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1-ARY FUNCTIONS AND THE F.C.P.

BY

CARLO TOFFALORI

Let T be a countable, complete 1st order theory with no finite models. As
usual, we assume that all models of T are elementary substructures of some
big model U. In [K], Keisler proposed the following definition: T is said to
satisfy the finite cover property (f.c.p.) if there exists a formula q(, ) of the
language of T such that, for every rn to, there are n to, 0,..., n U
such that n > m,

but, for all < n,

A
k<n,kl

To define what is a theory without the f.c.p, is now an exercise as trivial as
useful; for, the f.c.p. is a property much richer in implications than the
f.c.p. For instance, a theory T without the f.c.p, is stable (and some examples
of the use of the f.c.p, in stability theory can be found in Shelah’s book [S]);
on the other hand, Poizat discovered some meaningful connections between
the f.c.p, and the properties of the theory of nice pairs of models of T [P].
Here we are interested in the problem of studying the f.c.p, for theories of

a 1-ary function. Several papers have already been devoted to the model
theory of 1-ary functions, especially in the context of Vaught’s Conjecture
(see [M1], [M2], [Mi]). In particular, we studied classification theory for these
functions in [T], we only recall here that they are superstable. The aim of this
paper is to classify the theories T of a 1-ary function f which do not satisfy
the f.c.p. First let us give some examples concerning this matter.

1. If T is categorical in 0 or in 1, then T does not satisfy the f.c.p. (in
fact, in general, any stable 0-categorical theory, as well as any l-categorical
theory, fails to have the f.c.p., see [K] and [BK]).
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2. Let T be the theory of a 1-ary function f such that:
For every a U and n to {0}, f’(a) a;
For every a U, there are infinitely many b U satisfying f(b) a.

Then T is neither 0-categorical nor l-categorical; however T does not have
the f.c.p.

3. Consider now the theory TO of a 1-ary function f such that, for every
n to {0}, there is a U satisfying:

f(a) a;
There are exactly n elements b U such that f(b) a, b a;
For all b such that f(b) a and b a, f- l(b) .

Let T be any completion of To; then T has the f.c.p.

Our main result is that a theory T of a 1-ary function f does not have the
f.c.p, if and only if T satisfies the conditions P,,(n to -{0}) below. How-
ever, before stating these conditions, we need to introduce the following
notions.

DEFINITION. Let a U. Then

k(a) (min{koo to. k > 0, fk(a) a} if such a k exists,
otherwise.

It is easy to see that, for every a U:

If k(a) < oo, then, for all k to, fk(a) a if and only if k(a)[k;
If k(a)< oo, then k(f(a))= k(a) (in particular, if k(f(a))= oo, then

k(a) 0% too);
If k(a) < 0% f(x) a and x fk(a)-l(a), then k(x)

DEFINITION Let a U, n to {0, 1}. Then ’n(a) {x U: either
x=a or there is m
fk(a)-l(a) when k(a) <
One can easily prove that, for every a U and n to {0, 1},

"rn+l(a ) {a} U U zn(x)
x

where x ranges over the preimages of a in f different from fk(a)-l(a)when
k(a) < oo. Furthermore, if f(x)=f(y)= a, x y and x,y qfk(a)-l(a)
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when k(a) < 0% then

a ’rn(x ), "r,,(x) n "r,(y) .
Notice that in general "rn(a) is not a structure of the language for f, as Zn(a)
contains a, but it does not include f(a) except for the case f(a) a namely
k(a) 1. Nevertheless we shall consider below the "isomorphism type" of
,r,,(a) in the sense we are going to explain here. For every a, a’ U, we shall
say that %,(a) is isomorphic to ,rn(a’),

,r,,( a) ,rn( a’),

if k(a)= k(a’) and there exists a partial isomorphism of U having domain
"r,,(a) and range "rn(a’), namely a bijection g of z,,(a) onto ,rn(a’) such that, for
all x, y ,r,,(a), f(x) y if and only if f(g(x)) g(y) (in particular g(a)
a’). Clearly is an equivalence relation; then the isomorphism type of ,rn(a)
will mean the equivalence class of ’rn(a)with respect to =.
We can state now P1.

