < c(u)),
we will call it "general". If is of moderate growth and convex, we will call
it "moderate convex". For any convex we use two indices

u (u)sup
(u) q inf q(u) ’(u). (6)

u>0 u>0 ,I,(u)

And we consider the Orlicz space L defined by

It is well known that Ilfll is equivalent to

sup( "P,I,(g) f*(Igl)d/z < 1}, (7’)

where is the Young complementary function of , and that

11-) d/z < 1. (7")

For all of these facts, see Zygmund [9]. The function (u) can be defined as
follows

*(u) $(v) dr, $(u) inf{v’q(v) > u}. (8)

For the -inequalities between pairs (F, G) of non-negative measurable
functions on (12, r,/z), we need the following lemmas.

LEMMA 1 (Garsia-Neveu).
pair as above and such that

Let dp(u) be a convex function and (F, G) be a

f{ (F A) d/z < f{ G d/z, VA > O. (9)
F>A} F>A}

Then we have

fnap( F) dtz < faq( F)G dlz. (10)
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LEMMA 2.
that

Let cp be a convex function, and (F, G) be as above. Assume

fFq(F) dtz < oo, fFq(F) dtz <_ faGtp( F) dtz. (11)

Then

faO( F) d < fa(P(G) d. (12)

Proof See Dellacherie [4].

Combining Lemmas 1 and 2, we see that (9) implies

faO( F) dl. < fa( pc,G) dlz, IIFII. p.IIGll.. (13)

For convex (P-inequalities with q, > 1, we have the following lemma.

LEMMA 3.
satisfying

Let dp be convex and such that qa, > 1, and let (F, G) be a pair

AI{F > A}I _< ftF>x)Gd’ VA > 0. (14)

Then we have

IIFII. _< qllGIl., (15)

where q’ denotes the conjugate index of q,.

Proof. See Dellacherie [4].

Now we will use the rearrangement technique to obtain several inequali-
ties. We will first obtain the q)-inequali.ty between Mar M(lfla)1/ and
defined by

fa supp,, supE(lf- f_llal )’/", 1 < a < , (16)
n>0 n0

for any Ll-bounded martingale f (f,,), >_ 0.
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LEMMA 4. For any martingale f (fn). o, we have

(Mf)*(t) < 4* - + (Mf)*(2t), > 0, (17)

(Maf)*(t) < 6* g + (Mar)* > 0. (17’)

Proof Let t > 0 and f be given. When (Mr)*(2 t) or *(t/2) is 0% then
there is nothing to prove. When one or both of them is 0, we replace it by e
in the following argument and then let e 0. Now assume 0 < (Mf)*(2t),
*(t/2) < . Following the idea in Long [8], we define three stopping times

S inf{n Ifnl > (Mf)*(2t)},
T inf(
R inf(

Notice that S _< T, and

We have

And so

n.lfnl > 4fla* + (Mf)*(2t)

n’pn > fa*(-)}

{T<oo} {T<oo, S<R} {T<oo, R<S}
c {R < oo} t,3 {T < o,S < R},

{T < ,S <R} c S <R, IfT- fs_II > 4*

<R lE(f
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Thus we get

t
,( _<I{R < oo}1 + - t,

and hence (17) follows. Noticing that

E(lfialn )l/a _< E(lf fn- laln )l/a -I- Ifn-ll,

Maf <a+Mf,
and that similarly,

Mf <+Maf,
we get

t
(Maf)’(t) <_ fa’(-) + (Mf)’( 3t-T) <*(’)+ 4*( 3t 6t

t

The proof is finished.

Remark. (1) The result in the classical case is due to Bennett-Sharpley [2].
(2) Let be any convex function, and f (f,),>0 be such that

Then from (17) and its consequence

which we will show later, we get that f (fn)n>0 is at least Ll-bounded.
This means that it is reasonable to consider only L-bounded martingales.

In order to get the -inequality between Mar and we need a few
lemmas.

