1-ARY FUNCTIONS AND THE F.C.P.

BY
Carlo Toffalori

Let T be a countable, complete 1st order theory with no finite models. As usual, we assume that all models of T are elementary substructures of some big model U. In [K], Keisler proposed the following definition: T is said to satisfy the finite cover property (f.c.p.) if there exists a formula $\varphi(\bar{v}, \bar{w})$ of the language of T such that, for every $m \in \omega$, there are $n \in \omega, \bar{a}_{0}, \ldots, \bar{a}_{n} \in U$ such that $n \geq m$,

$$
\vDash \neg\left(\exists \bar{v} \bigwedge_{k \leq n} \varphi\left(\bar{v}, \bar{a}_{k}\right)\right)
$$

but, for all $l \leq n$,

$$
\vDash \exists \bar{v} \bigwedge_{k \leq n, k \neq l} \varphi\left(\bar{v}, \bar{a}_{k}\right) .
$$

To define what is a theory without the f.c.p. is now an exercise as trivial as useful; for, the \neg f.c.p. is a property much richer in implications than the f.c.p. For instance, a theory T without the f.c.p. is stable (and some examples of the use of the \neg f.c.p. in stability theory can be found in Shelah's book [S]); on the other hand, Poizat discovered some meaningful connections between the \neg f.c.p. and the properties of the theory of nice pairs of models of $T[\mathrm{P}]$.

Here we are interested in the problem of studying the f.c.p. for theories of a 1 -ary function. Several papers have already been devoted to the model theory of 1 -ary functions, especially in the context of Vaught's Conjecture (see [M1], [M2], [Mi]). In particular, we studied classification theory for these functions in [T], we only recall here that they are superstable. The aim of this paper is to classify the theories T of a 1-ary function f which do not satisfy the f.c.p. First let us give some examples concerning this matter.

1. If T is categorical in \aleph_{0} or in \aleph_{1}, then T does not satisfy the f.c.p. (in fact, in general, any stable $\boldsymbol{\aleph}_{0}$-categorical theory, as well as any $\boldsymbol{\aleph}_{1}$-categorical theory, fails to have the f.c.p., see [K] and [BK]).
2. Let T be the theory of a 1 -ary function f such that:

For every $a \in U$ and $n \in \omega-\{0\}, f^{n}(a) \neq a$;
For every $a \in U$, there are infinitely many $b \in U$ satisfying $f(b)=a$.
Then T is neither \aleph_{0}-categorical nor \aleph_{1}-categorical; however T does not have the f.c.p.
3. Consider now the theory T_{0} of a 1-ary function f such that, for every $n \in \omega-\{0\}$, there is $a \in U$ satisfying:
$f(a)=a ;$
There are exactly n elements $b \in U$ such that $f(b)=a, b \neq a$;
For all b such that $f(b)=a$ and $b \neq a, f^{-1}(b)=\varnothing$.
Let T be any completion of T_{0}; then T has the f.c.p.
Our main result is that a theory T of a 1-ary function f does not have the f.c.p. if and only if T satisfies the conditions $P_{n}(n \in \omega-\{0\})$ below. However, before stating these conditions, we need to introduce the following notions.

Definition . Let $a \in U$. Then

$$
k(a)= \begin{cases}\min \left\{k \in \omega: k>0, f^{k}(a)=a\right\} & \text { if such a } k \text { exists } \\ \infty & \text { otherwise }\end{cases}
$$

It is easy to see that, for every $a \in U$:
If $k(a)<\infty$, then, for all $k \in \omega, f^{k}(a)=a$ if and only if $k(a) \mid k$;
If $k(a)<\infty$, then $k(f(a))=k(a)$ (in particular, if $k(f(a))=\infty$, then $k(a)=\infty$, too $) ;$

If $k(a)<\infty, f(x)=a$ and $x \neq f^{k(a)-1}(a)$, then $k(x)=\infty$.
Definition . Let $a \in U, n \in \omega-\{0,1\}$. Then $\tau_{n}(a)=\{x \in U$: either $x=a$ or there is $m \in \omega$ such that $0<m<n, f^{m}(x)=a$ and $f^{m-1}(x) \neq$ $f^{k(a)-1}(a)$ when $\left.k(a)<\infty\right\}$.
One can easily prove that, for every $a \in U$ and $n \in \omega-\{0,1\}$,

$$
\tau_{n+1}(a)=\{a\} \cup \bigcup_{x} \tau_{n}(x)
$$

where x ranges over the preimages of a in f different from $f^{k(a)-1}(a)$ when $k(a)<\infty$. Furthermore, if $f(x)=f(y)=a, x \neq y$ and $x, y \neq f^{k(a)-1}(a)$
when $k(a)<\infty$, then

$$
a \notin \tau_{n}(x), \quad \tau_{n}(x) \cap \tau_{n}(y)=\varnothing
$$

Notice that in general $\tau_{n}(a)$ is not a structure of the language for f, as $\tau_{n}(a)$ contains a, but it does not include $f(a)$ except for the case $f(a)=a$ namely $k(a)=1$. Nevertheless we shall consider below the "isomorphism type" of $\tau_{n}(a)$ in the sense we are going to explain here. For every $a, a^{\prime} \in U$, we shall say that $\tau_{n}(a)$ is isomorphic to $\tau_{n}\left(a^{\prime}\right)$,

$$
\tau_{n}(a) \simeq \tau_{n}\left(a^{\prime}\right)
$$

if $k(a)=k\left(a^{\prime}\right)$ and there exists a partial isomorphism of U having domain $\tau_{n}(a)$ and range $\tau_{n}\left(a^{\prime}\right)$, namely a bijection g of $\tau_{n}(a)$ onto $\tau_{n}\left(a^{\prime}\right)$ such that, for all $x, y \in \tau_{n}(a), f(x)=y$ if and only if $f(g(x))=g(y)$ (in particular $g(a)=$ $\left.a^{\prime}\right)$. Clearly \simeq is an equivalence relation; then the isomorphism type of $\tau_{n}(a)$ will mean the equivalence class of $\tau_{n}(a)$ with respect to \simeq.

We can state now P_{1}.
(P_{1}) There exists $N \in \omega$ such that, for every $a \in U, f^{-1}(a)$ has either $\leq N$ or infinitely many elements.

Let us list some consequences of P_{1}.
(i) For every $a \in U$, the isomorphism type of $\tau_{2}(a)$ is given by $k(a)$ and a cardinal number among $0,1, \ldots, N$, card U specifying the power of $\left\{x: f(x)=a, x \neq f^{k(a)-1}(a)\right.$ if $\left.k(a)<\infty\right\}$.
(ii) For every $k \in \omega-\{0\}$ or $k=\infty$, there are only finitely many isomorphism types of structures $\tau_{2}(a)$ with $k(a)=k$.
(iii) For every $a \in U$, let $\vartheta_{2, a}$ be the formula

$$
\exists!m(a) w\left(f(w)=v \wedge w \neq f^{k(a)-1}(v)\right)
$$

if $k(a)<\infty$ and

$$
\exists!m(a) w(f(w)=v)
$$

otherwise, where $m(a)$ denotes the power of

$$
\left\{x: f(x)=a, x \neq f^{k(a)-1}(a) \text { if } k(a)<\infty\right\}
$$

so that

$$
m(a) \in\{0,1, \ldots, N, \operatorname{card} U\}
$$

and \exists ! card U abridges $\exists>N$. Then, for every $a, a^{\prime} \in U$,

$$
\tau_{2}(a) \simeq \tau_{2}\left(a^{\prime}\right)
$$

if and only if $k(a)=k\left(a^{\prime}\right)$ and $\vDash \vartheta_{2, a}\left(a^{\prime}\right)$ or, if you prefer, if and only if $k(a)=k\left(a^{\prime}\right)$ and $m(a)=m\left(a^{\prime}\right)$.

