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0. Let C=(Rn), be the vector space of complex valued C functions on Rn.
It is well known (from the fundamental Principle of Ehrenpreis for the case
n > 1 and more easily, from the classical Euler exponential polynomial
representation of solutions of ordinary differential equations, for the case
n 1) that if the partial differential equation

(0.1) Q(D)f =O

is such that Q C[Zl,..., Zn] can be factored as Q Q1 Q2, with Q1 and
Q2 relatively prime, then every C solution of (0.1) can be written as

f fl / rE, with Qi(D)fi 0, i= 1,2.
The natural extension of the previous result to convolution equations in

the space H(C) of entire functions was obtained by V.V. Napalkov [9]. This
last result has been successively extended by the authors [6], for a class of
spaces of which both H(C) and C(R) are particular cases, under natural
hypotheses on the convolutors, without mentioning the Fundamental Princi-
ple, but employing specific properties of suitable spaces of entire functions
satisfying certain growth conditions.
Recent results (Berenstein-Struppa [1], Meril-Struppa [7], Morzhakov [8])

obtained for convolution operators acting on the space H(fl) of holomorphic
functions on a convex domain of C, now allow us to extend the result of [6]
to this space.

In Section 1, we give the basic definitions for the rest of the paper, while in
Section 2 we adapt the well known H6rmander’s LE-theory to the spaces of
Fourier-Borel transform of analytic functionals with prescribed carrier; a
corona-like theorem is obtained (Theorem 2.1). The desired factorization
results are finally obtained in Section 3.
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1. In this section, we fix the notations that will be used in the paper.
Let H(fl) denote the space of holomorphic functions on an open convex

set 1) in the complex plane C with the topology of uniform convergence on
compact subsets of ft.

Let K be a convex compact set in C such that 12 / K
_

fl and consider an
analytic functional/z H’(C) carried by K. Then it is well known that/z acts
as a convolutor on H(I) / K) by defining

t *" H(t2 + K) H(12)- (,, f)(z) (,, f(z + )), zt2, ’K.

The properties of this convolution operator are reflected in the properties of
the Fourier-Borel transform/2 of/z, defined as

/2(z) := (/z,sr exp(z.

We recall that, via the Fourier-Borel transform, we have the following
topological isomorphisms:

H’(f) -= H’-V(f) {F H(C)" BA > 0, BT
_
I compact convex such that

If(Z)l < A exp(Hr(z)), Vz e C},
H’(a + K) H"(a + K) {F H(C)" ::lA > 0,

::IT
_

II / K compact convex such that

IF( z)l < A exp(HT(z)), Yz C},
H’(K) H’(K) {F H(C)" Ve > 0 =IA > 0

such that IF(z)[ < A exp(HK(Z) + e[z[)}

where HM(Z):-- sups e M Re(z" ’) is the supporting function of a compact
convex set M.
The adjoint map

(t,) H’(t2) H’(12+K)

defined by

<(/z,) a,f> (a,/z, f> Yf H(12 + K), Ya e H’(t2),

induces, via Fourier-Borel transform, a continuous multiplication operator

T" H’(fl) H’(a + K),
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defined by

#(z)a(,), w c.

Let us now recall the usual notion of function of completely regular growth
which will be needed in the sequel.

DEFINITION 1.1. Let f(z) be an entire function of exponential type. We
say that f is of completely regular growth if, for every 0 [0, 27r], the limit

lim
ln lf( rei )l

exists when r goes to infinity by taking on all positive values except possibly
for a set Eo of zero relative measure. This set can be taken to be the same
for all values of O.

The property of functions of completely regular growth we are interested
in, is expressed by the following theorem, due to Morzhakov, [8]:

THEOREM 1.1. Let # be the Fourier-Borel transform of an analytic func-
tional Ix H’(C) carried by a compact K and let 1

_
C be open and convex

set. Then the convolution operator Ix *" H(f + K) H( ) is surjective if and
only if z is a function of completely regular growth.