LEMMA 5. Let (F, G) be a pair of non-negative measurable functions on
(1), 9z, ) satisfying

2) F*F*(t) < CG* 7 + (2t), t > 0. (8)
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Then with the same C, we have

( t ) C ftG*(s) ds, > O. (19)F*(t) <_ 2CG* - + log2 s

Proof See Bagby-Kurtz [1].

Remark. The same assertion holds when F*(2t) is replaced by F*(at),
> 1, and G*(t/2) by G*(t),/3 < 1, in (18), with a modified constant.

LEMMA 6. Let dp be a convex function, and 1 <_ a < o. Let

where

(u) (v) d,,

,(v) 1 + log+a v,

and let be dp,,’s Young complementary function. Then Hardy’s average
operators

T" f Tf(x) (t) dt,

T*’g T*g(x) f)g(tt) dt,

x > o (20)

x > 0, (20’)

satisfy

IlZfll qllfll,

IlZfll_ Cllfll,

IIT*gll pllgll,

IIT*gll% _< Cllgll%_l,

f L]o(O,), (21)

Vf L]oc(0, 1), (22)

gL e,oo, We > 0, (23)

VgLl(e,1,.dt.), e>O, (24)

where the norms in (22) and (24) are defined on (0, 1).

Proof. Let us first study T. We can assume that the function f is
non-negative and nonincreasing, since ITfl <_ Tf*(x), and Ilfll IIf*ll. For
A > 0 given, let x0 be the solution of Tf(x) A. Then

rf(x) > a} (o, Xo),
1 fobf(xo - t) dt,
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which just says that

1 f{ f(t) dt.

Using Lemma 3, we get (21).
The proof of (23) is similar. Without loss of generality, we can assume that

g is nonnegative. Let A be given, and x0 be such that T*g(xo) h. Then

{T*g > A} (0, Xo)

and

f{T*g > x}(T*g A) dx f(fg(t) fOOxo g(tt) dt) dx-hx
foXg(t)dt ft g(x) dx.

T*g> A}

Using Lemmas 1 and 2 we get (23).
If we notice that

u( u)- 1 + log+’ < tI(u) < u(1 + log+ u),

we see that, to prove (22) it is enough to show that

follTfl(1 + log+(-l)lTfl)dx _< cLllfl(1 + log+lfl)dx,

Wf, supp f c (0, 1). (25)

To get (22) from (25) we apply (25) to Ilfll-1,f, and get

If we assume that C > 1, we get, using the convexity of

_
1,

Now let us prove (25). We can assume without loss of generality, that
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Iif111 >- 1. We have

l(Tf)*(t)log+(-)(Tf)*(t) dt _< T *(r) dr log(-) II/llt dt

fo1fz11 Ilflll
7lg-I t dtf*(z) d

folf II/’111 dt< C *(t)lg

*_< C.Ilflll + C. f (t)log +" f*(t) dt

C.foil*(1 + log+" f*) dt.

Thus (22) is proved.
Now we prove (24) by duality. Since (I) is of moderate growth, the set

S {all simple functions on (0, 1)} is dense in L%(0, 1). If we notice the set
identity

{f L*.(O, 1) Ilfll _< 1} { )f L%(O, 1)" (I)(Ifl) dx < 1

we get

IIT*gll.. _< C sup(
C sup(

_< CIIgll%_ supllrfll%_,
f

}T*gfdx"f e S, (P(Ifl) dr < 1

folgTfdx "fe S, llfl’ _< 1)
-< CIIgll%_.

The proof of the lemma is finished.

Remark 1. The restriction of T* to the set {f: non-negative and nonin-
creasing} seems to be O-bounded for any general (I), since it can be shown
that it is O-bounded when (I) satisfies (I)(u + v) < (I)(u) + (I)(v) (for exam-
ple, any nondecreasing (having an infinite limit at infinity) and concave (I)
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satisfies the condition). In fact for f nonnegative and nonincreasing, we have

)dx N f
J2kx t

k=O

We do not know whether it holds without added conditions imposed on .
2. ,, is essentially like the function e(U-1)l/Xtu zl}, for 0 < a < oo. It is

well known that h L*(X) if and only if !0h > 0 such that fx(Ohlh[)dx <
oo.-So (24) is of exponential type.

