1-ARY FUNCTIONS AND THE F.C.P.

BY

CARLO TOFFALORI

Let T be a countable, complete 1st order theory with no finite models. As usual, we assume that all models of T are elementary substructures of some big model U. In [K], Keisler proposed the following definition: T is said to satisfy the finite cover property (f.c.p.) if there exists a formula $\varphi(\bar{v}, \bar{w})$ of the language of T such that, for every $m \in \omega$, there are $n \in \omega, \bar{a}_0, \ldots, \bar{a}_n \in U$ such that $n \ge m$,

$$\vDash \neg \left(\exists \bar{v} \bigwedge_{k \le n} \varphi(\bar{v}, \bar{a}_k) \right)$$

but, for all $l \leq n$,

$$\vDash \exists \overline{v} \bigwedge_{k \leq n, \, k \neq l} \varphi(\overline{v}, \overline{a}_k).$$

To define what is a theory without the f.c.p. is now an exercise as trivial as useful; for, the \neg f.c.p. is a property much richer in implications than the f.c.p. For instance, a theory T without the f.c.p. is stable (and some examples of the use of the \neg f.c.p. in stability theory can be found in Shelah's book [S]); on the other hand, Poizat discovered some meaningful connections between the \neg f.c.p. and the properties of the theory of nice pairs of models of T [P].

Here we are interested in the problem of studying the f.c.p. for theories of a 1-ary function. Several papers have already been devoted to the model theory of 1-ary functions, especially in the context of Vaught's Conjecture (see [M1], [M2], [Mi]). In particular, we studied classification theory for these functions in [T], we only recall here that they are superstable. The aim of this paper is to classify the theories T of a 1-ary function f which do not satisfy the f.c.p. First let us give some examples concerning this matter.

1. If T is categorical in \aleph_0 or in \aleph_1 , then T does not satisfy the f.c.p. (in fact, in general, any stable \aleph_0 -categorical theory, as well as any \aleph_1 -categorical theory, fails to have the f.c.p., see [K] and [BK]).

Received April 6, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 03C45; Secondary 03C60.

^{© 1991} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

2. Let T be the theory of a 1-ary function f such that: For every $a \in U$ and $n \in \omega - \{0\}$, $f^n(a) \neq a$; For every $a \in U$, there are infinitely many $b \in U$ satisfying f(b) = a.

Then T is neither \aleph_0 -categorical nor \aleph_1 -categorical; however T does not have the f.c.p.

3. Consider now the theory T_0 of a 1-ary function f such that, for every $n \in \omega - \{0\}$, there is $a \in U$ satisfying:

f(a) = a;There are exactly *n* elements $b \in U$ such that $f(b) = a, b \neq a;$ For all *b* such that f(b) = a and $b \neq a, f^{-1}(b) = \emptyset$.

Let T be any completion of T_0 ; then T has the f.c.p.

Our main result is that a theory T of a 1-ary function f does not have the f.c.p. if and only if T satisfies the conditions $P_n(n \in \omega - \{0\})$ below. However, before stating these conditions, we need to introduce the following notions.

DEFINITION . Let $a \in U$. Then

 $k(a) = \begin{cases} \min\{k \in \omega : k > 0, f^k(a) = a\} & \text{if such a } k \text{ exists,} \\ \infty & \text{otherwise.} \end{cases}$

It is easy to see that, for every $a \in U$:

If $k(a) < \infty$, then, for all $k \in \omega$, $f^k(a) = a$ if and only if k(a)|k; If $k(a) < \infty$, then k(f(a)) = k(a) (in particular, if $k(f(a)) = \infty$, then $k(a) = \infty$, too); If $k(a) < \infty$, f(x) = a and $x \neq f^{k(a)-1}(a)$, then $k(x) = \infty$.

DEFINITION . Let $a \in U, n \in \omega - \{0, 1\}$. Then $\tau_n(a) = \{x \in U: \text{ either } x = a \text{ or there is } m \in \omega \text{ such that } 0 < m < n, f^m(x) = a \text{ and } f^{m-1}(x) \neq f^{k(a)-1}(a) \text{ when } k(a) < \infty \}.$

One can easily prove that, for every $a \in U$ and $n \in \omega - \{0, 1\}$,

$$\tau_{n+1}(a) = \{a\} \cup \bigcup_{x} \tau_n(x)$$

where x ranges over the preimages of a in f different from $f^{k(a)-1}(a)$ when $k(a) < \infty$. Furthermore, if f(x) = f(y) = a, $x \neq y$ and $x, y \neq f^{k(a)-1}(a)$

when $k(a) < \infty$, then

$$a \notin \tau_n(x), \quad \tau_n(x) \cap \tau_n(y) = \emptyset.$$

Notice that in general $\tau_n(a)$ is not a structure of the language for f, as $\tau_n(a)$ contains a, but it does not include f(a) except for the case f(a) = a namely k(a) = 1. Nevertheless we shall consider below the "isomorphism type" of $\tau_n(a)$ in the sense we are going to explain here. For every $a, a' \in U$, we shall say that $\tau_n(a)$ is isomorphic to $\tau_n(a')$,

$$\tau_n(a) \simeq \tau_n(a'),$$

if k(a) = k(a') and there exists a partial isomorphism of U having domain $\tau_n(a)$ and range $\tau_n(a')$, namely a bijection g of $\tau_n(a)$ onto $\tau_n(a')$ such that, for all $x, y \in \tau_n(a), f(x) = y$ if and only if f(g(x)) = g(y) (in particular g(a) = a'). Clearly \simeq is an equivalence relation; then the isomorphism type of $\tau_n(a)$ will mean the equivalence class of $\tau_n(a)$ with respect to \simeq .

We can state now P_1 .

 (P_1) There exists $N \in \omega$ such that, for every $a \in U$, $f^{-1}(a)$ has either $\leq N$ or infinitely many elements.

Let us list some consequences of P_1 .

(i) For every $a \in U$, the isomorphism type of $\tau_2(a)$ is given by k(a) and a cardinal number among $0, 1, \ldots, N$, card U specifying the power of $\{x: f(x) = a, x \neq f^{k(a)-1}(a) \text{ if } k(a) < \infty\}$.