(P1) There exists N to such that, for every a U, f-l(a) has either
_< N or infinitely many elements.

Let us list some consequences of P1.

(i) For every a U, the isomorphism type of ’r2(a) is given by k(a) and a
cardinal number among 0,1,...,N, card U specifying the power of
{x: f(x) a, x 4= fk(a)-X(a) if k(a) < }.

(ii) For every k to {0} or k 0% there are only finitely many isomor-
phism types of structures z2(a) with k(a) k.

(iii) For every a U, let 02, a be the formula

::l!m(a)w(f(w) v w 4: fk(a)-l(u))

if k(a) < oo and

:::!!m(a)w( f(w) =v)

otherwise, where rn(a) denotes the power of

{x" f(x) a, x 4 fk(a)-l(a) if k(a) <

so that

m(a) (0, 1,..., N, card U},
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and :!! card U abridges ::1 > N. Then, for every a, a’ U,

if and only if k(a)= k(a’) and
k(a) k(a’) and re(a) rn(a’).

02, a(a’) or, if you prefer, if and only if

Now let n to {0, 1}.

(Pn) For every b U with k(b) 0% there is H H(,r,,(b)/=
for all a U,

) such that,

{x" f(x) a,x * fk(a)-l(a) if k(a) < oo,’rn(X ) -n(b)}
has either < H or infinitely many elements.

Let nto-{0,1} and assume that Pm holds for every rnto with
1 < rn < n. Then an easy induction argument shows the following conse-
quences, generalizing the ones of the case n 1.

(i) For all a U, the isomorphism type of "rn+l(a) is given by k(a) and by
the function of the (finite) set of invariants of isomorphism types of structures
"r,,(b) with b U, k(b) 0% into the set of cardinals < card U such that, for
every b U satisfying k(b) 0% the image of the corresponding invariant is
the power of

{x" f(x) =a,x 4: fk(a)-l( a) if k(a) < oo, ’n(X ) -n(b)}
(and hence belongs to {0, 1,..., H(.r,,(b)/=), card U}).

In fact, assume ’n+l(a)= %+1(a’). Then k(a)= k(a’) and there is a
partial isomorphism g mapping n+ a(a) onto -,+ l(a’); in particular g(a) a’
and, for every x such that f(x) a, x 4: f:(a)-l(a) if k(a) < oo, g(x) x’

X k(a’)satisfies f(x’) a’, 4: f -l(a if k(a’) k(a) < oo. It follows that
"r,,(x) "r,,(x’). In fact k(x) k(x’) oo and, for all y ’n+l(a), if y’=
g(y), then

Y ’n(X) iff there is s < n such that fs(y) x
iff there is s < n such that fS(y’) x’
iff y’
hence g ,nX) is a partial isomorphism of ’rn(X) onto "rn(X’). In particular, for
every b U such that k(b) 0%
card{x" f(x) a, x 4 fk(a)-l(a) if k(a) < 0% ’,(x) zn(b)} card{x’: f(x’)

X k(a’)a’, 4: f l(a,) if k(a’) < 0% z,(x’) ,(b)}.
Conversely suppose that a, a’ U satisfy k(a) k(a’) and
card{x: f(x) a, x 4 fk(a)-l(a) if k(a) < oo, .rn(x ) -n(b)} card{x’:
f(x’) a’, x’ 4: fk’)- l(a,) if k(a’) < 0% ,,(x’) ,,(b)}
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for every b U with k(b) o. By recalling that

"rn+l(a) {a} t) U’.rn(x)
x

(where f(x)= a, x 4: fk(a)-l(a) if k(a) < o) and similarly for a’, one can
easily build a partial isomorphism of -, / l(a) onto - / l(a’).