Now we have the following -inequality between M,f and fa.
THEOREM 7. Let 1 <_ a < 0% and d be a moderate convex function. We

denote by the Young complementary function of . Then

IIMafll <- Cpllll, Vf ( f),,o, (26)

’f= (fn) n :0" (27)

Proof. From (17’) and Lemmas 5 and 6, we get

(t) jt*(S) ds,(Maf)*(t) < Cfa* + C s

IIMafll <- Cp.llgll.,

The proof is finished.

Remark. In Long [8], an inequality for "general" function has been
obtained. Here we get the inequality valid only for moderate convex , and
for functions satisfying

(u + _< (u) +

(as shown in the Remark 1, after Lemma 6). But as a compensation, we get
better constants, and a new inequality of exponential type. When a 1 the
exponential type inequality has been known before, since in this case L%-
L, and Ilflall.o_ Ilfllgo..
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Now we want to prove the inequalities between Mf and Sf. We want to
work on comparatively general objects. Let (A, B) be a pair of non-negative
nondecreasing processes. Assume that A is adapted, B is predictable and
B0 0, and that there exist some constants a, q such that

E((AT AT ^(._1))q) --< aqE(BrXtr <o), V stopping times T, ’. (28)

LEMMA 8. Let (A, B) be as above. Then

A*oo( t) < 41/qaB + A*o0(2t). (29)

Proof. Let t > 0 be given. It is enough to consider the case

0 <A*oo(2t), B <

Define the stopping times

T= inf n’Bn+ > B* - z inf{n "An > A*oo(2t)}.

Then with c 41/qa we have

From our conventions, we have Ar ^(,-1) 0 on {z .0}, and so we have set
inclusion’

Ar > cB* +A*(2t) c AT-AT^(r_I) > cB*

Thus we get

t t -q

XE((AT-AT^(,-I))q)
< +aa cB*.
<_t.

This proves A* < cB*(t/2) + A*(2t), ’t > 0. The proof is finished.



516 RUILIN LONG

We now apply this lemma to several pairs (A(f), B(f)) associated with
some martingale f (fn)n z 0 having a predictable control D (Dn)# > 0 in
the sense: D is non-negative, adapted, nondecreasing and such that IAfl _<

Dn_l,

THEOREM 9. Let f (f#)# o be a martingale having a predictable control
D (Dn)n o. Then with both sets of definition for (A(f), B(f)), namely

A([) (A,,),,o (M,,(f)),,o,B(f) (B,,),, o

(Sn_l(f) + Dn_l)n> O,

and

A(f) (An)n> o (Sn(f))no,n(f) (B,,),,o

(Mn_l(f) + Vn_l)nO)

we have

A(t) < cB - + A*o0(2t), t > 0. (30)

Proof. We have only to verify that for any stopping times T and r, we
have (28). In fact, say A Mr, B Sf + D=,

E((Ar -A

This completes the proof.

COROLLARY 10.
pairs

The same assertions as those in Theorem 7 hold for the

( Mf, Sf + Doo) and ( Sf, Mf + Doo).
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Let f (fn)nz0 still be a martingale having a predictable control D---
(D)0. We use the notations

h (hn)n>O, Zoo-" Mf V Sf, An

O (n)0, =Mf^Sf+D,

nn Mn_lf A Sn_lf + On_ 1.

Mf v sf,

It is known (see Lenglart-Lepingle-Pratelli [7]) that

E((AT-AT^(.-1))2) <- a2E(BrXb.<oo}), V stopping times T, z.