(ii) For every $k \in \omega - \{0\}$ or $k = \infty$, there are only finitely many isomorphism types of structures $\tau_2(a)$ with k(a) = k.

(iii) For every $a \in U$, let $\vartheta_{2,a}$ be the formula

$$\exists ! m(a) w (f(w) = v \land w \neq f^{k(a)-1}(v))$$

if $k(a) < \infty$ and

$$\exists ! m(a) w(f(w) = v)$$

otherwise, where m(a) denotes the power of

$$\{x: f(x) = a, x \neq f^{k(a)-1}(a) \text{ if } k(a) < \infty\},\$$

so that

$$m(a) \in \{0, 1, \dots, N, \text{card } U\},\$$

and $\exists !$ card U abridges $\exists > N$. Then, for every $a, a' \in U$,

$$\tau_2(a) \simeq \tau_2(a')$$

if and only if k(a) = k(a') and $\models \vartheta_{2,a}(a')$ or, if you prefer, if and only if k(a) = k(a') and m(a) = m(a').

Now let $n \in \omega - \{0, 1\}$.

 (P_n) For every $b \in U$ with $k(b) = \infty$, there is $H = H(\tau_n(b)/\simeq)$ such that, for all $a \in U$,

$$\left\{x: f(x) = a, x \neq f^{k(a)-1}(a) \text{ if } k(a) < \infty, \tau_n(x) \simeq \tau_n(b)\right\}$$

has either $\leq H$ or infinitely many elements.

Let $n \in \omega - \{0, 1\}$ and assume that P_m holds for every $m \in \omega$ with $1 \le m \le n$. Then an easy induction argument shows the following consequences, generalizing the ones of the case n = 1.

(i) For all $a \in U$, the isomorphism type of $\tau_{n+1}(a)$ is given by k(a) and by the function of the (finite) set of invariants of isomorphism types of structures $\tau_n(b)$ with $b \in U$, $k(b) = \infty$, into the set of cardinals \leq card U such that, for every $b \in U$ satisfying $k(b) = \infty$, the image of the corresponding invariant is the power of

$$\left\{x:f(x)=a, x\neq f^{k(a)-1}(a) \text{ if } k(a)<\infty, \tau_n(x)\simeq\tau_n(b)\right\}$$

(and hence belongs to $\{0, 1, \ldots, H(\tau_n(b)/\simeq), \text{ card } U\}$).

In fact, assume $\tau_{n+1}(a) \simeq \tau_{n+1}(a')$. Then k(a) = k(a') and there is a partial isomorphism g mapping $\tau_{n+1}(a)$ onto $\tau_{n+1}(a')$; in particular g(a) = a' and, for every x such that $f(x) = a, x \neq f^{k(a)-1}(a)$ if $k(a) < \infty, g(x) = x'$ satisfies $f(x') = a', x' \neq f^{k(a')-1}(a')$ if $k(a') = k(a) < \infty$. It follows that $\tau_n(x) \simeq \tau_n(x')$. In fact $k(x) = k(x') = \infty$ and, for all $y \in \tau_{n+1}(a)$, if y' = g(y), then

 $y \in \tau_n(x) \text{ iff there is } s < n \text{ such that } f^s(y) = x$ iff there is s < n such that $f^s(y') = x'$ iff $y' \in \tau_n(x')$; hence $g \upharpoonright \tau_n(x)$ is a partial isomorphism of $\tau_n(x)$ onto $\tau_n(x')$. In particular, for every $b \in U$ such that $k(b) = \infty$, card{ $x: f(x) = a, x \neq f^{k(a)-1}(a)$ if $k(a) < \infty, \tau_n(x) \simeq \tau_n(b)$ } = card{x': f(x') $= a', x' \neq f^{k(a')-1}(a')$ if $k(a') < \infty, \tau_n(x') \simeq \tau_n(b)$ }. Conversely suppose that $a, a' \in U$ satisfy k(a) = k(a') and card{ $x: f(x) = a, x \neq f^{k(a)-1}(a)$ if $k(a) < \infty, \tau_n(x) \simeq \tau_n(b)$ } = card{x': f(x') $f(x') = a', x' \neq f^{k(a')-1}(a')$ if $k(a') < \infty, \tau_n(x') \simeq \tau_n(b)$ } for every $b \in U$ with $k(b) = \infty$. By recalling that

$$\tau_{n+1}(a) = \{a\} \stackrel{\cdot}{\cup} \bigcup_{x} \stackrel{\cdot}{\tau}_{n}(x)$$

(where $f(x) = a, x \neq f^{k(a)-1}(a)$ if $k(a) < \infty$) and similarly for a', one can easily build a partial isomorphism of $\tau_{n+1}(a)$ onto $\tau_{n+1}(a')$.

(ii) There are at most finitely many isomorphism types of structures $\tau_{n+1}(a)$ with $a \in U, k(a) = \infty$.

(iii) For every $a \in U$, let $\vartheta_{n+1,a}$ be the formula

$$\bigwedge_{b} \exists ! m(n, b, a) w \left(f(w) = v \land w \neq f^{k(a)-1}(v) \land \vartheta_{n, b}(w) \right)$$

if $k(a) < \infty$, or

$$\bigwedge_{b} \exists ! m(n, b, a) w (f(w) = v \land \vartheta_{n, b}(w))$$

otherwise, where b ranges over the elements of U satisfying $k(b) = \infty$ —or, more precisely, $\tau_n(b)/\approx$ ranges over the corresponding isomorphism types, that are finitely many—and, for each b with $k(b) = \infty$,

$$m(n, b, a) = \operatorname{card} \{ x: f(x) = a, x \neq f^{k(a)-1}(a) \text{ when}$$
$$k(a) < \infty, \tau_n(x) \simeq \tau_n(b) \}$$
$$\in \{ 0, 1, \dots, H(\tau_n(b)/\simeq), \operatorname{card} U \}$$

(as before \exists ! card U abbreviates $\exists > H(\tau_n(b)/\simeq)$). Then, for all $a, a' \in U$,

$$\tau_{n+1}(a) \simeq \tau_{n+1}(a')$$

if and only if k(a) = k(a') and $\models \vartheta_{n+1,a}(a')$, or, if you prefer, if and only if k(a) = k(a') and m(n, b, a) = m(n, b, a') for every b with $k(b) = \infty$.