(ii) There are at most finitely many isomorphism types of structures
z+a(a) with a U, k(a)= .

(iii) For every a U, let 0/ 1,a be the formula

A Z!!m(n,b,a) w (f(w) A w 4fk(a)-l(v) A On,b(W))
b

if k(a) < 0% or

A 3!m(n, b, a) w (f(w) A O,b(W))
b

otherwise, where b ranges over the elements of U satisfying k(b) mor,
more precisely, z(b)/= ranges over the corresponding isomorphism types,
that are finitely manymand, for each b with k(b) ,

re(n, b, a) card{x" f(x) a, x 4: fk(a)-a(a) when
k(a) < , rn(X) z(b)}

{0, 1,..., H(z(b)/ ), card U}
(as before =1! card U abbreviates ::1 > H(z(b)/=)). Then, for all a, a’ U,

-,+ (a) Zn+x(a’)

if and only if k(a) k(a’) and gn+l,a(a’) or, if you prefer, if and only if
k(a) k(a’) and re(n, b, a) re(n, b, a’) for every b with k(b) .
THEOREM 1.

n to {0}.
If T fails to have the f.c.p., then T satisfies P for all

Proof. Assume towards a contradiction that there is n to- {0} such
that P does not hold. Let n be minimal with this property. If n 1, then,
for every rn to, there exists a U admitting > rn but finitely many
preimages; hence T has the f.c.p. (consider the formula q(v, w): v 4: w A
f(v) f(w)).

Let now n > 1. Then there is b U such that k(b)= oo and, for all
n to, there is a U admitting > rn but finitely many preimages x such
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that x 4: fk(a)-l(a)when k(a) < oo and ’n(x) zn(b)(namely k(x) oo and
On, b(X)). But in this case T admits the f.c.p, owing to the formula

q(v, w)" v 4: w A f(v) f(w) A On,b(V) A On,b(W)

(in fact, even if k(a) < 0% there is at most one preimage a’ fk(a)= l(a) Of a
such that k(a’) < oo and On, b(a’)).

TI-IEOREM 2. If T satisfies Pn for all n to {0}, then T fails to have the
f.c.p.
We tacitly assume from now on that T satisfies Pn for all n to {0}.

LEMMA 1. For all a, a’ U satisfying k(a) k(a’), and n to {0, 1}, if
On + 1, a(a’), then On, a(a’).

Proof We proceed by induction on n.
Let n 2, and suppose 03,a(a’). Then, for all b U with k(b) oo,

m(2, b, a) m(2, b, a’). But in this case

re(a) Em(2, b, a) Em(2, b, a’) m(a’),
b b

and hence 02, a(a’).
Now let n > 2 and assume On + 1, a(a’) Then, for all b U with k(b)

0% m(n, b, a) m(n, b, a’). Let x satisfy f(x) a, x 4: fka)-l(a) when k(a)
< oo. Then k(x) oo and, for every b with k(b)

if and only if there is c such that k(c) 0% ln_l,b(C) and On, c(X). In
fact, if On_ 1,b(X), then we can put c --x.

Conversely suppose that there exists c as claimed, then we have
On_l,c(X) and, consequently, as k(c) k(x) k(b)

q’n_l(X) ’n_l(C) 7"n_l(b);

but then 1n_ l, b(X ). Of course, for every c,c’ with k(c)= k(c’)= 0% if
On, c(X) /X On,,(X) then Zn(C) -- rn(C’); hence, for all b as above,

m(n- 1, b,a)

_
m(n,c,a).

k(c)= oo, O,-1,b(c)

Similarly for a’. But this clearly suffices to prove our claim.
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LEMMA 2. Let a, x’ U satisfy k(a) 0% k(x’) k(f(a)),

On,f(a)(X’) foralln to- {0,1}.

Then there is a’ U such that f(a’)=x’,a’ fk(x’)-I when k(x’) < 0%
O..a(a’) for all n to {0, 1} (and similarly in any to-saturated model of T

containing x’).

