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1-ARY FUNCTIONS AND THE F.C.P.

BY

CARLO TOFFALORI

Let T be a countable, complete 1st order theory with no finite models. As
usual, we assume that all models of T are elementary substructures of some
big model U. In [K], Keisler proposed the following definition: T is said to
satisfy the finite cover property (f.c.p.) if there exists a formula (7, w) of the
language of T such that, for every m € w, there are n € w,a,,...,a, € U
such that n > m,

= —.(av A <p(v,ak))

k<n

but, for all / < n,

E35 A (D, a).

k<n,k+l

To define what is a theory without the f.c.p. is now an exercise as trivial as
useful; for, the —f.c.p. is a property much richer in implications than the
f.c.p. For instance, a theory T without the f.c.p. is stable (and some examples
of the use of the —f.c.p. in stability theory can be found in Shelah’s book [S]);
on the other hand, Poizat discovered some meaningful connections between
the —f.c.p. and the properties of the theory of nice pairs of models of T [P].

Here we are interested in the problem of studying the f.c.p. for theories of
a l-ary function. Several papers have already been devoted to the model
theory of l-ary functions, especially in the context of Vaught’s Conjecture
(see [M1], [M2], [Mi)]). In particular, we studied classification theory for these
functions in [T], we only recall here that they are superstable. The aim of this
paper is to classify the theories T of a 1-ary function f which do not satisfy
the f.c.p. First let us give some examples concerning this matter.

1. If T is categorical in R, or in R,, then T does not satisfy the f.c.p. (in
fact, in general, any stable R,-categorical theory, as well as any X,-categorical
theory, fails to have the f.c.p., see [K] and [BK]).
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2. Let T be the theory of a 1-ary function f such that:
For every a € U and n € w — {0}, f"(a) # a;
For every a € U, there are infinitely many b € U satisfying f(b) = a.

Then T is neither X -categorical nor X,-categorical; however T does not have
the f.c.p.

3. Consider now the theory T, of a 1-ary function f such that, for every
n € w — {0}, there is a € U satisfying:

f(a) = a;
There are exactly n elements b € U such that f(b) =a, b # a;
For all b such that f(b) =a and b # a, f~1(b) = @.

Let T be any completion of T,; then T has the f.c.p.

Our main result is that a theory T of a 1-ary function f does not have the
f.c.p. if and only if T satisfies the conditions P(n € w — {0}) below. How-
ever, before stating these conditions, we need to introduce the following
notions.

DerFiniTION . Let @ € U. Then

k(a) = {min{k €w: k>0,f*a) =a} ifsucha k exists,
o otherwise.

It is easy to see that, for every a € U:

If k(a) < «, then, for all k € w, f*(a) = a if and only if k(a)l|k;

If k(a) < », then k(f(a)) = k(a) (in particular, if k(f(a)) = », then
k(a) = », t00);

If k(a) < o, f(x) = a and x # f*@~1(qg), then k(x) = o.

DerFiniTION . Let a € U,n € w — {0,1}. Then 7,(a) = {x € U: either
x =a or there is m € @ such that 0 <m <n, f™(x) =a and f™ 1 (x) #
f¥@=1(a) when k(a) < }.
One can easily prove that, for every a € U and n € v — {0, 1},

Tn+1(a) = {a} v U Tn(x)

X

where x ranges over the preimages of a in f different from f*@=1(g) when
k(a) < . Furthermore, if f(x)=f(y)=a, x#y and x,y # f¥7(a)
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when k(a) < «, then
a&r(x), m(x)Nn7,(y)=60.

Notice that in general 7,(a) is not a structure of the language for f, as 7,(a)
contains 4, but it does not include f(a) except for the case f(a) = a namely
k(a) = 1. Nevertheless we shall consider below the “isomorphism type” of
7,(a) in the sense we are going to explain here. For every a, a’ € U, we shall
say that 7,(a) is isomorphic to 7,(a’),

() = 7,(a),

if k(a) = k(a’) and there exists a partial isomorphism of U having domain
7,(a) and range 7,(a"), namely a bijection g of 7,(a) onto 7,(a’) such that, for
all x,y € 7,(a), f(x) =y if and only if f(g(x)) = g(y) (in particular g(a) =
a'). Clearly = is an equivalence relation; then the isomorphism type of 7,(a)
will mean the equivalence class of 7,(a) with respect to = .