Now let $n \in \omega-\{0,1\}$.
$\left(P_{n}\right)$ For every $b \in U$ with $k(b)=\infty$, there is $H=H\left(\tau_{n}(b) / \simeq\right)$ such that, for all $a \in U$,

$$
\left\{x: f(x)=a, x \neq f^{k(a)-1}(a) \text { if } k(a)<\infty, \tau_{n}(x) \simeq \tau_{n}(b)\right\}
$$

has either $\leq H$ or infinitely many elements.
Let $n \in \omega-\{0,1\}$ and assume that P_{m} holds for every $m \in \omega$ with $1 \leq m \leq n$. Then an easy induction argument shows the following consequences, generalizing the ones of the case $n=1$.
(i) For all $a \in U$, the isomorphism type of $\tau_{n+1}(a)$ is given by $k(a)$ and by the function of the (finite) set of invariants of isomorphism types of structures $\tau_{n}(b)$ with $b \in U, k(b)=\infty$, into the set of cardinals \leq card U such that, for every $b \in U$ satisfying $k(b)=\infty$, the image of the corresponding invariant is the power of

$$
\left\{x: f(x)=a, x \neq f^{k(a)-1}(a) \text { if } k(a)<\infty, \tau_{n}(x) \simeq \tau_{n}(b)\right\}
$$

(and hence belongs to $\left\{0,1, \ldots, H\left(\tau_{n}(b) / \simeq\right.\right.$), card $\left.U\right\}$).
In fact, assume $\tau_{n+1}(a) \simeq \tau_{n+1}\left(a^{\prime}\right)$. Then $k(a)=k\left(a^{\prime}\right)$ and there is a partial isomorphism g mapping $\tau_{n+1}(a)$ onto $\tau_{n+1}\left(a^{\prime}\right)$; in particular $g(a)=a^{\prime}$ and, for every x such that $f(x)=a, x \neq f^{k(a)-1}(a)$ if $k(a)<\infty, g(x)=x^{\prime}$ satisfies $f\left(x^{\prime}\right)=a^{\prime}, x^{\prime} \neq f^{k\left(a^{\prime}\right)-1}\left(a^{\prime}\right)$ if $k\left(a^{\prime}\right)=k(a)<\infty$. It follows that $\tau_{n}(x) \simeq \tau_{n}\left(x^{\prime}\right)$. In fact $k(x)=k\left(x^{\prime}\right)=\infty$ and, for all $y \in \tau_{n+1}(a)$, if $y^{\prime}=$ $g(y)$, then
$y \in \tau_{n}(x)$ iff there is $s<n$ such that $f^{s}(y)=x$
iff there is $s<n$ such that $f^{s}\left(y^{\prime}\right)=x^{\prime}$
iff $y^{\prime} \in \tau_{n}\left(x^{\prime}\right)$;
hence $g \upharpoonright_{\tau_{n}(x)}$ is a partial isomorphism of $\tau_{n}(x)$ onto $\tau_{n}\left(x^{\prime}\right)$. In particular, for every $b \in U$ such that $k(b)=\infty$,
$\operatorname{card}\left\{x: f(x)=a, x \neq f^{k(a)-1}(a)\right.$ if $\left.k(a)<\infty, \tau_{n}(x) \simeq \tau_{n}(b)\right\}=\operatorname{card}\left\{x^{\prime}: f\left(x^{\prime}\right)\right.$ $=a^{\prime}, x^{\prime} \neq f^{k\left(a^{\prime}\right)-1}\left(a^{\prime}\right)$ if $\left.k\left(a^{\prime}\right)<\infty, \tau_{n}\left(x^{\prime}\right) \simeq \tau_{n}(b)\right\}$.
Conversely suppose that $a, a^{\prime} \in U$ satisfy $k(a)=k\left(a^{\prime}\right)$ and
$\operatorname{card}\left\{x: \quad f(x)=a, x \neq f^{k(a)-1}(a)\right.$ if $\left.k(a)<\infty, \tau_{n}(x) \simeq \tau_{n}(b)\right\}=\operatorname{card}\left\{x^{\prime}:\right.$ $f\left(x^{\prime}\right)=a^{\prime}, x^{\prime} \neq f^{k\left(a^{\prime}\right)-1}\left(a^{\prime}\right)$ if $\left.k\left(a^{\prime}\right)<\infty, \tau_{n}\left(x^{\prime}\right) \simeq \tau_{n}(b)\right\}$
for every $b \in U$ with $k(b)=\infty$. By recalling that

$$
\tau_{n+1}(a)=\{a\} \dot{\cup} \bigcup_{x} \tau_{n}(x)
$$

(where $f(x)=a, x \neq f^{k(a)-1}(a)$ if $\left.k(a)<\infty\right)$ and similarly for a^{\prime}, one can easily build a partial isomorphism of $\tau_{n+1}(a)$ onto $\tau_{n+1}\left(a^{\prime}\right)$.
(ii) There are at most finitely many isomorphism types of structures $\tau_{n+1}(a)$ with $a \in U, k(a)=\infty$.
(iii) For every $a \in U$, let $\vartheta_{n+1, a}$ be the formula

$$
\bigwedge_{b} \exists!m(n, b, a) w\left(f(w)=v \wedge w \neq f^{k(a)-1}(v) \wedge \vartheta_{n, b}(w)\right)
$$

if $k(a)<\infty$, or

$$
\bigwedge_{b} \exists!m(n, b, a) w\left(f(w)=v \wedge \vartheta_{n, b}(w)\right)
$$

otherwise, where b ranges over the elements of U satisfying $k(b)=\infty$-or, more precisely, $\tau_{n}(b) / \simeq$ ranges over the corresponding isomorphism types, that are finitely many-and, for each b with $k(b)=\infty$,

$$
\begin{aligned}
& m(n, b, a)= \operatorname{card}\left\{x: f(x)=a, x \neq f^{k(a)-1}(a)\right. \text { when } \\
&\left.k(a)<\infty, \tau_{n}(x) \simeq \tau_{n}(b)\right\} \\
& \in\left\{0,1, \ldots, H\left(\tau_{n}(b) / \simeq\right), \operatorname{card} U\right\}
\end{aligned}
$$

(as before \exists ! card U abbreviates $\exists>H\left(\tau_{n}(b) / \simeq\right)$). Then, for all $a, a^{\prime} \in U$,

$$
\tau_{n+1}(a) \simeq \tau_{n+1}\left(a^{\prime}\right)
$$

if and only if $k(a)=k\left(a^{\prime}\right)$ and $\vDash \vartheta_{n+1, a}\left(a^{\prime}\right)$, or, if you prefer, if and only if $k(a)=k\left(a^{\prime}\right)$ and $m(n, b, a)=m\left(n, b, a^{\prime}\right)$ for every b with $k(b)=\infty$.

Theorem 1. If T fails to have the f.c.p., then T satisfies P_{n} for all $n \in \omega-\{0\}$.