Proof First notice that k(a) oo implies a 4= fh(a) for all h to {0}.
We have to show that the set

{f(v) x’, v = fk(x’)-l(x,), On, a( U)" n to {0, 1}}

({f(v) X t, On.a(U)’. n to- {0, 1}} when k(x’)= 0% but for simplicity we
will ignore this case, which can be handled in a similar way) is satisfiable.
Since U is very saturated (but to-saturated is enough), it suffices to show that
this set is finitely satisfiable, and hence that, for all n to {0, 1},

{f(v) x’,v 4= fk(x’)-l(xt), L2, a(U),... Ln,a(U)}

is satisfiable. Lemma 1 reduces the problem to the satisfiability of

{f(v) x’,v 4= fk(x’)-l(x’), On, a(U)}

for every n to- {0,1}; in fact, if f(c)= x’ but c fk(x’)-l(x’), then
k(c) o k(a), and hence w On, a(C) implies w Oi, a(C) for any such that
2 _< _< n. On the other hand

=lw(f(w) X’ A W 4 fk(x’)-l(x’) A On, a(W))

if and only if re(n, a, x’) re(n, a, f(a)) > 0 and hence if and only if

::lw(f(w) f(a) A w =/= fk(f(a))-l(f(a)) A On,a(W));

but this formula is true (take w a).

DEFINITION. Let (a0,..., at) be a sequence of elements of U. The
f-type of ff is the subset of tp([) of the formulas of the kind

fh( Ui ) fro(Uj), fh( Ui ) q= fro(Vj)



1-ARY FUNCTIONS AND THE F.C.P. 441

with h, m to, i, j < t, or of the kind

ln, fh(ai)( fh( ui) )

withn, h to, n >2andi<t.

One can easily see that, for any a, a’ U, the following propositions are
equivalent:

(i) For all h to, k(fh(a)) k(fh(a’));
(ii) For all h, m to, fh(a) f"(a) iff fh(a’) fm(a’).

Hence, if ,’ have the same f-type, then, for every h to and <
t, k(fh(ai)) k(fh(a’i)).

In the following, when ff (ao,...,at), ’= (a’o,...,a’t) are two se-
quences of the elements of U, and a (for instance a a with _< t),
then a’ will denote the element of ’ corresponding to a (namely a’ ai’).

LEMMA 3. Let , ’ satisfy the same f-type, and let x be such that:
There are s to, a such that f(x) fS(a);
For all q to and a , x f(a).

Then there is x’ U such that:
f(x ’) fS(a,);
For all q to and a’ ’, x fq(a’);
For all n to {0, 1}, On, x(X’)

(and similarly in any to-saturated model of T containing ’).

Proof First notice that k(x) oo; in fact, if k(fS(a)) < 0% then

x fk(fS(a))- 1( f (a) )"

We have to show that the set

{f(v) fS(a’)} k) {v 4: fq(a’)" q to, a’ ’}
kJ{On, x(V)" n to {0, 1}}

is satisfiable. As U is very saturated (but to-saturated is enough), it suffices to
prove that this set is finitely satisfiable, and even that, for all h, n to such
that n > 2 and h > k(f(a)) if k(f(a)) < 0% the set

{f(v) =f(a’)} u {v , fq(ot’.)" q < h,a’ "’} k){O.x(V)}

is satisfiable (recall that, if f(x’)= f(a’) and x’4 fk(fS(a’))-l(fs(a’)), then
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k(x’) k(x), hence On, x(x’) implies Oi, x(x’) for any with 2 _<
_< n). Let r be the power of

{f(a’)" q < h, a’ ’, On, x(fq(a’)), f(fq(a’)) fS(a’),

fq(a’) 4= fk(fs(a’))- 1( f(a’)) }.

As a, a’ have the same f-type, r is also the power of

{f(a)" q _< h,a , On,x(f(a)),f(fq(a)) =f(a),

fq(ot) 4= fk(ff(a))-l( fs(a))}.