We can state now P;.

(P,) There exists N € w such that, for every a € U, f~!(a) has either
< N or infinitely many elements.

Let us list some consequences of P;.

(i) For every a € U, the isomorphism type of 7,(a) is given by k(a) and a
cardinal number among 0,1,...,N, card U specifying the power of
{x: f(x) =a, x # f*2~(a) if k(a) < =}.

(i) For every k € w — {0} or k = =, there are only finitely many isomor-

phism types of structures 7,(a) with k(a) = k.
(iii) For every a € U, let 9, , be the formula

tm(a)yw(f(w) =v Aw # f{O71(v))
if k(a) <  and
Atm(a)w(f(w) = v)
otherwise, where m(a) denotes the power of
{x: f(x) = a,x # F*@~1(a) if k(a) < ®},
so that

m(a) € {0,1,..., N,card U},
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and 3! card U abridges 3 > N. Then, for every a,a’ € U,

mo(a) = 7,(a’)

if and only if k(a) = k(a’) and E 9, ,(a') or, if you prefer, if and only if
k(a) = k(a") and m(a) = m(a’).

Now let n € w — {0, 1}.

(P,) For every b € U with k(b) = x, there is H = H(r,(b)/ =) such that,
for all a € U,

{x: f(x) = a,x # f*1(a) if k(a) < o, 7,(x) =7,(b)}
has either < H or infinitely many elements.

Let n € w —{0,1} and assume that P, holds for every m € w with
1 <m < n. Then an easy induction argument shows the following conse-
quences, generalizing the ones of the case n = 1.

(i) For all a € U, the isomorphism type of 7, (@) is given by k(a) and by
the function of the (finite) set of invariants of isomorphism types of structures
7,(b) with b € U, k(b) = o, into the set of cardinals < card U such that, for
every b € U satisfying k(b) = =, the image of the corresponding invariant is
the power of

{x: f(x) = a,x # f*D~Y(a) if k(a) < o,7,(x) =1,(b)}

(and hence belongs to {0,1,..., H(7,(b)/ =), card U}).

In fact, assume 7,,,(a) =1, (a’). Then k(a) = k(a') and there is a
partial isomorphism g mapping 7, ,(a) onto 7, (a); in particular g(a) = a’
and, for every x such that f(x) = a, x # f*@~1(a) if k(a) < o, g(x) = x'
satisfies f(x") =a',x' # f*~Ya") if k(a') = k(a) < . It follows that
7(x) = 7,(x'). In fact k(x) = k(x) =  and, for all y €7, (a), if y' =
g(y), then

y € 7,(x) iff there is s < n such that f*(y) = x
iff there is s < n such that f*(y") = x'
iff y' € 7,(x";
hence g ', (,, is a partial isomorphism of ,(x) onto 7,(x"). In particular, for
every b € U such that k(b) = ,
card{x: f(x) = a, x # f*D~1(q) if k(a) < ®, 7,(x) = 7,(b)} = card{x": f(x")
=a,x" # fXO71(g") if k(a) < », 7,(x) = 7,(b)}.

Conversely suppose that a, a’ € U satisfy k(a) = k(a’) and
card{x: f(x) =a, x # f¥*@~q) if k(a) < », 7,(x) = 7,(b)} = card{x":
f(x) =a', x" # O Ya") if k(a') < », 7,(x") = 7,(b)}
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for every b € U with k(b) = «. By recalling that
7n+1(a) = {a} U U.Tn(x)
X

(where f(x) = a, x # f*D~1(q) if k(a) < ») and similarly for @', one can
easily build a partial isomorphism of 7, ,(a) onto 7, (a".