THEOREM 1. If T fails to have the f.c.p., then T satisfies P_n for all $n \in \omega - \{0\}$.

Proof. Assume towards a contradiction that there is $n \in \omega - \{0\}$ such that P_n does not hold. Let *n* be minimal with this property. If n = 1, then, for every $m \in \omega$, there exists $a \in U$ admitting $\geq m$ but finitely many preimages; hence *T* has the f.c.p. (consider the formula $\varphi(v, w)$: $v \neq w \land f(v) = f(w)$).

Let now n > 1. Then there is $b \in U$ such that $k(b) = \infty$ and, for all $n \in \omega$, there is $a \in U$ admitting $\geq m$ but finitely many preimages x such

438

that $x \neq f^{k(a)-1}(a)$ when $k(a) < \infty$ and $\tau_n(x) \simeq \tau_n(b)$ (namely $k(x) = \infty$ and $\models \vartheta_{n.b}(x)$). But in this case T admits the f.c.p. owing to the formula

$$\varphi(v,w): v \neq w \wedge f(v) = f(w) \wedge \vartheta_{n,b}(v) \wedge \vartheta_{n,b}(w)$$

(in fact, even if $k(a) < \infty$, there is at most one preimage $a' = f^{k(a)=1}(a)$ of a such that $k(a') < \infty$ and $\models \vartheta_{n,b}(a')$).

THEOREM 2. If T satisfies P_n for all $n \in \omega - \{0\}$, then T fails to have the f.c.p.

We tacitly assume from now on that T satisfies P_n for all $n \in \omega - \{0\}$.

LEMMA 1. For all $a, a' \in U$ satisfying k(a) = k(a'), and $n \in \omega - \{0, 1\}$, if $\models \vartheta_{n+1,a}(a')$, then $\models \vartheta_{n,a}(a')$.

Proof. We proceed by induction on *n*.

Let n = 2, and suppose $\models \vartheta_{3,a}(a')$. Then, for all $b \in U$ with $k(b) = \infty$, m(2, b, a) = m(2, b, a'). But in this case

$$m(a) = \sum_{b} m(2, b, a) = \sum_{b} m(2, b, a') = m(a'),$$

and hence $\vDash \vartheta_{2,a}(a')$.

Now let n > 2 and assume $\models \vartheta_{n+1,a}(a')$. Then, for all $b \in U$ with $k(b) = \infty$, m(n, b, a) = m(n, b, a'). Let x satisfy $f(x) = a, x \neq f^{k(a)-1}(a)$ when $k(a) < \infty$. Then $k(x) = \infty$ and, for every b with $k(b) = \infty$,

$$\models \vartheta_{n-1,b}(x)$$

if and only if there is c such that $k(c) = \infty$, $\models \vartheta_{n-1,b}(c)$ and $\models \vartheta_{n,c}(x)$. In fact, if $\models \vartheta_{n-1,b}(x)$, then we can put c = x.

Conversely suppose that there exists c as claimed, then we have $\models \vartheta_{n-1,c}(x)$ and, consequently, as $k(c) = k(x) = k(b) = \infty$,

$$\tau_{n-1}(x) \simeq \tau_{n-1}(c) \simeq \tau_{n-1}(b);$$

but then $\models \vartheta_{n-1,b}(x)$. Of course, for every c, c' with $k(c) = k(c') = \infty$, if $\models \vartheta_{n,c}(x) \land \vartheta_{n,c'}(x)$, then $\tau_n(c) \simeq \tau_n(c')$; hence, for all b as above,

$$m(n-1,b,a) = \sum_{k(c)=\infty, \ \vDash \ \vartheta_{n-1,b}(c)} m(n,c,a).$$

Similarly for a'. But this clearly suffices to prove our claim.

LEMMA 2. Let $a, x' \in U$ satisfy $k(a) = \infty$, k(x') = k(f(a)),

$$\vDash \vartheta_{n, f(a)}(x') \quad \text{for all } n \in \omega - \{0, 1\}.$$

Then there is $a' \in U$ such that $f(a') = x', a' \neq f^{k(x')-1}$ when $k(x') < \infty$, $\models \vartheta_{n,a}(a')$ for all $n \in \omega - \{0, 1\}$ (and similarly in any ω -saturated model of T containing x').

Proof. First notice that $k(a) = \infty$ implies $a \neq f^h(a)$ for all $h \in \omega - \{0\}$. We have to show that the set

$$\left\{f(v) = x', v \neq f^{k(x')-1}(x'), \vartheta_{n,a}(v) \colon n \in \omega - \{0,1\}\right\}$$

 $(\{f(v) = x', \vartheta_{n,a}(v): n \in \omega - \{0, 1\}\}$ when $k(x') = \infty$, but for simplicity we will ignore this case, which can be handled in a similar way) is satisfiable. Since U is very saturated (but ω -saturated is enough), it suffices to show that this set is finitely satisfiable, and hence that, for all $n \in \omega - \{0, 1\}$,

$$\left\{f(v) = x', v \neq f^{k(x')-1}(x'), \vartheta_{2,a}(v), \dots, \vartheta_{n,a}(v)\right\}$$

is satisfiable. Lemma 1 reduces the problem to the satisfiability of

$$\left\{f(v) = x', v \neq f^{k(x')-1}(x'), \vartheta_{n,a}(v)\right\}$$

for every $n \in \omega - \{0, 1\}$; in fact, if f(c) = x' but $c \neq f^{k(x')-1}(x')$, then $k(c) = \infty = k(a)$, and hence $\models \vartheta_{n,a}(c)$ implies $\models \vartheta_{i,a}(c)$ for any *i* such that $2 \le i \le n$. On the other hand

$$\vDash \exists w (f(w) = x' \land w \neq f^{k(x')-1}(x') \land \vartheta_{n,a}(w))$$

if and only if m(n, a, x') = m(n, a, f(a)) > 0 and hence if and only if

$$\vDash \exists w (f(w) = f(a) \land w \neq f^{k(f(a))-1}(f(a)) \land \vartheta_{n,a}(w));$$

but this formula is true (take w = a).