Moreover

:lw(f(w) =fS(a’) A w 4= fq(a’) /x On, x(W))
if and only if r < re(n, x, fS(a’)) re(n, x, fS(a)), and hence if and only if

:lw(f(w) fS(a) A A
q<h,a

w 4= fq(a) A On,x(w))
and this formula is true (it suffices to take w x).

LEMMA 4. Let , ’ U have the same f-type, h to {0}, x U be such
that:

There are s to and a satisfying fh(x) fS(a);
For any q to and a , fh-l(x) 4= fq(a).

Then there is x’ U such that:
fh(x’) f(a’);
fh-l(x’) 4= fa(a’) for all q to and a’ ’;
x’ and x have the same f-type.

And similarly in any to-saturated model of T containing ’.

Proof First notice that k(fi(x))= o for all i< h. We proceed by
induction on h (the case h 0 is trivial).

First let h 1. Then it suffices to apply Lemma 3; in fact k(x)
and On, x(X’) for every n to {0, 1}; moreover, if > 0, then fi(x)
ff+i-l(a) and fi(x’)=f+i-(a’) so that, as a,a’ have the same f-type,
it follows that k(fi(x))= k(fi(x’)), and On, fi(x)(fi(x’)) for every n
o {0, 1}.
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h h + 1. Let y f(x). Then fh(y) fS(a), fh-l(y) =/= fq(a) for any
q to and a ; in particular k(y) . By the induction hypothesis, there
is y’ U satisfying fh(y,) fS(a,), fh-l(y,) =/= fq(a’) for all q to and
a’ ’, y’ admits the same f-type as y. In particular k(y’)---, On, y(y’)
for every n to {0, 1}. It follows from Lemma 2 that there is x’ U such
that f(x’) y’ (so that fh+ l(x,) fS(a’), fh(x’) =/= fq(te’) for all q
’), and w On, x(x’) for every n to {0, 1}. Furthermore k(x’) k(x)
This clearly implies that x, x’ have the same f-type.

LEMMA 5. For all , ’ U, =- ’ if and only if, ’ have the same f-type.

Proof. (=) This is trivial.
(=) It suffices to show that , ’ correspond to each other in an infinite

back-and-forth. Hence assume that , if’ have the same f-type. We claim
that, for every x, there is x’ such that (, x), (’, x’) have the same f-type (in
a similar way one can show that, for every x’, there is x such that (, x), (’, x’)
have the same f-type).

Case 1. There are h,s to, a such that fh(x)=f(a). Let h be
minimal with this property. If h 0, then we are done, as it suffices to pick
x’= f(a’). Then assume h > 0. By Lemma 4, as , ’ have the same f-type
and fh(x) f(a) but fh-l(x) q fq(o) for all q to and a , there exists
x’ U satisfying:

fh(x’) f(a’);
fh-l(x’) =/= fq(a’) for all q to and a’ ’;
x, x’ have the same f-type.

Let us show that (’, x) and (’, x’) satisfy our claim. It suffices to prove that,
for allj, ltoanda,

fl( X) fJ( a) if and only if fl(

Assume fl(x) fJ(a). Then > h, hence

fl-h+s( a) f’( x) fJ( a),

and consequently

fl( x’) fl-h+S( a,) fJ( a’).

Conversely, if fl(x’) fJ(a’), then again we have >_ h, and, by proceeding
as before, we get fl(x) fY(a).
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Case 2. For all h, s to and a - , fh(x) fS(a).
We need find an element x’ U satisfying:
For all h, s to and a’ ’, fh(x’) 4: fS(a’) (namely x’ , a’ for all a’ ’--we denote here by the equivalence relation such that, for all c, c’

U, c c’ if and only if there are i, j to satisfying fi(c) f(c’) IT]);
x’ admits the same f-pe as x;

(Then (K, x), (K’, x’) have the same f-type.)
Suppose towards a contradiction that, for eve x’ U, if x’ satisfies the

same f-type as x, then there is a’ if’ such that x’ a’. In particular, there
is a’K’ such that xa’. Let h w be minimal such that there are
a’ K’,s w such that fh(x) f(a’). Without loss of generality a’ Bya0.

using Lemma 4 if h > 0 and a trivial argument otheise, we find a such
that:

h(a" f(ao);0

fh-l(a) fq(a) for all q w and a K (when h > 0);
a0, x have the same f-pe.