(ii) There are at most finitely many isomorphism types of structures
7,.(a) with a € U, k(a) = .

(iii) For every a € U, let 9, , be the formula

A Am(n,b,a) w (f(w) =v Aw=#fEO-1(p) A 9, 5(W))
b

if k(a) < =, or

/b\ Atm(n,b,a) w (f(w) =v A9, ,(w))

otherwise, where b ranges over the elements of U satisfying k(b) = wo—or,
more precisely, 7,(b)/ = ranges over the corresponding isomorphism types,
that are finitely many—and, for each b with k(b) = oo,

m(n,b,a) = card{x: f(x) = a, x # f¥9~(a) when

k(a) < o, 1,(x) = 7,(b)}
€ {0,1,...,H(,(b)/=),card U}

(as before 3! card U abbreviates 3 > H(1,(b)/ =)). Then, for all a,a’ € U,

Tn+1(a) = Tn+1(a')

if and only if k(a) = k(a) and F ¥, ,(a), or, if you prefer, if and only if
k(a) = k(a") and m(n, b, a) = m(n, b, a') for every b with k(b) = .

TueoreM 1. If T fails to have the f.c.p., then T satisfies P, for all
n € ow— {0}

Proof. Assume towards a contradiction that there is n € w — {0} such
that P, does not hold. Let n be minimal with this property. If n = 1, then,
for every m € w, there exists a € U admitting > m but finitely many
preimages; hence T has the f.c.p. (consider the formula ¢(v,w): v #w A
f) = f(w)).

Let now n > 1. Then there is b € U such that k(b) = » and, for all
n € w, there is a € U admitting > m but finitely many preimages x such
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that x # f¥®~1(g) when k(a) < » and 7,(x) = 7,(b) (namely k(x) = « and
E 3, ,(x)). But in this case T admits the f.c.p. owing to the formula

p(v,w):v = w A f(v) =f(W) A G, 5(0) AT, (W)

(in fact, even if k(a) < =, there is at most one preimage a' = f*®=1(a) of a
such that k(a’) < » and E 9, ,(a).

Tueorem 2. If T satisfies P, for all n € o — {0}, then T fails to have the
f.c.p.
We tacitly assume from now on that T satisfies P, for all n € w — {0}.

LemMA 1. For all a,a’ € U satisfying k(a) = k(a'), and n € o — {0, 1}, if
E 0,1 ,(a), then & 9, (a).

Proof. We proceed by induction on n.
Let n = 2, and suppose = ¥, ,(a’). Then, for all b € U with k(b) = o,
m(2, b, a) = m(2, b, a'). But in this case

m(a) = Y, m(2,b,a) = Y, m(2,b,a') =m(a'),
b b

and hence F 9, ,(a').

Now let n > 2 and assume & 9,,, ,(a). Then, for all b € U with k(b) =
®, m(n, b, a) = m(n, b, a). Let x satisfy f(x) = a, x # f*®~1(a) when k(a)
< o, Then k(x) = o and, for every b with k(b) = o,

B _1,5(X)
if and only if there is ¢ such that k(c) = », £ §,_, ,(c) and F 8, (x). In
fact, if = 9,_; ,(x), then we can put ¢ = x.

Conversely suppose that there exists ¢ as claimed, then we have
E 8,_,, (x) and, consequently, as k(c) = k(x) = k(b) = =,

Tn—-l(x) = Tn—l(c) = Tn—l(b);

but then & 9,_, ,(x). Of course, for every c,c’ with k(c) = k(c') = o, if
F 3, (x) A 9, (x), then 7,(c) = 7,(c)); hence, for all b as above,

m(n—1,b,a) = Y m(n,c,a).

k(c)=co, '=0n—1,b(6)

Similarly for a'. But this clearly suffices to prove our claim.
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LemMa 2. Let a, x' € U satisfy k(a) = o, k(x") = k(f(a)),
= O, fa(x) foralln € w —{0,1}.

Then there is a' € U such that f(a') =x',a' # f**7=1 when k(x') < o,
E 9, [(a') foralln € o — {0, 1} (and similarly in any w-saturated model of T
containing x').