DEFINITION. Let $\bar{a} = (a_0, \dots, a_t)$ be a sequence of elements of U. The *f*-type of \bar{a} is the subset of $tp(\bar{a}|\emptyset)$ of the formulas of the kind

$$f^h(v_i) = f^m(v_j), \quad f^h(v_i) \neq f^m(v_j)$$

with $h, m \in \omega$, $i, j \leq t$, or of the kind

$$\vartheta_{n,f}h_{(a_i)}(f^h(v_i))$$

with $n, h \in \omega$, $n \ge 2$ and $i \le t$.

One can easily see that, for any $a, a' \in U$, the following propositions are equivalent:

(i) For all $h \in \omega$, $k(f^h(a)) = k(f^h(a'))$;

(ii) For all $h, m \in \omega$, $f^{h}(a) = f^{m}(a)$ iff $f^{h}(a') = f^{m}(a')$.

Hence, if \bar{a}, \bar{a}' have the same f-type, then, for every $h \in \omega$ and $i \leq t, k(f^h(a_i)) = k(f^h(a_i'))$.

In the following, when $\overline{a} = (a_0, \ldots, a_i)$, $\overline{a}' = (a'_0, \ldots, a'_i)$ are two sequences of the elements of U, and $a \in \overline{a}$ (for instance $a = a_i$ with $i \leq t$), then a' will denote the element of \overline{a}' corresponding to a (namely $a' = a'_i$).

LEMMA 3. Let \overline{a} , \overline{a}' satisfy the same f-type, and let x be such that: There are $s \in \omega$, $a \in \overline{a}$ such that $f(x) = f^s(a)$; For all $q \in \omega$ and $\alpha \in \overline{a}$, $x \neq f^q(\alpha)$. Then there is $x' \in U$ such that: $f(x') = f^s(a')$; For all $q \in \omega$ and $\alpha' \in \overline{a}'$, $x \neq f^q(\alpha')$; For all $n \in \omega - \{0, 1\}$, $\models \vartheta_{n,x}(x')$ (and similarly in any ω -saturated model of T containing \overline{a}').

Proof. First notice that $k(x) = \infty$; in fact, if $k(f^{s}(a)) < \infty$, then

$$x \neq f^{k(f^s(a))-1}(f^s(a)):$$

We have to show that the set

$$\{ f(v) = f^s(a') \} \cup \{ v \neq f^q(a') \colon q \in \omega, a' \in \overline{a}' \}$$
$$\cup \{ \vartheta_{n,x}(v) \colon n \in \omega - \{0,1\} \}$$

is satisfiable. As U is very saturated (but ω -saturated is enough), it suffices to prove that this set is finitely satisfiable, and even that, for all $h, n \in \omega$ such that $n \ge 2$ and $h \ge k(f^s(a))$ if $k(f^s(a)) < \infty$, the set

$$\{f(v) = f^s(a')\} \cup \{v \neq f^q(\alpha') \colon q \le h, \alpha' \in \overline{a'}\} \cup \{\vartheta_{n,x}(v)\}$$

is satisfiable (recall that, if $f(x') = f^{s}(a')$ and $x' \neq f^{k(f^{s}(a'))-1}(f^{s}(a'))$, then

 $k(x') = \infty = k(x)$, hence $\models \vartheta_{n,x}(x')$ implies $\models \vartheta_{i,x}(x')$ for any *i* with $2 \le i \le n$. Let *r* be the power of

$$\begin{split} \{f^q(\alpha')\colon q \le h, \alpha' \in \overline{a}', &\models \vartheta_{n,x}(f^q(\alpha')), f(f^q(\alpha')) = f^s(a'), \\ f^q(\alpha') \ne f^{k(f^s(a'))-1}(f^s(a'))\}. \end{split}$$

As a, a' have the same f-type, r is also the power of

$$\{ f^{q}(\alpha) \colon q \leq h, \alpha \in \overline{a}, \vDash \vartheta_{n,x}(f^{q}(\alpha)), f(f^{q}(\alpha)) = f^{s}(a),$$
$$f^{q}(\alpha) \neq f^{k(f^{s}(a))-1}(f^{s}(a)) \}$$

Moreover

$$\vDash \exists w \left(f(w) = f^{s}(a') \land \bigwedge_{q \leq h, \alpha' \in \overline{a}'} w \neq f^{q}(\alpha') \land \vartheta_{n,x}(w) \right)$$

if and only if $r < m(n, x, f^{s}(a')) = m(n, x, f^{s}(a))$, and hence if and only if

$$\vDash \exists w \Big(f(w) = f^{s}(a) \land \bigwedge_{q \le h, \alpha \in \overline{a}} w \neq f^{q}(\alpha) \land \vartheta_{n,x}(w) \Big)$$

and this formula is true (it suffices to take w = x).

LEMMA 4. Let $\overline{a}, \overline{a}' \in U$ have the same f-type, $h \in \omega - \{0\}, x \in U$ be such that:

There are $s \in \omega$ and $a \in \overline{a}$ satisfying $f^{h}(x) = f^{s}(a)$; For any $q \in \omega$ and $\alpha \in \overline{a}$, $f^{h-1}(x) \neq f^{q}(\alpha)$. Then there is $x' \in U$ such that: $f^{h}(x') = f^{s}(a')$; $f^{h-1}(x') \neq f^{q}(\alpha')$ for all $q \in \omega$ and $\alpha' \in \overline{a}'$; x' and x have the same f-type. And similarly in any ω -saturated model of T containing \overline{a}' .

Proof. First notice that $k(f^i(x)) = \infty$ for all i < h. We proceed by induction on h (the case h = 0 is trivial).