There is a’ ’ ’,In particular a0 ao x, ao ao. such that a0 a and
a’ cannot equal a. Let h w be minimal such that there are s w, a’ ’such that jCh(a")o f(a’). With no loss of generali a’ a1’ (hence a1’

such that:" ao). As above we can find aao a a0 a a0

h(a") fS(a);
h _tt x(ua) fq(a) for all q w and a K (when h > 0);

and xa1" admits the same f-pe as a0

’), whileThen a a (and hence a x, a0 a a] (otheise a a a
ao a0, contradicting ax a0).
We can repeat this procedure to define a inductively for all j with

1 j t; in fact, at stage j, we can assume
X a0 a aj
a0 a aj
xa0

and, for all s < j,
a a as+l

(where we use the notation "a b c..." to mean that a,b, c,... are
mutually inequivalent modulo ) and deduce that there exists a a such
that a" satisfies the same f-pe as x. Furthermore a ao,... a, x and
there is a’ ’ such that a’ a," and, when j < t, we can assume without
loss of generali that a’ a+1.’ But, at stage t, this gets a contradiction.
Then an element x’ as claimed must est.

Proof of Theorem 2. First notice that, if k to -{0}, then {a U:
k(a) k} can be defined by a unique formula of our language, while, if
k 0% then we have to expect to need an infinite set of formulas for defining
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{a U: k(a) k}; in the following let us denote this formula, or this set of
formulas respectively, by k(v)= k.

Let T* be the theory of the pairs (M’, M) of models of T satisfying
M < M’ and the conditions (i) and (ii) below.

(i) Let bU with k(b)=,nto-{O, 1}. Then, for all hto, T*
contains:

"For every y M, if there are infinitely many x M satisfying f(x) y
and On, b(X), then there are > h elements x M’ M such that f(x) y
and On, b(X)".

It is clear that, for every h to, the previous proposition can be expressed by
a suitable 1st order sentence of the language for pairs of models of T.

(ii) Let b U,n,sto, n>2. Let s’<s+ 1 be such that, for every
j < s, k(fJ(b)) if and only if j < s’ (possibly s’ 0; in this case k(ff(b))
< for all j < s). Assume that T contains the following sentences: ,for all
qto,

A /X

j<s
A k(ff(w)) k(ff(b))

s’ <j <s

A fl(fJ(w)) if(W)
O<l<q,j<s’

and, for all h, q to,

Vvo ""Vvh3w( A
i<h,j<s

19n,f’(b)( fJ( ui) )

A On,f’(b)(fJ(w)) A
j<s

A k(fY(w)) k(fY(b))
s’ <j <s

A ft(ff(w)) if(w)
O<l<q,j<s’

/ fm(w) fl( Ui ) ).
i<h,l,m<q

Notice that to assume that T satisfies the previous sentences is the same as to
require that U-as well as any to-saturated model of T-contains infinitely many
pairwise - elements satisfying

On,y,(b)(fY(v)), k(fY(v)) k(fJ(b)) for all j < s.
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Then T* includes the following sentences: for all q to,

A ^ A
j <s s’ <j_<s

k(fY(v))

A fl(fJ(w)) fY(W) A A fl(W) [ M)
O<l<q,j<s’ l<q

and, for all h, q to,

A
i<_h,j<s

----" A tgn,f’(b)(fJ(w)) A A k(fJ(w))= k(fY(b))
j<s s’<j<s

A ft(fJ(w)) fJ(w) A A fl(w) M A A
O<lq, j <s’ q h, l, mq

w) fm( vi )).fl(

Notice that this is equivalent to the assumption that in eve -saturated
model (M’, M) of T* there are infinitely many paiise elements that are

to M and satis

On,f,(b)(fJ(v)),k(f](v)) k(fJ(b)) for all j < s.