Proof. First notice that k(a) = » implies a # f"(a) for all h € w — {0}.
We have to show that the set

{f(v) =x",v # KO (x),9, (v):n€w - {0,1}}
{f() =x",9, (v): n € w —{0,1}} when k(x) = o, but for simplicity we
will ignore this case, which can be handled in a similar way) is satisfiable.

Since U is very saturated (but w-saturated is enough), it suffices to show that
this set is finitely satisfiable, and hence that, for all n € w — {0, 1},

{f(v) =x',0 # fXO71(x), 9y o(), ..., 0y o(V))
is satisfiable. Lemma 1 reduces the problem to the satisfiability of
{f(v) =x',v # fXO71(x), 9, ()}
for every n € w — {0,1}; in fact, if f(c) =x' but ¢ # f**>~1(x"), then

k(c) = » = k(a), and hence k 9, ,(c) implies = ¥ ,(c) for any i such that
2 < i < n. On the other hand

E3w(f(w) =x' Aw # fXOO71(x) A S, (W))
if and only if m(n, a, x") = m(n, a, f(a)) > 0 and hence if and only if

= 3w(f(w) = f(a) Aw # fD7Yf(a)) A D, ((W));

but this formula is true (take w = a).

DerINITION.  Let @ = (a,...,a,) be a sequence of elements of U. The
f-type of a is the subset of tp(@|D) of the formulas of the kind

(v) =f"(v), (v #f"(v))
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with h,m € w, i,j < t, or of the kind

19n,fh(ai)(fh(l%))
with n,hew,n>2and i <t.

One can easily see that, for any a, ¢’ € U, the following propositions are
equivalent:

(i) For all & € w, k(f"(a)) = k(f*(a"));

(i) For all h,m € w, f"(a) = f™(a) iff f*(a’) = f™(a’).

Hence, if a,a’ have the same f-type, then, for every A € w and i <
t, k(f"a,) = k(FH(a)).

In the following, when a = (ay,...,a,), @ = (d,,...,d,) are two se-
quences of the elements of U, and a € a (for instance a = a; with i < ¢),
then a’' will denote the element of @' corresponding to a (namely a’ = a).

LemMmA 3.  Let a, @' satisfy the same f-type, and let x be such that:
There are s € w, a € a such that f(x) = f*(a);
Forall g € w and a € @, x #* f4a).
Then there is x' € U such that:
f(x") = fs(a);
Forallg € w and o' €@, x # f9(a");
Foralln € o — {0,1}, F 9, (x")
(and similarly in any w-saturated model of T containing a').

Proof. First notice that k(x) = o; in fact, if k(f*(a)) < o, then
x # FHI@=1( £3(a)):

We have to show that the set

{f(v) =f (@)} v{v#f!(a): g€ 0,0 €T)
U3, (v):n €w - {0,1}}

is satisfiable. As U is very saturated (but w-saturated is enough), it suffices to
prove that this set is finitely satisfiable, and even that, for all 4, n € w such
that n > 2 and h > k(f*(a)) if k(f*(a)) < o, the set

{f(v) =f (@)} U{v #fi(a): g <h,a' €T} U {D, (v)}

is satisfiable (recall that, if f(x') = f*(a’) and x' # f¥F@V-1(f5(a"), then
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k(x") = © = k(x), hence F 9, (x') implies & 9; ,(x') for any i with 2 <
< n). Let r be the power of

{fi(a):g<h,a ed, =, (f1(a)), f(f(a)) = (),
fi(a') # fEIOZI(f2(a))}.

As a, a’ have the same f-type, r is also the power of

{fi(a):g<h,aca k9, (fi(a),f(f/(a) =f(a),
fi(a) # fEIO71(f(a))}.