So we also have:

THEOREM 11. For any martingale f (fn)n>O having predictable control
D (D,), > o, we have

(t)(Mf v sf)*(t) <_ C(Mf ^ Sf + o)* + (Mfv Sf)*(2t),

> 0. (31)

COROLLARY 12.
pair

The same assertions as those in Theorem 7 hold for the

(-,Wv Sf, M$ ^ Sf + D).

The inequalities for moderate convex function in Corollaries 10 and 12
can be extended to any martingale without any "predictability" as follows.

THEOREM 13. Let @ be a moderate convex function. Then

IIMfll. IISfll., Vf (f.).zo, (32)

with the constant of equivalence < Cp, and

f (f),o. (33)

Proof We only prove (33). Using Davis’ decomposition, (see [3], Chapter
3, 14), we get f g + h, with

IA,gl _< 4d,*_ 1, Vn (where d, Anf ),
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and

E IA.hl-< E {2(d* d*._) + 2E(d*. dn*_l[n_l)}.
n =0 n --0

(34)

We have

d* < (2Mr) A Sf, Mh v Sh [A.h[,
0

Mf V Sf <Mg v Sg + Mh v Sh,

Mg A Sg < min(Mf + Mh, Sf + Sh) < Mf A Sf + lA,,hl.
0

Since g has a predictable control d*, we have, using Corollary 12,

IIM/v S/II. < IlMg v Sgll. + IA.hl

< Cp(IIMg ^ Sgll. + IId*ll.) + IA.hl

<_ Cp. IIMf ^ Sfll. + IA.hl

But it is easy to show that

< Cp.lld*ll. < C,.IIMf Sfll.,

by applying Lemmas 1 and 2 to

n

F (F,,,),,o, F,, E E(ekl’--),
k--0

n

a=(.)nO, a.= E,
k--0

where ek d d_1. Thuswe get (33). The proof is finished.

Remark. Both (32) and (33)without the constant estimates are known
before. For (33), see [7].
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Finally, we want to establish the rearrangement inequality for the pair
(Sf, Mf) related to a non-negative martingale f (fn)n 0"

THEOREM 14. Let f (fn)no be a non-negative martingale. Then

(Sf)*(t) < 3(Mf)* - + (Sf)*(2t), > O. (35)

Proof. Let > 0 be given. Define the stopping times

z inf n’lfl > (Mr)* -r inf{n S,f > (Sf)*(2t)}.

It is enough to prove

(Sf)*2(t) < 9(Mr) .2 + (Sf)*2(2t), > 0. (35’)

We have

S(f) > 9(Mr)*2 - + (Sf) 2t)

{C {7" < oo} U Sr_l(f)2 > 9(Mf) .2 + (Sf) "2(2t)}.
Let us estimate

,2((Sz_l(f)2 > 9(Mf)*2(-)+(Sf) 2t))
Without loss of generality we can assume that z < , a.e., otherwise we
consider Zm rA(T + m) instead, and then let m --+ . We have

c T < "r, Sz_l(t)2 ST(f)2 > 8(Mr) .2

here we have used the fact that on the set {T < q-}, we have

ST(f)2 <_ Sr_l(f)2
"4" (fT--fT-1 < (Mr) .2 + (Sf)*2(2t)
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If we notice the identity

E (Akf)2=-2 fk-lAkf--f2r--f2-1+2f-lf, (36)
kffiT+l kffiT+l

and

fk_lAkfl-r E .,E(xtr+lk}fk_lAkfirk_l)l-r O,
k=T+l

we get

]{T < ’r, S,._(f)2 ST(f)2>8(Mf)*2(2t)}[
-1

-1 1 tE(E(2f_lflrr)Xtr<,) <- I{T < }t-< ".

This completes the proof of the theorem.

Remark. The proof is essentially due to Burkholder [3].

COROLLARY 15. For and as in Theorem 7, and any non-negative
martingale f (fn)n O, we have

Ilsfll < cp.llMfll.,

Ilsfll.. CllMfll_,.
(37)
(38)

The author would like to express his deep thanks to Professor D.L.
Burkholder for his kind and valuable help.
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