First let h = 1. Then it suffices to apply Lemma 3; in fact $k(x) = k(x') = \infty$, and $\models \vartheta_{n,x}(x')$ for every $n \in \omega - \{0, 1\}$; moreover, if i > 0, then $f^i(x) = f^{s+i-1}(a)$ and $f^i(x') = f^{s+i-1}(a')$ so that, as a, a' have the same f-type, it follows that $k(f^i(x)) = k(f^i(x'))$, and $\models \vartheta_{n,f^i(x)}(f^i(x'))$ for every $n \in \omega - \{0, 1\}$.

442

 $h \Rightarrow h + 1$. Let y = f(x). Then $f^{h}(y) = f^{s}(a)$, $f^{h-1}(y) \neq f^{q}(\alpha)$ for any $q \in \omega$ and $\alpha \in \overline{a}$; in particular $k(y) = \infty$. By the induction hypothesis, there is $y' \in U$ satisfying $f^{h}(y') = f^{s}(a')$, $f^{h-1}(y') \neq f^{q}(\alpha')$ for all $q \in \omega$ and $\alpha' \in \overline{a}'$, y' admits the same f-type as y. In particular $k(y') = \infty$, $\models \vartheta_{n,y}(y')$ for every $n \in \omega - \{0, 1\}$. It follows from Lemma 2 that there is $x' \in U$ such that f(x') = y' (so that $f^{h+1}(x') = f^{s}(a')$, $f^{h}(x') \neq f^{q}(\alpha')$ for all $q \in \omega$, $\alpha' \in \overline{a}'$), and $\models \vartheta_{n,x}(x')$ for every $n \in \omega - \{0, 1\}$. Furthermore $k(x') = k(x) = \infty$. This clearly implies that x, x' have the same f-type.

LEMMA 5. For all $\bar{a}, \bar{a}' \in U, \bar{a} \equiv \bar{a}'$ if and only if \bar{a}, \bar{a}' have the same f-type.

Proof. (\Rightarrow) This is trivial.

(\Leftarrow) It suffices to show that $\overline{a}, \overline{a'}$ correspond to each other in an infinite back-and-forth. Hence assume that $\overline{a}, \overline{a'}$ have the same *f*-type. We claim that, for every *x*, there is *x'* such that $(\overline{a}, x), (\overline{a'}, x')$ have the same *f*-type (in a similar way one can show that, for every *x'*, there is *x* such that $(\overline{a}, x), (\overline{a'}, x')$ have the same *f*-type).

Case 1. There are $h, s \in \omega, a \in \overline{a}$ such that $f^h(x) = f^s(a)$. Let h be minimal with this property. If h = 0, then we are done, as it suffices to pick $x' = f^s(a')$. Then assume h > 0. By Lemma 4, as $\overline{a}, \overline{a}'$ have the same f-type and $f^h(x) = f^s(a)$ but $f^{h-1}(x) \neq f^q(\alpha)$ for all $q \in \omega$ and $\alpha \in \overline{a}$, there exists $x' \in U$ satisfying:

 $f^{h}(x') = f^{s}(a');$ $f^{h-1}(x') \neq f^{q}(\alpha')$ for all $q \in \omega$ and $\alpha' \in \overline{a}';$ x, x' have the same f-type.

Let us show that (\bar{a}, x) and (\bar{a}', x') satisfy our claim. It suffices to prove that, for all $j, l \in \omega$ and $\alpha \in \bar{a}$,

$$f^{l}(x) = f^{j}(\alpha)$$
 if and only if $f^{l}(x') = f^{j}(\alpha')$.

Assume $f^{l}(x) = f^{j}(\alpha)$. Then $l \ge h$, hence

$$f^{l-h+s}(a) = f^l(x) = f^j(\alpha),$$

and consequently

$$f^{l}(x') = f^{l-h+s}(a') = f^{j}(\alpha').$$

Conversely, if $f^{l}(x') = f^{j}(\alpha')$, then again we have $l \ge h$, and, by proceeding as before, we get $f^{l}(x) = f^{j}(\alpha)$.

Case 2. For all $h, s \in \omega$ and $a \in \overline{a}, f^h(x) \neq f^s(a)$.

We need find an element $x' \in U$ satisfying:

For all $h, s \in \omega$ and $a' \in \overline{a}', f^h(x') \neq f^s(a')$ (namely $x' \nsim a'$ for all $a' \in \overline{a}'$ —we denote here by \sim the equivalence relation such that, for all $c, c' \in U, c \sim c'$ if and only if there are $i, j \in \omega$ satisfying $f^i(c) = f^j(c')$ [T]);

x' admits the same f-type as x;

(Then $(\bar{a}, x), (\bar{a}', x')$ have the same f-type.)

Suppose towards a contradiction that, for every $x' \in U$, if x' satisfies the same f-type as x, then there is $a' \in \overline{a}'$ such that $x' \sim a'$. In particular, there is $a' \in \overline{a}'$ such that $x \sim a'$. Let $h \in \omega$ be minimal such that there are $a' \in \overline{a}', s \in \omega$ such that $f^h(x) = f^s(a')$. Without loss of generality $a' = a'_0$. By using Lemma 4 if h > 0 and a trivial argument otherwise, we find a''_0 such that:

 $f^{h}(a_{0}') = f^{s}(a_{0});$ $f^{h-1}(a_{0}') \neq f^{q}(a)$ for all $q \in \omega$ and $a \in \overline{a}$ (when h > 0); a_{0}'', x have the same f-type.

In particular $a_0' \sim a_0 \not\approx x, a_0' \not\approx a_0'$. There is $a' \in \overline{a}'$ such that $a_0' \sim a'$, and a' cannot equal a_0' . Let $h \in \omega$ be minimal such that there are $s \in \omega$, $a' \in \overline{a}'$ such that $f^h(a_0') = f^s(a')$. With no loss of generality $a' = a_1'$ (hence $a_1' \not\approx a_0', a_1 \not\approx a_0, a_1' \sim a_0'' \sim a_0$). As above we can find a_1'' such that: $f^h(a_1'') = f^s(a_1)$;

 $f^{h-1}(a_1'') \neq f^q(a)$ for all $q \in \omega$ and $a \in \overline{a}$ (when h > 0); a_1'' admits the same f-type as a_0'' and x.