Moreover

=I(f0) =@ A A Wt @) A8, )

g<h,a'€d

if and only if r < m(n, x, f*(a")) = m(n, x, f*(a)), and hence if and only if

=) =P@ A A wEfa) A, )

g<h,ac<a

and this formula is true (it suffices to take w = x).
LemMmA 4. Let a,a@ € U have the same f-type, h € w — {0}, x € U be such
that:
There are s € w and a € a satisfying f*(x) = f*(a);
For any q € w and a € @, f"*~(x) # f%a).
Then there is x' € U such that:
fi(x) = f(a);
fr=Ux") # fU«a’) forallq € w and o' € @
x' and x have the same f-type.
And similarly in any w-saturated model of T containing a'.

Proof. First notice that k(f'(x)) =« for all i <h. We proceed by
induction on A (the case A = 0 is trivial).

First let A = 1. Then it suffices to apply Lemma 3; in fact k(x) = k(x') = =,
and F 9, (x') for every n € o — {0, 1}; moreover, if i > 0, then f i(x) =
fti=Ya) and fi(x') = f**~1(a') so that, as a,a’ have the same f-type,
it follows that k(f'(x)) = k(f'(x"), and & 8, ;i,(f(x)) for every n €
o — {0, 1}.
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h=h+1 Let y =f(x). Then f"(y) = f*(a), f*~(y) # f%a) for any
g € w and a € G; in particular k(y) = . By the induction hypothesis, there
is y' €U satisfying f*(y") = f*(a), f*~(y") # f9a’) for all g € w and
o' € @', y' admits the same f-type as y. In particular k(y") = «, = 8, (y")
for every n € o — {0, 1}. It follows from Lemma 2 that there is x' € U such
that f(x") =y’ (so that fA"*1(x") = f*(a’), f*(x") # f4a) for all ¢ € w,a’' €
@), and E 9, (x") for every n € o — {0, 1}. Furthermore k(x') = k(x) = o.
This clearly implies that x, x’ have the same f-type.

—

LemMmA 5. Foralla,a’ € U,a = a' if and only if a, @' have the same f-type.

Proof. (=) This is trivial.

(<) It suffices to show that a, a' correspond to each other in an infinite
back-and-forth. Hence assume that @, a’ have the same f-type. We claim
that, for every x, there is x’ such that (@, x), (@, x") have the same f-type (in
a similar way one can show that, for every x’, there is x such that (g, x), (@', x")
have the same f-type).

Case 1. There are h,s € w,a € a such that f"(x) = f*(a). Let h be
minimal with this property. If 4 = 0, then we are done, as it suffices to pick
x' = f*(a’). Then assume s > 0. By Lemma 4, as a, @’ have the same f-type
and f"(x) = f(a) but f"~1(x) # f9%a) for all ¢ € w and a € 7, there exists
x' € U satisfying:

f(x) = f(a);

Fr=Ux") # f4(a’) for all ¢ € w and o' € @

x, x' have the same f-type.

Let us show that (@, x) and (@', x') satisfy our claim. It suffices to prove that,
forall j,/ € w and @ € a,

fi(x) = fi(a) if and only if f(x') = fi(a’).
Assume f(x) = fi(a). Then I = h, hence
fi=2(a) = f(x) = fi(a),
and consequently
fi(x) =f="*(a) = fi(a).

Conversely, if f'(x') = fi(a’), then again we have [ > h, and, by proceeding
as before, we get f'(x) = fi(a).
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Case 2. Forall h, s € w and a € @, f*(x) # f*(a).

We need find an element x' € U satisfying:

For all 4, s € w and a' € @, f"(x") # f*(a’) (namely x’ » a' for all a' € @
—we denote here by ~ the equivalence relation such that, for all ¢,c’' €
U, c ~ c' if and only if there are i,j € o satisfying f(c) = fi(c¢") [T];

x' admits the same f-type as x;

(Then (@, x), (@', x") have the same f-type.)

Suppose towards a contradiction that, for every x' € U, if x' satisfies the
same f-type as x, then there is @’ € @’ such that x’' ~ a'. In particular, there
is a’ €a such that x ~a'. Let h € w be minimal such that there are
a' € @,s € o such that f"(x) = f*(a’). Without loss of generality a’ = a},. By
using Lemma 4 if A > 0 and a trivial argument otherwise, we find a{, such
that:

i a}) = f(ay);

f*=Ua}) # f4a) for all ¢ € w and a € a (when h > 0);

aj, x have the same f-type.