Proof. Assume towards a contradiction that there is $n \in \omega-\{0\}$ such that P_{n} does not hold. Let n be minimal with this property. If $n=1$, then, for every $m \in \omega$, there exists $a \in U$ admitting $\geq m$ but finitely many preimages; hence T has the f.c.p. (consider the formula $\varphi(v, w): v \neq w \wedge$ $f(v)=f(w)$.

Let now $n>1$. Then there is $b \in U$ such that $k(b)=\infty$ and, for all $n \in \omega$, there is $a \in U$ admitting $\geq m$ but finitely many preimages x such
that $x \neq f^{k(a)-1}(a)$ when $k(a)<\infty$ and $\tau_{n}(x) \simeq \tau_{n}(b)$ (namely $k(x)=\infty$ and $\left.\vDash \vartheta_{n, b}(x)\right)$. But in this case T admits the f.c.p. owing to the formula

$$
\varphi(v, w): v \neq w \wedge f(v)=f(w) \wedge \vartheta_{n, b}(v) \wedge \vartheta_{n, b}(w)
$$

(in fact, even if $k(a)<\infty$, there is at most one preimage $a^{\prime}=f^{k(a)=1}(a)$ of a such that $k\left(a^{\prime}\right)<\infty$ and $\left.\vDash \vartheta_{n, b}\left(a^{\prime}\right)\right)$.

Theorem 2. If T satisfies P_{n} for all $n \in \omega-\{0\}$, then T fails to have the f.c.p.

We tacitly assume from now on that T satisfies P_{n} for all $n \in \omega-\{0\}$.
Lemma 1. For all $a, a^{\prime} \in U$ satisfying $k(a)=k\left(a^{\prime}\right)$, and $n \in \omega-\{0,1\}$, if $\vDash \vartheta_{n+1, a}\left(a^{\prime}\right)$, then $\vDash \vartheta_{n, a}\left(a^{\prime}\right)$.

Proof. We proceed by induction on n.
Let $n=2$, and suppose $\vDash \vartheta_{3, a}\left(a^{\prime}\right)$. Then, for all $b \in U$ with $k(b)=\infty$, $m(2, b, a)=m\left(2, b, a^{\prime}\right)$. But in this case

$$
m(a)=\sum_{b} m(2, b, a)=\sum_{b} m\left(2, b, a^{\prime}\right)=m\left(a^{\prime}\right)
$$

and hence $\vDash \vartheta_{2, a}\left(a^{\prime}\right)$.
Now let $n>2$ and assume $\vDash \vartheta_{n+1, a}\left(a^{\prime}\right)$. Then, for all $b \in U$ with $k(b)=$ $\infty, m(n, b, a)=m\left(n, b, a^{\prime}\right)$. Let x satisfy $f(x)=a, x \neq f^{k(a)-1}(a)$ when $k(a)$ $<\infty$. Then $k(x)=\infty$ and, for every b with $k(b)=\infty$,

$$
\vDash \vartheta_{n-1, b}(x)
$$

if and only if there is c such that $k(c)=\infty, \vDash \vartheta_{n-1, b}(c)$ and $\vDash \vartheta_{n, c}(x)$. In fact, if $\vDash \vartheta_{n-1, b}(x)$, then we can put $c=x$.

Conversely suppose that there exists c as claimed, then we have $\vDash \vartheta_{n-1, c}(x)$ and, consequently, as $k(c)=k(x)=k(b)=\infty$,

$$
\tau_{n-1}(x) \simeq \tau_{n-1}(c) \simeq \tau_{n-1}(b)
$$

but then $\vDash \boldsymbol{\vartheta}_{n-1, b}(x)$. Of course, for every c, c^{\prime} with $k(c)=k\left(c^{\prime}\right)=\infty$, if $\vDash \vartheta_{n, c}(x) \wedge \vartheta_{n, c^{\prime}}(x)$, then $\tau_{n}(c) \simeq \tau_{n}\left(c^{\prime}\right)$; hence, for all b as above,

$$
m(n-1, b, a)=\sum_{k(c)=\infty,=\vartheta_{n-1, b}(c)} m(n, c, a)
$$

Similarly for a^{\prime}. But this clearly suffices to prove our claim.

Lemma 2. Let $a, x^{\prime} \in U$ satisfy $k(a)=\infty, k\left(x^{\prime}\right)=k(f(a))$,

$$
\vDash \vartheta_{n, f(a)}\left(x^{\prime}\right) \quad \text { for all } n \in \omega-\{0,1\} .
$$

Then there is $a^{\prime} \in U$ such that $f\left(a^{\prime}\right)=x^{\prime}, a^{\prime} \neq f^{k\left(x^{\prime}\right)-1}$ when $k\left(x^{\prime}\right)<\infty$, $\vDash \vartheta_{n, a}\left(a^{\prime}\right)$ for all $n \in \omega-\{0,1\}$ (and similarly in any ω-saturated model of T containing x^{\prime}).

Proof. First notice that $k(a)=\infty$ implies $a \neq f^{h}(a)$ for all $h \in \omega-\{0\}$. We have to show that the set

$$
\left\{f(v)=x^{\prime}, v \neq f^{k\left(x^{\prime}\right)-1}\left(x^{\prime}\right), \vartheta_{n, a}(v): n \in \omega-\{0,1\}\right\}
$$

$\left(\left\{f(v)=x^{\prime}, \vartheta_{n, a}(v): n \in \omega-\{0,1\}\right\}\right.$ when $k\left(x^{\prime}\right)=\infty$, but for simplicity we will ignore this case, which can be handled in a similar way) is satisfiable. Since U is very saturated (but ω-saturated is enough), it suffices to show that this set is finitely satisfiable, and hence that, for all $n \in \omega-\{0,1\}$,

$$
\left\{f(v)=x^{\prime}, v \neq f^{k\left(x^{\prime}\right)-1}\left(x^{\prime}\right), \vartheta_{2, a}(v), \ldots, \vartheta_{n, a}(v)\right\}
$$

is satisfiable. Lemma 1 reduces the problem to the satisfiability of

$$
\left\{f(v)=x^{\prime}, v \neq f^{k\left(x^{\prime}\right)-1}\left(x^{\prime}\right), \vartheta_{n, a}(v)\right\}
$$

for every $n \in \omega-\{0,1\}$; in fact, if $f(c)=x^{\prime}$ but $c \neq f^{k\left(x^{\prime}\right)-1}\left(x^{\prime}\right)$, then $k(c)=\infty=k(a)$, and hence $\vDash \vartheta_{n, a}(c)$ implies $\vDash \vartheta_{i, a}(c)$ for any i such that $2 \leq i \leq n$. On the other hand

$$
\vDash \exists w\left(f(w)=x^{\prime} \wedge w \neq f^{k\left(x^{\prime}\right)-1}\left(x^{\prime}\right) \wedge \vartheta_{n, a}(w)\right)
$$

if and only if $m\left(n, a, x^{\prime}\right)=m(n, a, f(a))>0$ and hence if and only if

$$
\vDash \exists w\left(f(w)=f(a) \wedge w \neq f^{k(f(a))-1}(f(a)) \wedge \vartheta_{n, a}(w)\right)
$$

but this formula is true (take $w=a$).
Definition. Let $\bar{a}=\left(a_{0}, \ldots, a_{t}\right)$ be a sequence of elements of U. The f-type of \bar{a} is the subset of $t p(\bar{a} \mid \varnothing)$ of the formulas of the kind

$$
f^{h}\left(v_{i}\right)=f^{m}\left(v_{j}\right), \quad f^{h}\left(v_{i}\right) \neq f^{m}\left(v_{j}\right)
$$

with $h, m \in \omega, i, j \leq t$, or of the kind

$$
\vartheta_{n, f} h_{\left(a_{i}\right)}\left(f^{h}\left(v_{i}\right)\right)
$$

with $n, h \in \omega, n \geq 2$ and $i \leq t$.
One can easily see that, for any $a, a^{\prime} \in U$, the following propositions are equivalent:
(i) For all $h \in \omega, k\left(f^{h}(a)\right)=k\left(f^{h}\left(a^{\prime}\right)\right)$;
(ii) For all $h, m \in \omega, f^{h}(a)=f^{m}(a)$ iff $f^{h}\left(a^{\prime}\right)=f^{m}\left(a^{\prime}\right)$.