We claim that the theory T* we have just now introduced equals the theory
T’ of nice pairs of models of T. Recall that a pair (M’, M) of models of T is
said to be nice if M is to 1-saturated, and, for every a e M’, any type in T
over M u a is realized in M’. We point out also that, if T is the theory of a
1-ary function, then the theory T’ of nice pairs of models of T is complete
since T is superstable (see [P]). The proof of our claim requires three steps.

Step 1. Every nice pair (M’, M) of models of T satisfies T*. In fact we
have the following.

(i) Let bU with k(b)=oo, neto-{0,1},yeM, and assume that
there exist infinitely many elements x M satisfying f(x) y, On, b(X).
Let {a0,..., ah} be a finite (possibly empty) subset of M’-M whose ele-
ments satisfy f(v) y A On, b(V)" Then

{f(U) y} U {On, b( U)} U {U :: d" d M U {a0,..., ah}

can be enlarged to a type over M u {a0,..., ah} and this type must be
realized in M’.

(ii) can be shown in a similar way.
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Step 2. Every tol-saturated model of T* is a nice pair. In fact, let (M’, M)
be an to-saturated model of T. In particular M is to-saturated. Hence it
suffices to show that, if M’ and p is a 1-type over M tO {fk(a): k to,
a if} (in T), then p is realized in M’. With no loss of generality we can
assume that p is not algebraic, otherwise our claim is trivially true.

Case 1. There are h to {0}, b M {fk(a): k to, a } such that
p contains fh(v) b and

fh-l(v) d for all d M t3 {f(a)" k to, a }.

Then p is defined by the previous formulas together with the f-type of x
where x is any realization of p (this follows from Lemma 5 and the remark
that the f-type of x determines the f-type of x to C" for any ?. M t3 {fk(a):
k to, a }). Notice that, for every x p, if k(b) < oo, then fh-l(x) 4

fk(b)-l(b), hence k(ff(x)) o for every j < h. Fix x p. We claim that:

There is c M’ such that f(c) b, c M U (fk(a): k to, a } and,
for all n, j to with n > 2, k(ff(c)) k(ff+h-l(x)), ag,,fj+h-l(x)(ff(C)).

Subcase 1. For all n to- {0, 1}, there exist infinitely many elements
realizing f(v)= b/x O,,,fh- l(x)(v).
Then there are infinitely many elements of M’ M realizing

f(v) b A 0,fh l(x)(v)

(this is obvious if b M, and follows from (i) if b M). On the other hand,
{fk(a): k to, a if} contains only finitely many elements satisfying this
formula. In fact, let a . If there exists at most one s to such that
if(a) b, then there is at most one k to such that f(fk(a)) b (k s 1
provided that s > 0). Otherwise, let s be the minimal natural number such
that if(a) b. Then k(b) < oo, and, for all k to, fk(a) b if and only if
k--s mod k(b), and, consequently, f(fk(a))= b if and only if k + 1---
s mod k(b). Then there are at most two elements of the form fk(a)with
kto satisfying f(v)=b, as, if k,k’to, k,k’>s and f(fk(a))=
f(fk’(a)) b, then k + 1 -= k’ + 1 mod k(b) and hence k k’ mod k(b), so
that fk(a) fk’(a).

It follows that

{f(v) b} t3 {O,f-,(x)(V)} t3 {v M} {v * fk(a)" k to, a }

can be realized in (M’, M). By using the to-saturation of (M’, M) and Lemma



448 CARLO TOFFALORI

1, we obtain that there is c M’ satisfying

{f(v) b} W {0,h-(x)(V)" n to {0,1}} W {v M}

t3{v 4= fk(a)" k to, a }.