In particular aj ~ a, * x, ajy * ay. There is a’ € @’ such that af ~ a’, and
a' cannot equal a). Let 4 € w be minimal such that there are s € w,a’' € @
such that f*(aj) = f*(a’). With no loss of generality a’ = a; (hence a) *
ay, a; * agy, dy ~ dy ~ ay). As above we can find 4] such that:

@) = f(a);

"4 a}) # f4a) for all ¢ € w and a € @ (when h > 0);

a] admits the same f-type as aj and x.

Then 4] ~ a, (and hence a7 ~ x, a), while a] ~ a) (otherwise a, ~ a] ~ a)
~ d{ ~ a,, contradicting a, ~ a,).

We can repeat this procedure to define 4} inductively for all j with
1 <j < t; in fact, at stage j, we can assume

X*ag*a;* o o*a

dyvay* -0 »d,

X~ ay
and, for all s <j,

a; ~ag~ Ay,

ay~ay,...,ad,

(where we use the notation “a » b » ¢...” to mean that a,b,c,... are
mutually inequivalent modulo ~) and deduce that there exists aj ~ a; such
that a] satisfies the same f-type as x. Furthermore 4} » ay,...,a}, x and
there is a' € a’ such that a’ ~ a7, and, when j <, we can assume without
loss of generality that a’ = @ ;. But, at stage ¢, this gets a contradiction.
Then an element x’ as claimed must exist.

Proof of Theorem 2. First notice that, if k € w — {0}, then {a € U:
k(a) = k} can be defined by a unique formula of our language, while, if
k = o, then we have to expect to need an infinite set of formulas for defining
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{a € U: k(a) = k}; in the following let us denote this formula, or this set of
formulas respectively, by k(v) = k.

Let T* be the theory of the pairs (M’', M) of models of T satisfying
M £ M’ and the conditions (i) and (ii) below.

(i) Let b € U with k(b) =o,n € w — {0,1}. Then, for all h € 0, T*
contains:

“For every y € M, if there are infinitely many x € M satisfying f(x) =y
and F 9, ,(x), then there are > & elements x € M' — M such that f(x) =y
and F 9, ,(x)”.

It is clear that, for every & € w, the previous proposition can be expressed by
a suitable 1st order sentence of the language for pairs of models of T.

(i) Let beU,n,s €w,n>2. Let s' <s+ 1 be such that, for every
j < s, k(fi(b)) = x if and only if j < s’ (possibly s’ = 0; in this case k(f/(b))
< o for all j < s). Assume that T contains the following sentences: for all
q € o,

I A BP0 A A K(Fw)) = k(£1(8))

j<s s'<sj<s

AN I ) = F(w)

0<l<gq,j<s'

and, for all h,q € w,

VUO"'VUhaw( A '9n,ff(b)(fj(’)i))

i<h,j<s
— A 13n,ff(b)(fj(w)) AN CK(fI(w)) = k(f(b))

j<s s'<j<s

O R OV O RS O))

0<l<gq,j<s' i<h,l,m<gq

Notice that to assume that T satisfies the previous sentences is the same as to
require that U-as well as any w-saturated model of T-contains infinitely many
pairwise ~+ elements satisfying

19n,ff(b)(fj(v)), k(f/(v)) = k(f/(b)) forall j<s.
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Then T* includes the following sentences: for all ¢ € w,

I A Bl FO) A A K@) = k(F(B))

Jj<s s'<j<s

AN PP #P) A AFOn €M)

0<l<q,j<s’

and, for all 4, q € w,

VUO M Vvh EW( /\ 0n,f’(b)(fj( Ul))

i<h,j<s
— AP A A K(F(w)) = k(F())
AN FIEFW) =)y A ANFiw)yeM A A
0<l<gq,j<s' l<q i<h,l,m<gq

£w) # £7(0)).