Hence, if $\bar{a}, \bar{a}^{\prime}$ have the same f-type, then, for every $h \in \omega$ and $i \leq$ $t, k\left(f^{h}\left(a_{i}\right)\right)=k\left(f^{h}\left(a_{i}^{\prime}\right)\right)$.

In the following, when $\bar{a}=\left(a_{0}, \ldots, a_{t}\right), \bar{a}^{\prime}=\left(a_{0}^{\prime}, \ldots, a_{t}^{\prime}\right)$ are two sequences of the elements of U, and $a \in \bar{a}$ (for instance $a=a_{i}$ with $i \leq t$), then a^{\prime} will denote the element of \bar{a}^{\prime} corresponding to a (namely $a^{\prime}=a_{i}^{\prime}$).

Lemma 3. Let $\bar{a}, \bar{a}^{\prime}$ satisfy the same f-type, and let x be such that:
There are $s \in \omega, a \in \bar{a}$ such that $f(x)=f^{s}(a)$;
For all $q \in \omega$ and $\alpha \in \bar{a}, x \neq f^{q}(\alpha)$.
Then there is $x^{\prime} \in U$ such that:
$f\left(x^{\prime}\right)=f^{s}\left(a^{\prime}\right) ;$
For all $q \in \omega$ and $\alpha^{\prime} \in \bar{a}^{\prime}, x \neq f^{q}\left(\alpha^{\prime}\right)$;
For all $n \in \omega-\{0,1\}, \vDash \vartheta_{n, x}\left(x^{\prime}\right)$
(and similarly in any ω-saturated model of T containing \bar{a}^{\prime}).
Proof. First notice that $k(x)=\infty$; in fact, if $k\left(f^{s}(a)\right)<\infty$, then

$$
x \neq f^{k\left(f^{s}(a)\right)-1}\left(f^{s}(a)\right)
$$

We have to show that the set

$$
\begin{aligned}
\{f(v) & \left.=f^{s}\left(a^{\prime}\right)\right\} \cup\left\{v \neq f^{q}\left(\alpha^{\prime}\right): q \in \omega, \alpha^{\prime} \in \bar{a}^{\prime}\right\} \\
& \cup\left\{\vartheta_{n, x}(v): n \in \omega-\{0,1\}\right\}
\end{aligned}
$$

is satisfiable. As U is very saturated (but ω-saturated is enough), it suffices to prove that this set is finitely satisfiable, and even that, for all $h, n \in \omega$ such that $n \geq 2$ and $h \geq k\left(f^{s}(a)\right)$ if $k\left(f^{s}(a)\right)<\infty$, the set

$$
\left\{f(v)=f^{s}\left(a^{\prime}\right)\right\} \cup\left\{v \neq f^{q}\left(\alpha^{\prime}\right): q \leq h, \alpha^{\prime} \in \bar{a}^{\prime}\right\} \cup\left\{\vartheta_{n, x}(v)\right\}
$$

is satisfiable (recall that, if $f\left(x^{\prime}\right)=f^{s}\left(a^{\prime}\right)$ and $x^{\prime} \neq f^{k\left(f^{s}\left(a^{\prime}\right)\right)-1}\left(f^{s}\left(a^{\prime}\right)\right.$), then
$k\left(x^{\prime}\right)=\infty=k(x)$, hence $\vDash \vartheta_{n, x}\left(x^{\prime}\right)$ implies $\vDash \vartheta_{i, x}\left(x^{\prime}\right)$ for any i with $2 \leq i$ $\leq n)$. Let r be the power of

$$
\begin{array}{r}
\left\{f^{q}\left(\alpha^{\prime}\right): q \leq h, \alpha^{\prime} \in \bar{a}^{\prime}, \vDash \vartheta_{n, x}\left(f^{q}\left(\alpha^{\prime}\right)\right), f\left(f^{q}\left(\alpha^{\prime}\right)\right)=f^{s}\left(a^{\prime}\right)\right. \\
\left.f^{q}\left(\alpha^{\prime}\right) \neq f^{k\left(f^{s}\left(a^{\prime}\right)\right)-1}\left(f^{s}\left(a^{\prime}\right)\right)\right\} .
\end{array}
$$

As a, a^{\prime} have the same f-type, r is also the power of

$$
\begin{array}{r}
\left\{f^{q}(\alpha): q \leq h, \alpha \in \bar{a}, \vDash \vartheta_{n, x}\left(f^{q}(\alpha)\right), f\left(f^{q}(\alpha)\right)=f^{s}(a)\right. \\
\left.f^{q}(\alpha) \neq f^{k\left(f^{s}(a)\right)-1}\left(f^{s}(a)\right)\right\} .
\end{array}
$$

Moreover

$$
\vDash \exists w\left(f(w)=f^{s}\left(a^{\prime}\right) \wedge \bigwedge_{q \leq h, \alpha^{\prime} \in \bar{a}^{\prime}} w \neq f^{q}\left(\alpha^{\prime}\right) \wedge \vartheta_{n, x}(w)\right)
$$

if and only if $r<m\left(n, x, f^{s}\left(a^{\prime}\right)\right)=m\left(n, x, f^{s}(a)\right)$, and hence if and only if

$$
\vDash \exists w\left(f(w)=f^{s}(a) \wedge \bigwedge_{q \leq h, \alpha \in \bar{a}} w \neq f^{q}(\alpha) \wedge \vartheta_{n, x}(w)\right)
$$

and this formula is true (it suffices to take $w=x$).
Lemma 4. Let $\bar{a}, \bar{a}^{\prime} \in U$ have the same f-type, $h \in \omega-\{0\}, x \in U$ be such that:

There are $s \in \omega$ and $a \in \bar{a}$ satisfying $f^{h}(x)=f^{s}(a) ;$
For any $q \in \omega$ and $\alpha \in \bar{a}, f^{h-1}(x) \neq f^{q}(\alpha)$.
Then there is $x^{\prime} \in U$ such that:

$$
f^{h}\left(x^{\prime}\right)=f^{s}\left(a^{\prime}\right)
$$

$f^{h-1}\left(x^{\prime}\right) \neq f^{q}\left(\alpha^{\prime}\right)$ for all $q \in \omega$ and $\alpha^{\prime} \in \bar{a}^{\prime} ;$
x^{\prime} and x have the same f-type.
And similarly in any ω-saturated model of T containing \bar{a}^{\prime}.
Proof. First notice that $k\left(f^{i}(x)\right)=\infty$ for all $i<h$. We proceed by induction on h (the case $h=0$ is trivial).