Then $a_1'' \sim a_1$ (and hence $a_1'' \not\sim x, a_0'$), while $a_1'' \not\sim a_1'$ (otherwise $a_1 \sim a_1' \sim a_1' \sim a_1' \sim a_0' \sim a_0$, contradicting $a_1 \not\sim a_0$).

We can repeat this procedure to define a''_j inductively for all j with $1 \le j \le t$; in fact, at stage j, we can assume

 $x \neq a_0 \neq a_1 \neq \cdots \neq a_j,$ $a'_0 \neq a'_1 \neq \cdots \neq a'_j,$ $x \sim a'_0$ and, for all s < j, $a \sim a'' \sim a'$

 $a_s \sim a_s'' \sim a_{s+1}', \\ a_s'' \nsim a_0', \ldots, a_s'$

(where we use the notation " $a \not\sim b \not\sim c \dots$ " to mean that a, b, c, \dots are mutually inequivalent modulo \sim) and deduce that there exists $a''_j \sim a_j$ such that a''_j satisfies the same f-type as x. Furthermore $a''_j \not\sim a'_0, \dots, a'_j, x$ and there is $a' \in \overline{a'}$ such that $a' \sim a''_j$, and, when j < t, we can assume without loss of generality that $a' = a'_{j+1}$. But, at stage t, this gets a contradiction. Then an element x' as claimed must exist.

Proof of Theorem 2. First notice that, if $k \in \omega - \{0\}$, then $\{a \in U: k(a) = k\}$ can be defined by a unique formula of our language, while, if $k = \infty$, then we have to expect to need an infinite set of formulas for defining

 $\{a \in U: k(a) = k\}$; in the following let us denote this formula, or this set of formulas respectively, by k(v) = k.

Let T^* be the theory of the pairs (M', M) of models of T satisfying $M \leq M'$ and the conditions (i) and (ii) below.

(i) Let $b \in U$ with $k(b) = \infty, n \in \omega - \{0, 1\}$. Then, for all $h \in \omega, T^*$ contains:

"For every $y \in M$, if there are infinitely many $x \in M$ satisfying f(x) = yand $\models \vartheta_{n,b}(x)$, then there are > h elements $x \in M' - M$ such that f(x) = yand $\models \vartheta_{n,b}(x)$ ".

It is clear that, for every $h \in \omega$, the previous proposition can be expressed by a suitable 1st order sentence of the language for pairs of models of T.

(ii) Let $b \in U$, $n, s \in \omega$, $n \ge 2$. Let $s' \le s + 1$ be such that, for every $j \le s$, $k(f^{j}(b)) = \infty$ if and only if j < s' (possibly s' = 0; in this case $k(f^{j}(b)) < \infty$ for all $j \le s$). Assume that T contains the following sentences: for all $q \in \omega$,

$$\exists w \bigg(\bigwedge_{j \le s} \vartheta_{n, f^{j}(b)}(f^{j}(w)) \land \bigwedge_{s' \le j \le s} k(f^{j}(w)) = k(f^{j}(b))$$
$$\land \bigwedge_{0 < l \le q, j < s'} f^{l}(f^{j}(w)) \neq f^{j}(w) \bigg)$$

and, for all $h, q \in \omega$,

$$\begin{aligned} \forall v_0 \cdots \forall v_h \exists w \Big(\bigwedge_{i \le h, j \le s} \vartheta_{n, f^j(b)} (f^j(v_i)) \\ & \longrightarrow \bigwedge_{j \le s} \vartheta_{n, f^j(b)} (f^j(w)) \wedge \bigwedge_{s' \le j \le s} k(f^j(w)) = k(f^j(b)) \\ & \wedge \bigwedge_{0 < l \le q, j < s'} f^l(f^j(w)) \neq f^j(w) \wedge \bigwedge_{i \le h, l, m \le q} f^m(w) \neq f^l(v_i) \Big). \end{aligned}$$

Notice that to assume that T satisfies the previous sentences is the same as to require that U-as well as any ω -saturated model of T-contains infinitely many pairwise \nsim elements satisfying

$$\vartheta_{n,f^{j}(b)}(f^{j}(v)), \quad k(f^{j}(v)) = k(f^{j}(b)) \quad \text{for all } j \leq s.$$

Then T^* includes the following sentences: for all $q \in \omega$,

$$\exists w \bigg(\bigwedge_{j \le s} \vartheta_{n, f^{j}(b)}(f^{j}(v)) \land \bigwedge_{s' \le j \le s} k(f^{j}(v)) = k(f^{j}(b))$$
$$\land \bigwedge_{0 < l \le q, j < s'} f^{l}(f^{j}(w)) \neq f^{j}(w) \land \bigwedge_{l \le q} f^{l}(w) \notin M \bigg)$$

and, for all $h, q \in \omega$,

$$\begin{aligned} \forall v_0 \cdots \forall v_h \exists w \bigg(\bigwedge_{i \le h, j \le s} \vartheta_{n, f^j(b)} (f^j(v_i)) \\ & \longrightarrow \bigwedge_{j \le s} \vartheta_{n, f^j(b)} (f^j(w)) \wedge \bigwedge_{s' \le j \le s} k(f^j(w)) = k(f^j(b)) \\ & \wedge \bigwedge_{0 < l \le q, j < s'} f^l(f^j(w)) \neq f^j(w) \wedge \bigwedge_{l \le q} f^l(w) \notin M \wedge \bigwedge_{i \le h, l, m \le q} \\ & f^l(w) \neq f^m(v_i) \bigg). \end{aligned}$$

Notice that this is equivalent to the assumption that in every ω -saturated model (M', M) of T^* there are infinitely many pairwise \nsim elements that are \nsim to M and satisfy

$$\vartheta_{n,f^{j}(b)}(f^{j}(v)), k(f^{j}(v)) = k(f^{j}(b)) \text{ for all } j \leq s.$$

We claim that the theory T^* we have just now introduced equals the theory T' of nice pairs of models of T. Recall that a pair (M', M) of models of T is said to be nice if M is ω_1 -saturated, and, for every $\overline{a} \in M'$, any type in T over $M \cup \overline{a}$ is realized in M'. We point out also that, if T is the theory of a 1-ary function, then the theory T' of nice pairs of models of T is complete since T is superstable (see [P]). The proof of our claim requires three steps.