Notice that this is equivalent to the assumption that in every w-saturated
model (M', M) of T* there are infinitely many pairwise ~ elements that are
~+~ to M and satisfy

B, iy (F(0)), k(f/(v)) = k(f/(b)) forall j <s.

We claim that the theory T* we have just now introduced equals the theory
T’ of nice pairs of models of T. Recall that a pair (M’, M) of models of T is
said to be nice if M is w;-saturated, and, for every a € M’, any type in T
over M U & is realized in M’'. We point out also that, if T is the theory of a
1-ary function, then the theory 7' of nice pairs of models of T is complete
since T is superstable (see [P]). The proof of our claim requires three steps.

Step 1. Every nice pair (M’', M) of models of T satisfies T*. In fact we
have the following.

(@) Let b e U with k(b) =o,n € w —{0,1}, y €M, and assume that
there exist infinitely many elements x € M satisfying f(x) =y, = T, (%)
Let {a,,...,a,} be a finite (possibly empty) subset of M' — M whose ele-
ments satisfy f(v) =y A 9, ,(v). Then

{f()=y}u ¥, ,(V}u{v*d:deMU {ay,...,a,}}

can be enlarged to a type over M U {a,,...,a,}, and this type must be
realized in M'.
(ii) can be shown in a similar way.
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Step 2. Every w,-saturated model of T* is a nice pair. In fact, let (M’, M)
be an w;-saturated model of T. In particular M is w,-saturated. Hence it
suffices to show that, if 2 € M’ and p is a 1-type over M U {f*(a): k € w,
a € a} (in T), then p is realized in M'. With no loss of generality we can
assume that p is not algebraic, otherwise our claim is trivially true.

Case 1. There are h € w — {0}, b € M U {f*(a): k € w, a € @} such that
p contains f"(v) = b and

f""Yv)#d foralde MU {f¥(a): k € w,a € a}.

Then p is defined by the previous formulas together with the f-type of x
where x is any realization of p (this follows from Lemma 5 and the remark
that the f-type of x determines the f-type of x U ¢ for any ¢ € M U {f*(a):
k € w,a € a@)). Notice that, for every x = p, if k(b) < o, then f"~1(x) #
FX®=1(p), hence k(fi(x)) = = for every j < h. Fix x = p. We claim that:

There is ¢ € M’ such that f(c) =b,c € M U {f*(a): k € w,a € a} and,
for all n,j € o with n > 2, k(f/(c)) = k(f/**"U(x)), & 9, pen-1( ().

Subcase 1. For all n € w — {0,1}, there exist infinitely many elements
realizing f(v) =b A 9, ;h — 1(,,(v).
Then there are infinitely many elements of M’ — M realizing

f(v) =b A Y, ph — L(v)

(this is obvious if b & M, and follows from (i) if b € M). On the other hand,
{f*(a): k € w,a € a} contains only finitely many elements satisfying this
formula. In fact, let a € a. If there exists at most one s € w such that
f*(a) = b, then there is at most one k € w such that f(f*(a)) =b(k =5 — 1
provided that s > 0). Otherwise, let s be the minimal natural number such
that f*(a) = b. Then k(b) < x, and, for all k € w, f¥(a) = b if and only if
k = s mod k(b), and, consequently, f(f*(a)) =b if and only if k + 1 =
s mod k(b). Then there are at most two elements of the form f*(a) with
k € o satisfying f(v) =b, as, if k,k' €w,k, k' 25 and f(f¥a) =
f(f¥(a)) = b, then k + 1 = k' + 1 mod k(b) and hence k = k' mod k(b), so
that f*(a) = f¥(a).
It follows that

{f(v) =b} U (B, p1(V)} U {v &M} U {v#fa): k €w,aca)

can be realized in (M', M). By using the w-saturation of (M', M) and Lemma
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1, we obtain that there is ¢ € M’ satisfying

{f(v) =b} U {9, pr-1y(v):n €0 — {0,1}} U {v & M}

Ufv # f¥(a): k € w,a € a}.
As f(c) = b but ¢ # f*®~1(p) if k(b) < x, then

k(c) = @ = k(f"~'(x)).