First let $h=1$. Then it suffices to apply Lemma 3; in fact $k(x)=k\left(x^{\prime}\right)=\infty$, and $\vDash \vartheta_{n, x}\left(x^{\prime}\right)$ for every $n \in \omega-\{0,1\}$; moreover, if $i>0$, then $f^{i}(x)=$ $f^{s+i-1}(a)$ and $f^{i}\left(x^{\prime}\right)=f^{s+i-1}\left(a^{\prime}\right)$ so that, as a, a^{\prime} have the same f-type, it follows that $k\left(f^{i}(x)\right)=k\left(f^{i}\left(x^{\prime}\right)\right)$, and $\vDash \vartheta_{n, f^{i}(x)}\left(f^{i}\left(x^{\prime}\right)\right)$ for every $n \in$ $\omega-\{0,1\}$.
$h \Rightarrow h+1$. Let $y=f(x)$. Then $f^{h}(y)=f^{s}(a), f^{h-1}(y) \neq f^{q}(\alpha)$ for any $q \in \omega$ and $\alpha \in \bar{a}$; in particular $k(y)=\infty$. By the induction hypothesis, there is $y^{\prime} \in U$ satisfying $f^{h}\left(y^{\prime}\right)=f^{s}\left(a^{\prime}\right), f^{h-1}\left(y^{\prime}\right) \neq f^{q}\left(\alpha^{\prime}\right)$ for all $q \in \omega$ and $\alpha^{\prime} \in \bar{a}^{\prime}, y^{\prime}$ admits the same f-type as y. In particular $k\left(y^{\prime}\right)=\infty, \vDash \vartheta_{n, y}\left(y^{\prime}\right)$ for every $n \in \omega-\{0,1\}$. It follows from Lemma 2 that there is $x^{\prime} \in U$ such that $f\left(x^{\prime}\right)=y^{\prime}$ (so that $f^{h+1}\left(x^{\prime}\right)=f^{s}\left(a^{\prime}\right), f^{h}\left(x^{\prime}\right) \neq f^{q}\left(\alpha^{\prime}\right)$ for all $q \in \omega, \alpha^{\prime} \in$ \bar{a}^{\prime}), and $\vDash \vartheta_{n, x}\left(x^{\prime}\right)$ for every $n \in \omega-\{0,1\}$. Furthermore $k\left(x^{\prime}\right)=k(x)=\infty$. This clearly implies that x, x^{\prime} have the same f-type.

Lemma 5. For all $\bar{a}, \bar{a}^{\prime} \in U, \bar{a} \equiv \bar{a}^{\prime}$ if and only if $\bar{a}, \bar{a}^{\prime}$ have the same f-type.
Proof. (\Rightarrow) This is trivial.
(\Leftarrow) It suffices to show that $\bar{a}, \bar{a}^{\prime}$ correspond to each other in an infinite back-and-forth. Hence assume that $\bar{a}, \bar{a}^{\prime}$ have the same f-type. We claim that, for every x, there is x^{\prime} such that $(\bar{a}, x),\left(\bar{a}^{\prime}, x^{\prime}\right)$ have the same f-type (in a similar way one can show that, for every x^{\prime}, there is x such that (\bar{a}, x), $\left(\bar{a}^{\prime}, x^{\prime}\right)$ have the same f-type).

Case 1. There are $h, s \in \omega, a \in \bar{a}$ such that $f^{h}(x)=f^{s}(a)$. Let h be minimal with this property. If $h=0$, then we are done, as it suffices to pick $x^{\prime}=f^{s}\left(a^{\prime}\right)$. Then assume $h>0$. By Lemma 4, as $\bar{a}, \bar{a}^{\prime}$ have the same f-type and $f^{h}(x)=f^{s}(a)$ but $f^{h-1}(x) \neq f^{q}(\alpha)$ for all $q \in \omega$ and $\alpha \in \bar{a}$, there exists $x^{\prime} \in U$ satisfying:

$$
\begin{aligned}
& f^{h}\left(x^{\prime}\right)=f^{s}\left(a^{\prime}\right) ; \\
& f^{h-1}\left(x^{\prime}\right) \neq f^{q}\left(\alpha^{\prime}\right) \text { for all } q \in \omega \text { and } \alpha^{\prime} \in \bar{a}^{\prime} ; \\
& x, x^{\prime} \text { have the same } f \text {-type. }
\end{aligned}
$$

Let us show that (\bar{a}, x) and ($\left.\bar{a}^{\prime}, x^{\prime}\right)$ satisfy our claim. It suffices to prove that, for all $j, l \in \omega$ and $\alpha \in \bar{a}$,

$$
f^{l}(x)=f^{j}(\alpha) \text { if and only if } f^{l}\left(x^{\prime}\right)=f^{j}\left(\alpha^{\prime}\right)
$$

Assume $f^{l}(x)=f^{j}(\alpha)$. Then $l \geq h$, hence

$$
f^{l-h+s}(a)=f^{l}(x)=f^{j}(\alpha)
$$

and consequently

$$
f^{l}\left(x^{\prime}\right)=f^{l-h+s}\left(a^{\prime}\right)=f^{j}\left(\alpha^{\prime}\right)
$$

Conversely, if $f^{l}\left(x^{\prime}\right)=f^{j}\left(\alpha^{\prime}\right)$, then again we have $l \geq h$, and, by proceeding as before, we get $f^{l}(x)=f^{j}(\alpha)$.

Case 2. For all $h, s \in \omega$ and $a \in \bar{a}, f^{h}(x) \neq f^{s}(a)$.
We need find an element $x^{\prime} \in U$ satisfying:
For all $h, s \in \omega$ and $a^{\prime} \in \bar{a}^{\prime}, f^{h}\left(x^{\prime}\right) \neq f^{s}\left(a^{\prime}\right)$ (namely $x^{\prime} x a^{\prime}$ for all $a^{\prime} \in \bar{a}^{\prime}$ -we denote here by \sim the equivalence relation such that, for all $c, c^{\prime} \in$ $U, c \sim c^{\prime}$ if and only if there are $i, j \in \omega$ satisfying $f^{i}(c)=f^{j}\left(c^{\prime}\right)[T]$;
x^{\prime} admits the same f-type as x;
(Then $(\bar{a}, x),\left(\bar{a}^{\prime}, x^{\prime}\right)$ have the same f-type.)
Suppose towards a contradiction that, for every $x^{\prime} \in U$, if x^{\prime} satisfies the same f-type as x, then there is $a^{\prime} \in \bar{a}^{\prime}$ such that $x^{\prime} \sim a^{\prime}$. In particular, there is $a^{\prime} \in \bar{a}^{\prime}$ such that $x \sim a^{\prime}$. Let $h \in \omega$ be minimal such that there are $a^{\prime} \in \bar{a}^{\prime}, s \in \omega$ such that $f^{h}(x)=f^{s}\left(a^{\prime}\right)$. Without loss of generality $a^{\prime}=a_{0}^{\prime}$. By using Lemma 4 if $h>0$ and a trivial argument otherwise, we find $a_{0}^{\prime \prime}$ such that:
$f^{h}\left(a_{0}^{\prime \prime}\right)=f^{s}\left(a_{0}\right) ;$
$f^{h-1}\left(a_{0}^{\prime \prime}\right) \neq f^{q}(a)$ for all $q \in \omega$ and $a \in \bar{a}$ (when $h>0$);
$a_{0}^{\prime \prime}, x$ have the same f-type.
In particular $a_{0}^{\prime \prime} \sim a_{0} \nsim x, a_{0}^{\prime \prime} \nsim a_{0}^{\prime}$. There is $a^{\prime} \in \bar{a}^{\prime}$ such that $a_{0}^{\prime \prime} \sim a^{\prime}$, and a^{\prime} cannot equal a_{0}^{\prime}. Let $h \in \omega$ be minimal such that there are $s \in \omega, a^{\prime} \in \bar{a}^{\prime}$ such that $f^{h}\left(a_{0}^{\prime \prime}\right)=f^{s}\left(a^{\prime}\right)$. With no loss of generality $a^{\prime}=a_{1}^{\prime}$ (hence $a_{1}^{\prime} \propto$ $a_{0}^{\prime}, a_{1} \nsim a_{0}, a_{1}^{\prime} \sim a_{0}^{\prime \prime} \sim a_{0}$. As above we can find $a_{1}^{\prime \prime}$ such that:
$f^{h}\left(a_{1}^{\prime \prime}\right)=f^{s}\left(a_{1}\right)$;
$f^{h-1}\left(a_{1}^{\prime \prime}\right) \neq f^{q}(a)$ for all $q \in \omega$ and $a \in \bar{a}$ (when $h>0$);
$a_{1}^{\prime \prime}$ admits the same f-type as $a_{0}^{\prime \prime}$ and x.
Then $a_{1}^{\prime \prime} \sim a_{1}$ (and hence $a_{1}^{\prime \prime} \nsim x, a_{0}^{\prime}$), while $a_{1}^{\prime \prime} \nsim a_{1}^{\prime}$ (otherwise $a_{1} \sim a_{1}^{\prime \prime} \sim a_{1}^{\prime}$ $\sim a_{0}^{\prime \prime} \sim a_{0}$, contradicting $a_{1} \sim a_{0}$).