As f(c) b but c 4: fkb)-l(b) if k(b) < , then

k(c) k(fh-l(x)).

Moreover, for every j to {0}, if(c) fi-l(b) fi+h-l(x), hence

k(fJ(c)) k(fJ+h-l(x)),

and, for all n to- {0, 1}, On, fy+h-kx)(fY(c)).

Subcase 2. There is n to {0, 1} such that f(v) b A On, fh-l(x)(V )
admits only finitely many realizations.
Then all these realizations belong to M’. As fh-l(x) satisfies the previous

formula, fh-(X) M’ and we can assume c fh-(x).
This completes the proof of the claim. Let us come back to the problem of

finding an element of M’ realizing p. If h 1, then we are done (c works).
So assume h > 1. Then c and fh-(x) satisfy the same f-type; furthermore
fh-Z(x) fq(fh-l(x)) for all q to as k(fh-Z(x)) o. Hence, by using
Lemma 4 and the fact that M’ is to 1-saturated and contains c, we can find
x’ M’ such that:

fh-l(x’) C (and then fh(x) b, fh-l(x’) M U {fk(a): k to, a K});
x’ has the same f-type as x.

Then x’ p.

Case 2. for all h to and b M {fk(a): k to, a }, p contains
fh(v) b.
As above, p is defined by these formulas together with the f-type of x

where x p. Let n, s to, n > 2. As M is tol-saturated, there exist infinitely
many pairwise elements of M satisfying

On,fY(x)(fJ(u)), k(fJ(u)) k(fJ(x))

for all j < s. In fact, define s’ as above, and let {x0,..., xh} be a finite,
possibly empty, subset of M whose elements are pairwise , and satisfy the
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foregoing set of formulas; then

{agn,fY(x)(fJ(v))’j <_ S} L) {k(fJ(v)) k(fJ(x))" s’ <_j <_ s}
u{fl(fJ(v)) =fJ(v)’j < s’,0 < to}
LJ {fl(v) fm(xi ) < h, 1, m to}

is finitely satisfiable in M (in fact it is satisfied by x), hence it is satisfiable in
M. Then (ii) provides infinitely many pairwise - elements of M’ which are
, to M and satisfy

{dn,fY(x)(fY(v))’j <_ S} {k(fJ(v))k(fJ(x)) s’ <_j <_ s}
t3{fl(fJ(v)) * fJ(v)’j < s’,O < to}.

In particular there is y M’ such that y satisfies this set and y - M u ft.
Then there is x’M’ such that x’-MU and, for all j,nto with
n > 2, On, f(x)(fY(x’)) and k(fY(x’)) k(fY(x)); in fact, it suffices to notice
that the set

{fl(u) M: 1 to} t3 {fl(v) fk(a)" l,k to, a )
I,.){1n,fJ(x,(fJ(u))" j,n to, n > 2} {k(f;(v)) k(f;(x))’j to}

is finitely satisfiable as every subset of the kind

{fl(v) M" to} {fl(v) fk(a)" 1, k to, a }
U{tgm,fY(x)(fJ(v))’j < S,2 < m < n} U {k(fY(v)) k(fJ(x))’j <_ s}

(with n, s to, n > 2), hence every finite subset, is satisfiable (use the previ-
ous remarks and Lemma 1; recall that, if y is as above, then in particular
k(fY(y)) k(fY(x)) for all j < s).

Step 3. T* T’. In fact, it follows from the Step 1 that T* T’. On the
other hand, let (M’, M) be a model of T and (N’, N) be an tol-saturated
elementary extension of (M’, M); then (N’, N) T*, and hence the second
step implies that (N’, N) is a nice pair. Consequently (N’, N) T’, and
(M’, M) T’, too. Then T’ __. T*.
We can now conclude the proof of the theorem, as the second step ensures

that every tol-saturated model of T’ is a nice pair (in fact, this is true for T*),
and this implies that T does not have the f.c.p. (see [P], Theorem 6).
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