Step 1. Every nice pair (M', M) of models of T satisfies T^* . In fact we have the following.

(i) Let $b \in U$ with $k(b) = \infty, n \in \omega - \{0, 1\}, y \in M$, and assume that there exist infinitely many elements $x \in M$ satisfying $f(x) = y, \models \vartheta_{n,b}(x)$. Let $\{a_0, \ldots, a_h\}$ be a finite (possibly empty) subset of M' - M whose elements satisfy $f(v) = y \land \vartheta_{n,b}(v)$. Then

$$\{f(v) = y\} \cup \{\vartheta_{n,b}(v)\} \cup \{v \neq d \colon d \in M \cup \{a_0, \dots, a_h\}\}$$

can be enlarged to a type over $M \cup \{a_0, \ldots, a_h\}$, and this type must be realized in M'.

(ii) can be shown in a similar way.

446

Step 2. Every ω_1 -saturated model of T^* is a nice pair. In fact, let (M', M) be an ω_1 -saturated model of T. In particular M is ω_1 -saturated. Hence it suffices to show that, if $\overline{a} \in M'$ and p is a 1-type over $M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$ (in T), then p is realized in M'. With no loss of generality we can assume that p is not algebraic, otherwise our claim is trivially true.

Case 1. There are $h \in \omega - \{0\}, b \in M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$ such that p contains $f^h(v) = b$ and

$$f^{h-1}(v) \neq d$$
 for all $d \in M \cup \{f^k(a) : k \in \omega, a \in \overline{a}\}$.

Then p is defined by the previous formulas together with the f-type of x where x is any realization of p (this follows from Lemma 5 and the remark that the f-type of x determines the f-type of $x \cup \overline{c}$ for any $\overline{c} \in M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$). Notice that, for every $x \models p$, if $k(b) < \infty$, then $f^{h-1}(x) \neq f^{k(b)-1}(b)$, hence $k(f^j(x)) = \infty$ for every j < h. Fix $x \models p$. We claim that:

There is $c \in M'$ such that $f(c) = b, c \notin M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$ and, for all $n, j \in \omega$ with $n \ge 2, k(f^j(c)) = k(f^{j+h-1}(x)), \models \vartheta_{n, f^{j+h-1}(x)}(f^j(c))$.

Subcase 1. For all $n \in \omega - \{0, 1\}$, there exist infinitely many elements realizing $f(v) = b \wedge \vartheta_{n,f} h - 1_{(x)}(v)$.

Then there are infinitely many elements of M' - M realizing

$$f(v) = b \wedge \vartheta_{n,f} h - 1_{(x)}(v)$$

(this is obvious if $b \notin M$, and follows from (i) if $b \in M$). On the other hand, $\{f^k(a): k \in \omega, a \in \overline{a}\}$ contains only finitely many elements satisfying this formula. In fact, let $a \in \overline{a}$. If there exists at most one $s \in \omega$ such that $f^s(a) = b$, then there is at most one $k \in \omega$ such that $f(f^k(a)) = b$ (k = s - 1) provided that s > 0). Otherwise, let s be the minimal natural number such that $f^s(a) = b$. Then $k(b) < \infty$, and, for all $k \in \omega$, $f^k(a) = b$ if and only if $k \equiv s \mod k(b)$, and, consequently, $f(f^k(a)) = b$ if and only if $k + 1 \equiv s \mod k(b)$. Then there are at most two elements of the form $f^k(a)$ with $k \in \omega$ satisfying f(v) = b, as, if $k, k' \in \omega, k, k' \ge s$ and $f(f^k(a)) = f(f^{k'}(a)) = b$, then $k + 1 \equiv k' + 1 \mod k(b)$ and hence $k \equiv k' \mod k(b)$, so that $f^k(a) = f^{k'}(a)$.

It follows that

$$\{f(v) = b\} \cup \{\vartheta_{n, f^{h-1}(x)}(v)\} \cup \{v \notin M\} \cup \{v \neq f^k(a) \colon k \in \omega, a \in \overline{a}\}$$

can be realized in (M', M). By using the ω -saturation of (M', M) and Lemma

1, we obtain that there is $c \in M'$ satisfying

$$\{f(v) = b\} \cup \{\vartheta_{n, f^{h-1}(x)}(v) : n \in \omega - \{0, 1\}\} \cup \{v \notin M\}$$
$$\cup \{v \neq f^k(a) : k \in \omega, a \in \overline{a}\}.$$

As f(c) = b but $c \neq f^{k(b)-1}(b)$ if $k(\dot{b}) < \infty$, then

$$k(c) = \infty = k(f^{h-1}(x)).$$

Moreover, for every $j \in \omega - \{0\}$, $f^{j}(c) = f^{j-1}(b) = f^{j+h-1}(x)$, hence

$$k(f^{j}(c)) = k(f^{j+h-1}(x)),$$

and, for all $n \in \omega - \{0, 1\}$, $\vDash \vartheta_{n, f^{j+h-1}(x)}(f^j(c))$.

Subcase 2. There is $n \in \omega - \{0, 1\}$ such that $f(v) = b \land \vartheta_{n, f^{h-1}(x)}(v)$ admits only finitely many realizations.

Then all these realizations belong to M'. As $f^{h-1}(x)$ satisfies the previous formula, $f^{h-1}(x) \in M'$ and we can assume $c = f^{h-1}(x)$.