We can repeat this procedure to define $a_{j}^{\prime \prime}$ inductively for all j with $1 \leq j \leq t$; in fact, at stage j, we can assume

$$
\begin{aligned}
& x \nsim a_{0} \nsim a_{1} \nsim \cdots \nsim a_{j}, \\
& a_{0}^{\prime} \nsim a_{1}^{\prime} \nsim \cdots \not a_{j}^{\prime}, \\
& x \sim a_{0}^{\prime}
\end{aligned}
$$

and, for all $s<j$,

$$
\begin{aligned}
& a_{s} \sim a_{s}^{\prime \prime} \sim a_{s+1}^{\prime} \\
& a_{s}^{\prime \prime} \nsim a_{0}^{\prime}, \ldots, a_{s}^{\prime}
\end{aligned}
$$

(where we use the notation " $a \nsim b \nsim c \ldots$ " to mean that a, b, c, \ldots are mutually inequivalent modulo \sim) and deduce that there exists $a_{j}^{\prime \prime} \sim a_{j}$ such that $a_{j}^{\prime \prime}$ satisfies the same f-type as x. Furthermore $a_{j}^{\prime \prime} \nsim a_{0}^{\prime}, \ldots, a_{j}^{\prime}, x$ and there is $a^{\prime} \in \bar{a}^{\prime}$ such that $a^{\prime} \sim a_{j}^{\prime \prime}$, and, when $j<t$, we can assume without loss of generality that $a^{\prime}=a_{j+1}^{\prime}$. But, at stage t, this gets a contradiction. Then an element x^{\prime} as claimed must exist.

Proof of Theorem 2. First notice that, if $k \in \omega-\{0\}$, then $\{a \in U$: $k(a)=k\}$ can be defined by a unique formula of our language, while, if $k=\infty$, then we have to expect to need an infinite set of formulas for defining
$\{a \in U: k(a)=k\}$; in the following let us denote this formula, or this set of formulas respectively, by $k(v)=k$.

Let T^{*} be the theory of the pairs (M^{\prime}, M) of models of T satisfying $M \nsupseteq M^{\prime}$ and the conditions (i) and (ii) below.
(i) Let $b \in U$ with $k(b)=\infty, n \in \omega-\{0,1\}$. Then, for all $h \in \omega, T^{*}$ contains:
"For every $y \in M$, if there are infinitely many $x \in M$ satisfying $f(x)=y$ and $\vDash \vartheta_{n, b}(x)$, then there are $>h$ elements $x \in M^{\prime}-M$ such that $f(x)=y$ and $\vDash \vartheta_{n, b}(x)$ ".

It is clear that, for every $h \in \omega$, the previous proposition can be expressed by a suitable 1 st order sentence of the language for pairs of models of T.
(ii) Let $b \in U, n, s \in \omega, n \geq 2$. Let $s^{\prime} \leq s+1$ be such that, for every $j \leq s, k\left(f^{j}(b)\right)=\infty$ if and only if $j<s^{\prime}$ (possibly $s^{\prime}=0$; in this case $k\left(f^{j}(b)\right)$ $<\infty$ for all $j \leq s$). Assume that T contains the following sentences: for all $q \in \omega$,

$$
\begin{aligned}
\exists w\left(\bigwedge_{j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}(w)\right)\right. & \wedge \bigwedge_{s^{\prime} \leq j \leq s} k\left(f^{j}(w)\right)=k\left(f^{j}(b)\right) \\
& \left.\wedge \bigwedge_{0<l \leq q, j<s^{\prime}} f^{l}\left(f^{j}(w)\right) \neq f^{j}(w)\right)
\end{aligned}
$$

and, for all $h, q \in \omega$,

$$
\begin{aligned}
\forall v_{0} & \cdots \forall v_{h} \exists w\left(\bigwedge_{i \leq h, j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}\left(v_{i}\right)\right)\right. \\
\longrightarrow & \bigwedge_{j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}(w)\right) \wedge \bigwedge_{s^{\prime} \leq j \leq s} k\left(f^{j}(w)\right)=k\left(f^{j}(b)\right) \\
& \left.\wedge \bigwedge_{0<l \leq q, j<s^{\prime}} f^{l}\left(f^{j}(w)\right) \neq f^{j}(w) \wedge \bigwedge_{i \leq h, l, m \leq q} f^{m}(w) \neq f^{l}\left(v_{i}\right)\right)
\end{aligned}
$$

Notice that to assume that T satisfies the previous sentences is the same as to require that U-as well as any ω-saturated model of T-contains infinitely many pairwise \nsim elements satisfying

$$
\vartheta_{n, f^{j}(b)}\left(f^{j}(v)\right), \quad k\left(f^{j}(v)\right)=k\left(f^{j}(b)\right) \quad \text { for all } j \leq s
$$

Then T^{*} includes the following sentences: for all $q \in \omega$,

$$
\begin{aligned}
& \exists w\left(\bigwedge_{j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}(v)\right) \wedge \bigwedge_{s^{\prime} \leq j \leq s} k\left(f^{j}(v)\right)=k\left(f^{j}(b)\right)\right. \\
& \left.\quad \wedge_{0<l \leq q, j<s^{\prime}} \bigwedge^{l}\left(f^{j}(w)\right) \neq f^{j}(w) \wedge \bigwedge_{l \leq q} f^{l}(w) \notin M\right)
\end{aligned}
$$

and, for all $h, q \in \omega$,

$$
\begin{aligned}
& \forall v_{0} \cdots \forall v_{h} \exists w\left(\bigwedge_{i \leq h, j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}\left(v_{i}\right)\right)\right. \\
& \longrightarrow \bigwedge_{j \leq s} \vartheta_{n, f^{j}(b)}\left(f^{j}(w)\right) \wedge \bigwedge_{s^{\prime} \leq j \leq s} k\left(f^{j}(w)\right)=k\left(f^{j}(b)\right) \\
& \wedge \bigwedge_{0<l \leq q, j<s^{\prime}} f^{l}\left(f^{j}(w)\right) \neq f^{j}(w) \wedge \bigwedge_{l \leq q} f^{l}(w) \notin M \wedge_{i \leq h, l, m \leq q} \bigwedge_{i} \\
& \left.f^{l}(w) \neq f^{m}\left(v_{i}\right)\right)
\end{aligned}
$$