Moreover, for every j € w — {0}, f(c) = f/~4(b) = f+*"~1(x), hence

k(f(c)) = k(f7*"71(x)),
and, for all n € @ — {0,1}, E 9, sr+n-10,(f(C)).

Subcase 2. There is n € w —{0,1} such that f(v) =b A G, pr-1,)(v)
admits only finitely many realizations.

Then all these realizations belong to M'. As f"~!(x) satisfies the previous
formula, f*~'(x) € M’ and we can assume ¢ = f"~1(x).

This completes the proof of the claim. Let us come back to the problem of
finding an element of M’ realizing p. If A = 1, then we are done (¢ works).
So assume 4 > 1. Then ¢ and f*~!(x) satisfy the same f-type; furthermore
FP=2x) # fA(f*~Y(x)) for all g € w as k(f"~2(x)) = . Hence, by using
Lemma 4 and the fact that M’ is w,-saturated and contains ¢, we can find
x' € M' such that:

"~ Ux") = c (and then f*(x) = b, f*"U(x) & M U (f¥(a): k € w,a € @));
x' has the same f-type as x.

Then x' &= p.

Case 2. for all hew and b € MU {f*(a): k € w,a € a}, p contains
fH(v) # b.

As above, p is defined by these formulas together with the f-type of x
where x = p. Let n,s € w,n > 2. As M is w,-saturated, there exist infinitely
many pairwise ~ elements of M satisfying

B, peo(F1(0)), k(f(v)) = k(f/(x))

for all j <s. In fact, define s’ as above, and let {x,,..., x,} be a finite,
possibly empty, subset of M whose elements are pairwise ~ and satisfy the
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foregoing set of formulas; then

(B, peo( F(0)): § < s} U {k(Fi(0)) = k(F(x)): s <) <'s)
U{FI(fi()) = Fi(): j <s',0 <1 € )
U{fl(v) #f™(x):i<h,l,me o}
is finitely satisfiable in M (in fact it is satisfied by x), hence it is satisfiable in

M. Then (ii) provides infinitely many pairwise ~ elements of M’ which are
+ to M and satisfy

{8 1o (F1(0)): 5 < s} U {k(Fi(0))k(f(x)): 8" <j < s}
U{Ff'(fi(v)) = fi(v):j <s,0<I€w}.
In particular there is y € M' such that y satisfies this set and y » M U a.
Then there is x' € M’ such that x' * M U@Z and, for all j,n € w with

nz2,E 9, b5 (x)) and k(f(x)) = k(f/(x)); in fact, it suffices to notice
that the set

{fl(v) eM: 1€} U{fi(v) #f“(a): 1,k €w,a a)
OB, F1(0)): Sy € 0,7 2 2} U {k(F1(2)) = k(F(2)): ] € )

is finitely satisfiable as every subset of the kind

{Ffl(v) eM: 1€ 0} U {f(v) #f*(a): I,k € ®,a € a}
{8, pie(fI(0)):j < 5,2 <m <n} U {k(f(v)) = k(f/(x)): ] <5}

(with n, s € w, n = 2), hence every finite subset, is satisfiable (use the previ-
ous .remarks and Lemma 1; recall that, if y is as above, then in particular
k(fi(y)) = k(fi(x)) for all j < s).

Step 3. T* = T'. In fact, it follows from the Step 1 that T7* ¢ T'. On the
other hand, let (M’, M) be a model of T and (N', N) be an w,-saturated
elementary extension of (M’, M); then (N', N) = T*, and hence the second
step implies that (N, N) is a nice pair. Consequently (N’, N) = T', and
(M',M) = T', too. Then T’ C T*.

We can now conclude the proof of the theorem, as the second step ensures
that every w,-saturated model of 7" is a nice pair (in fact, this is true for T*),
and this implies that T does not have the f.c.p. (see [P], Theorem 6).
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