This completes the proof of the claim. Let us come back to the problem of finding an element of M' realizing p. If h = 1, then we are done (c works). So assume h > 1. Then c and $f^{h-1}(x)$ satisfy the same f-type; furthermore $f^{h-2}(x) \neq f^q(f^{h-1}(x))$ for all $q \in \omega$ as $k(f^{h-2}(x)) = \infty$. Hence, by using Lemma 4 and the fact that M' is ω_1 -saturated and contains c, we can find $x' \in M'$ such that:

 $f^{h-1}(x') = c$ (and then $f^h(x) = b$, $f^{h-1}(x') \notin M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$); x' has the same f-type as x.

Then $x' \vDash p$.

Case 2. for all $h \in \omega$ and $b \in M \cup \{f^k(a): k \in \omega, a \in \overline{a}\}$, p contains $f^h(v) \neq b$.

As above, p is defined by these formulas together with the f-type of x where $x \models p$. Let $n, s \in \omega, n \ge 2$. As M is ω_1 -saturated, there exist infinitely many pairwise \nsim elements of M satisfying

$$\vartheta_{n,f^{j}(x)}(f^{j}(v)), k(f^{j}(v)) = k(f^{j}(x))$$

for all $j \le s$. In fact, define s' as above, and let $\{x_0, \ldots, x_h\}$ be a finite, possibly empty, subset of M whose elements are pairwise \nsim and satisfy the

foregoing set of formulas; then

$$\begin{aligned} \left\{ \vartheta_{n,f^{j}(x)}(f^{j}(v)) \colon j \leq s \right\} \cup \left\{ k(f^{j}(v)) = k(f^{j}(x)) \colon s' \leq j \leq s \right\} \\ \cup \left\{ f^{l}(f^{j}(v)) = f^{j}(v) \colon j < s', 0 < l \in \omega \right\} \\ \cup \left\{ f^{l}(v) \neq f^{m}(x_{i}) \colon i \leq h, l, m \in \omega \right\} \end{aligned}$$

is finitely satisfiable in M (in fact it is satisfied by x), hence it is satisfiable in M. Then (ii) provides infinitely many pairwise \nsim elements of M' which are \nsim to M and satisfy

$$\begin{aligned} \left\{ \vartheta_{n,f^{j}(x)}(f^{j}(v)) \colon j \leq s \right\} \cup \left\{ k(f^{j}(v))k(f^{j}(x)) \colon s' \leq j \leq s \right\} \\ \cup \left\{ f^{l}(f^{j}(v)) \neq f^{j}(v) \colon j < s', 0 < l \in \omega \right\}. \end{aligned}$$

In particular there is $y \in M'$ such that y satisfies this set and $y \nleftrightarrow M \cup \overline{a}$. Then there is $x' \in M'$ such that $x' \nleftrightarrow M \cup \overline{a}$ and, for all $j, n \in \omega$ with $n \ge 2, \models \vartheta_{n, f^{j}(x)}(f^{j}(x'))$ and $k(f^{j}(x')) = k(f^{j}(x))$; in fact, it suffices to notice that the set

$$\{f^{l}(v) \notin M : l \in \omega\} \cup \{f^{l}(v) \neq f^{k}(a) : l, k \in \omega, a \in \overline{a}\}$$
$$\cup \{\vartheta_{n, f^{j}(x)}(f^{j}(v)) : j, n \in \omega, n \ge 2\} \cup \{k(f^{j}(v)) = k(f^{j}(x)) : j \in \omega\}$$

is finitely satisfiable as every subset of the kind

$$\{f^{l}(v) \notin M \colon l \in \omega\} \cup \{f^{l}(v) \neq f^{k}(a) \colon l, k \in \omega, a \in \overline{a}\}$$
$$\cup \{\vartheta_{m, f^{j}(x)}(f^{j}(v)) \colon j \leq s, 2 \leq m \leq n\} \cup \{k(f^{j}(v)) = k(f^{j}(x)) \colon j \leq s\}$$

(with $n, s \in \omega, n \ge 2$), hence every finite subset, is satisfiable (use the previous remarks and Lemma 1; recall that, if y is as above, then in particular $k(f^{j}(y)) = k(f^{j}(x))$ for all $j \le s$).

Step 3. $T^* = T'$. In fact, it follows from the Step 1 that $T^* \subseteq T'$. On the other hand, let (M', M) be a model of T and (N', N) be an ω_1 -saturated elementary extension of (M', M); then $(N', N) \models T^*$, and hence the second step implies that (N', N) is a nice pair. Consequently $(N', N) \models T'$, and $(M', M) \models T'$, too. Then $T' \subseteq T^*$.

We can now conclude the proof of the theorem, as the second step ensures that every ω_1 -saturated model of T' is a nice pair (in fact, this is true for T^*), and this implies that T does not have the f.c.p. (see [P], Theorem 6).

Acknowledgements. I thank the referee for suggesting several improvements. I also would like to thank Maria Cristina Garavini; without her help, this paper could have never been written.

References

- [BK] J. BALDWIN and D. KUEKER, Ramsey quantifiers and the finite cover property, Pacific J. Math., vol. 90 (1980), pp. 11-19
- [CK] C.C. CHANG and H. KEISLER, Model theory, North Holland, Amsterdam, 1973.
- [K] H. KEISLER, Ultraproducts which are not saturated, J. Symbolic Logic, vol. 32 (1967), pp. 23-47
- [M1] L. MARCUS, Minimal models of theories of one function symbol, Israel J. Math., vol. 18 (1974), pp. 117–131
- [M2] _____, The number of countable models of a theory of one unary function, Fund. Math., vol. 108 (1980), pp. 171-181
- [MI] A. MILLER, Vaught's conjecture for theories of one unary operation, Fund. Math., vol. 111 (1981), pp. 135–141
- [P] B. POIZAT, Paires de structures stables, J. Symbolic Logic, vol. 48 (1983), 239-249
- [S] S. SHELAH, Classification theory and the number of non-isomorphic models, North Holland, Amsterdam, 1978.
- [T] C. TOFFALORI, Classification theory for a 1-ary function, Illinois J. Math., vol. 35 (1991), pp. 1–26.
 - Università degli Studi di Camerino Camerino, Italy