Notice that this is equivalent to the assumption that in every ω-saturated model (M^{\prime}, M) of T^{*} there are infinitely many pairwise \approx elements that are \approx to M and satisfy

$$
\vartheta_{n, f^{j}(b)}\left(f^{j}(v)\right), k\left(f^{j}(v)\right)=k\left(f^{j}(b)\right) \quad \text { for all } j \leq s
$$

We claim that the theory T^{*} we have just now introduced equals the theory T^{\prime} of nice pairs of models of T. Recall that a pair (M^{\prime}, M) of models of T is said to be nice if M is ω_{1}-saturated, and, for every $\bar{a} \in M^{\prime}$, any type in T over $M \cup \bar{a}$ is realized in M^{\prime}. We point out also that, if T is the theory of a 1-ary function, then the theory T^{\prime} of nice pairs of models of T is complete since T is superstable (see [P]). The proof of our claim requires three steps.

Step 1. Every nice pair (M^{\prime}, M) of models of T satisfies T^{*}. In fact we have the following.
(i) Let $b \in U$ with $k(b)=\infty, n \in \omega-\{0,1\}, y \in M$, and assume that there exist infinitely many elements $x \in M$ satisfying $f(x)=y, \vDash \vartheta_{n, b}(x)$. Let $\left\{a_{0}, \ldots, a_{h}\right\}$ be a finite (possibly empty) subset of $M^{\prime}-M$ whose elements satisfy $f(v)=y \wedge \vartheta_{n, b}(v)$. Then

$$
\{f(v)=y\} \cup\left\{\vartheta_{n, b}(v)\right\} \cup\left\{v \neq d: d \in M \cup\left\{a_{0}, \ldots, a_{h}\right\}\right\}
$$

can be enlarged to a type over $M \cup\left\{a_{0}, \ldots, a_{h}\right\}$, and this type must be realized in M^{\prime}.
(ii) can be shown in a similar way.

Step 2. Every ω_{1}-saturated model of T^{*} is a nice pair. In fact, let (M^{\prime}, M) be an ω_{1}-saturated model of T. In particular M is ω_{1}-saturated. Hence it suffices to show that, if $\bar{a} \in M^{\prime}$ and p is a 1-type over $M \cup\left\{f^{k}(a): k \in \omega\right.$, $a \in \bar{a}$) (in T), then p is realized in M^{\prime}. With no loss of generality we can assume that p is not algebraic, otherwise our claim is trivially true.

Case 1. There are $h \in \omega-\{0\}, b \in M \cup\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}$ such that p contains $f^{h}(v)=b$ and

$$
f^{h-1}(v) \neq d \quad \text { for all } d \in M \cup\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}
$$

Then p is defined by the previous formulas together with the f-type of x where x is any realization of p (this follows from Lemma 5 and the remark that the f-type of x determines the f-type of $x \cup \bar{c}$ for any $\bar{c} \in M \cup\left\{f^{k}(a)\right.$: $k \in \omega, a \in \bar{a}\}$). Notice that, for every $x \vDash p$, if $k(b)<\infty$, then $f^{h-1}(x) \neq$ $f^{k(b)-1}(b)$, hence $k\left(f^{j}(x)\right)=\infty$ for every $j<h$. Fix $x \vDash p$. We claim that:

There is $c \in M^{\prime}$ such that $f(c)=b, c \notin M \cup\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}$ and, for all $n, j \in \omega$ with $n \geq 2, k\left(f^{j}(c)\right)=k\left(f^{j+h-1}(x)\right), \vDash \vartheta_{n, f^{j+h-1}(x)}\left(f^{j}(c)\right)$.

Subcase 1. For all $n \in \omega-\{0,1\}$, there exist infinitely many elements realizing $f(v)=b \wedge \vartheta_{n, f} h-1_{(x)}(v)$.

Then there are infinitely many elements of $M^{\prime}-M$ realizing

$$
f(v)=b \wedge \vartheta_{n, f} h-1_{(x)}(v)
$$

(this is obvious if $b \notin M$, and follows from (i) if $b \in M$). On the other hand, $\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}$ contains only finitely many elements satisfying this formula. In fact, let $a \in \bar{a}$. If there exists at most one $s \in \omega$ such that $f^{s}(a)=b$, then there is at most one $k \in \omega$ such that $f\left(f^{k}(a)\right)=b(k=s-1$ provided that $s>0$). Otherwise, let s be the minimal natural number such that $f^{s}(a)=b$. Then $k(b)<\infty$, and, for all $k \in \omega, f^{k}(a)=b$ if and only if $k \equiv s \bmod k(b)$, and, consequently, $f\left(f^{k}(a)\right)=b$ if and only if $k+1 \equiv$ $s \bmod k(b)$. Then there are at most two elements of the form $f^{k}(a)$ with $k \in \omega$ satisfying $f(v)=b$, as, if $k, k^{\prime} \in \omega, k, k^{\prime} \geq s$ and $f\left(f^{k}(a)\right)=$ $f\left(f^{k^{\prime}}(a)\right)=b$, then $k+1 \equiv k^{\prime}+1 \bmod k(b)$ and hence $k \equiv k^{\prime} \bmod k(b)$, so that $f^{k}(a)=f^{k^{\prime}}(a)$.

It follows that

$$
\{f(v)=b\} \cup\left\{\vartheta_{n, f^{h-1}(x)}(v)\right\} \cup\{v \notin M\} \cup\left\{v \neq f^{k}(a): k \in \omega, a \in \bar{a}\right\}
$$

can be realized in (M^{\prime}, M). By using the ω-saturation of (M^{\prime}, M) and Lemma

1 , we obtain that there is $c \in M^{\prime}$ satisfying

$$
\begin{aligned}
& \{f(v)=b\} \cup\left\{\vartheta_{n, f^{h-1}(x)}(v): n \in \omega-\{0,1\}\right\} \cup\{v \notin M\} \\
& \cup\left\{v \neq f^{k}(a): k \in \omega, a \in \bar{a}\right\}
\end{aligned}
$$

As $f(c)=b$ but $c \neq f^{k(b)-1}(b)$ if $k(\dot{b})<\infty$, then

$$
k(c)=\infty=k\left(f^{h-1}(x)\right)
$$

Moreover, for every $j \in \omega-\{0\}, f^{j}(c)=f^{j-1}(b)=f^{j+h-1}(x)$, hence

$$
k\left(f^{j}(c)\right)=k\left(f^{j+h-1}(x)\right)
$$

and, for all $n \in \omega-\{0,1\}, \vDash \vartheta_{n, f^{j+h-1}(x)}\left(f^{j}(c)\right)$.
Subcase 2. There is $n \in \omega-\{0,1\}$ such that $f(v)=b \wedge \vartheta_{n, f^{h-1}(x)}(v)$ admits only finitely many realizations.

Then all these realizations belong to M^{\prime}. As $f^{h-1}(x)$ satisfies the previous formula, $f^{h-1}(x) \in M^{\prime}$ and we can assume $c=f^{h-1}(x)$.

This completes the proof of the claim. Let us come back to the problem of finding an element of M^{\prime} realizing p. If $h=1$, then we are done (c works). So assume $h>1$. Then c and $f^{h-1}(x)$ satisfy the same f-type; furthermore $f^{h-2}(x) \neq f^{q}\left(f^{h-1}(x)\right)$ for all $q \in \omega$ as $k\left(f^{h-2}(x)\right)=\infty$. Hence, by using Lemma 4 and the fact that M^{\prime} is ω_{1}-saturated and contains c, we can find $x^{\prime} \in M^{\prime}$ such that:

$$
f^{h-1}\left(x^{\prime}\right)=c\left(\text { and then } f^{h}(x)=b, f^{h-1}\left(x^{\prime}\right) \notin M \cup\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}\right)
$$

x^{\prime} has the same f-type as x.
Then $x^{\prime} \vDash p$.
Case 2. for all $h \in \omega$ and $b \in M \cup\left\{f^{k}(a): k \in \omega, a \in \bar{a}\right\}, p$ contains $f^{h}(v) \neq b$.

As above, p is defined by these formulas together with the f-type of x where $x \vDash p$. Let $n, s \in \omega, n \geq 2$. As M is ω_{1}-saturated, there exist infinitely many pairwise \approx elements of M satisfying

$$
\vartheta_{n, f^{j}(x)}\left(f^{j}(v)\right), k\left(f^{j}(v)\right)=k\left(f^{j}(x)\right)
$$

for all $j \leq s$. In fact, define s^{\prime} as above, and let $\left\{x_{0}, \ldots, x_{h}\right\}$ be a finite, possibly empty, subset of M whose elements are pairwise \nsim and satisfy the
foregoing set of formulas; then

$$
\begin{aligned}
& \left\{\vartheta_{n, f^{j}(x)}\left(f^{j}(v)\right): j \leq s\right\} \cup\left\{k\left(f^{j}(v)\right)=k\left(f^{j}(x)\right): s^{\prime} \leq j \leq s\right\} \\
& \cup\left\{f^{l}\left(f^{j}(v)\right)=f^{j}(v): j<s^{\prime}, 0<l \in \omega\right\} \\
& \cup\left\{f^{l}(v) \neq f^{m}\left(x_{i}\right): i \leq h, l, m \in \omega\right\}
\end{aligned}
$$

is finitely satisfiable in M (in fact it is satisfied by x), hence it is satisfiable in M. Then (ii) provides infinitely many pairwise \approx elements of M^{\prime} which are \approx to M and satisfy

$$
\begin{gathered}
\left\{\vartheta_{n, f^{j}(x)}\left(f^{j}(v)\right): j \leq s\right\} \cup\left\{k\left(f^{j}(v)\right) k\left(f^{j}(x)\right): s^{\prime} \leq j \leq s\right\} \\
\cup\left\{f^{l}\left(f^{j}(v)\right) \neq f^{j}(v): j<s^{\prime}, 0<l \in \omega\right\} .
\end{gathered}
$$

In particular there is $y \in M^{\prime}$ such that y satisfies this set and $y x M \cup \bar{a}$. Then there is $x^{\prime} \in M^{\prime}$ such that $x^{\prime} \rtimes M \cup \bar{a}$ and, for all $j, n \in \omega$ with $n \geq 2, \vDash \vartheta_{n, f^{j}(x)}\left(f^{j}\left(x^{\prime}\right)\right)$ and $k\left(f^{j}\left(x^{\prime}\right)\right)=k\left(f^{j}(x)\right)$; in fact, it suffices to notice that the set

$$
\begin{aligned}
& \left\{f^{l}(v) \notin M: l \in \omega\right\} \cup\left\{f^{l}(v) \neq f^{k}(a): l, k \in \omega, a \in \bar{a}\right\} \\
& \cup\left\{\vartheta_{n, f^{j}(x)}\left(f^{j}(v)\right): j, n \in \omega, n \geq 2\right\} \cup\left\{k\left(f^{j}(v)\right)=k\left(f^{j}(x)\right): j \in \omega\right\}
\end{aligned}
$$

is finitely satisfiable as every subset of the kind

$$
\begin{aligned}
\left\{f^{l}(v)\right. & \notin M: l \in \omega\} \cup\left\{f^{l}(v) \neq f^{k}(a): l, k \in \omega, a \in \bar{a}\right\} \\
& \cup\left\{\vartheta_{m, f^{j}(x)}\left(f^{j}(v)\right): j \leq s, 2 \leq m \leq n\right\} \cup\left\{k\left(f^{j}(v)\right)=k\left(f^{j}(x)\right): j \leq s\right\}
\end{aligned}
$$

(with $n, s \in \omega, n \geq 2$), hence every finite subset, is satisfiable (use the previous remarks and Lemma 1 ; recall that, if y is as above, then in particular $k\left(f^{j}(y)\right)=k\left(f^{j}(x)\right)$ for all $\left.j \leq s\right)$.

Step 3. $T^{*}=T^{\prime}$. In fact, it follows from the Step 1 that $T^{*} \subseteq T^{\prime}$. On the other hand, let $\left(M^{\prime}, M\right)$ be a model of T and $\left(N^{\prime}, N\right)$ be an ω_{1}-saturated elementary extension of $\left(M^{\prime}, M\right)$; then $\left(N^{\prime}, N\right) \vDash T^{*}$, and hence the second step implies that $\left(N^{\prime}, N\right)$ is a nice pair. Consequently $\left(N^{\prime}, N\right) \vDash T^{\prime}$, and $\left(M^{\prime}, M\right) \vDash T^{\prime}$, too. Then $T^{\prime} \subseteq T^{*}$.

We can now conclude the proof of the theorem, as the second step ensures that every ω_{1}-saturated model of T^{\prime} is a nice pair (in fact, this is true for T^{*}), and this implies that T does not have the f.c.p. (see [P], Theorem 6).

Acknowledgements. I thank the referee for suggesting several improvements. I also would like to thank Maria Cristina Garavini; without her help, this paper could have never been written.

References

[BK] J. Baldwin and D. Kueker, Ramsey quantifiers and the finite cover property, Pacific J. Math., vol. 90 (1980), pp. 11-19
[CK] C.C. Chang and H. Keisler, Model theory, North Holland, Amsterdam, 1973.
[K] H. Keisler, Ultraproducts which are not saturated, J. Symbolic Logic, vol. 32 (1967), pp. 23-47
[M1] L. Marcus, Minimal models of theories of one function symbol, Israel J. Math., vol. 18 (1974), pp. 117-131
[M2] \qquad The number of countable models of a theory of one unary function, Fund. Math., vol. 108 (1980), pp. 171-181
[Mi] A. Miller, Vaught's conjecture for theories of one unary operation, Fund. Math., vol. 111 (1981), pp. 135-141
[P] B. Poizat, Paires de structures stables, J. Symbolic Logic, vol. 48 (1983), 239-249
[S] S. Shelah, Classification theory and the number of non-isomorphic models, North Holland, Amsterdam, 1978.
[T] C. Toffalori, Classification theory for a 1-ary function, Illinois J. Math., vol. 35 (1991), pp. 1-26.

Università degli Studi di Camerino
Camerino, Italy