Remark 1.1. If Ix is slowly decreasing (in the sense of definition 1 of
Berenstein-Struppa [1]), then Ix. is surjective and therefore /2 is of com-
pletely regular growth. It follows, in particular, that an exponential polyno-
mial is always of completely regular growth. Another example in which the
surjectivity of Ix. follows, is when K {0}, i.e., when Ix. is a differential
operator of infinite order. In this case /2 is of infraexponential type (i.e.,
Ve > 0 :IA > 0 such that I#(z)l _< As exp(elz])) and the closure of
follows from a variation of Lindel6f theorem. More generally, if /2 is the
product of an exponential polynomial and of a function of infraexponential
type, then Ix is surjective.

2. In this section, we adapt the well known results of H6rmander [4], to
the case of the spaces H’(K). We refer the reader to [4] for the proofs of
Lemmas 2.1, 2.2 and 2.3.

LEMMA 2.1. If h belongs to H’( K), then also all of its constant coefficients
derivatives belong to H’( K).
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LEMMA 2.2. Let h be a measurable function on C such that Oh/O2 0,
and let c_ C be an open set. If there exists a compact set T c f such that

lh 12 exp( 2Hr) dm < ,
for m the Lebesgue measure, then h H’(I)

LEMMA 2.3. If g is a measurable function such that

fclgl exp(-2Hr) dm <

for some compact set T, then there exist a function h and a compact set T such
that

and h g.

fclhlZ exp(-2Hr) dm <

" 2 2 2)1/2,LEMMA 2.4. Let gi txi/M M ([/Xl[ + [/221 with Ix H’(C),
tx carried by a compact set K. Suppose that there exist a compact set T c f
and a constant A > 0 such that

Ix(z)l + 12(z)l >Aexp(-(1/2)Hr(z)) foreveryz e C.

Then there exists a compact set T f + K such that

fclgil 2 exp(--2Hrl) dm < o.

Proof From the hypothesis,

M2= I/112 + I/212 --’1([/" -I-1 I/2 2 I)
2 >_A12 exp(_HT)

Then

Igil I/2il/M 2 <- be exp(Hr + HB,)/M2 < C exp(Hr + Hr + HB,)

from which we deduce that

Igil 2 < C2 exp(2(Hr + Hr + Hs)),
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where B is the ball Iz[ < e. Let e be sufficiently small in such a way that
K + T + 2B T is contained in + K. It follows that

fclgil 2 exp(- 2Hra ) am < C2fc exp(- 2HB) dm < o.

Remark 2.2. The proof of the previous lemma shows that the result is
also true if there exist a compact set T c f and A > 0 such that 2T c f
and

[l(Z)[ + 12(z)l >Aexp(-HT(z)), z e C

LEMMA 2.5. With the hypotheses of Lemma 2.4 (or Remark 2.2) let S be a
compact set in 1 and h C(C) such that

hi 2 exp( 2Hs) dm< o.

Then there exists a compact set S - such that

lg + h/2212 exp(-2Hsl)dm <

Proof From

12 2 2Igl / h/x2 < Igxl / Ih/*21 / 21gh/221

it follows that

fclga + h/2212 exp(-2Hsl) dm < I / 12 / 13 for every S c ’ compact,

where

11 fclgl 12 exp(- 2Hs,) din,

12 fclh 212 exp(-2Hs) din,

Hence it is sufficient to show the convergence of integrals I1, I2, I3 for some
compact $1 depending of S. Let us set S2--S+K+2B to show the
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convergence of 12 Indeed,

fclh/2212 exp(- 2Hs:)dm
< A2fclhl2 exp(2(Hr + HB,- Hr Hs 2HB,))dm

Z2Llhl2 exp(-2Hs 2Hn,) dm

< A2fclhl2 exp(-2Hs) dm

Now, let S Z I,.j S2 where T is the compact set of Lemma 2.4.Then

fc h 2 exo(1h/2212 exp( 2gsl)dm < t*zl -2Hs:) dm <

fclgl 12 exp(- 2Hsl) dm < fclgl 12 exp(-2Hr)dm < oo.

Finally, the convergence of integral 13 is assured from the Cauchy-Schwarz
formula

1/2I3 <. (Ili2) 1/2.

We can now prove a corona-like statement for H’() (as H6rmander
pointed out in [4], this kind of statement is, however, weaker than the corona
theorem).

THEOREM 2.1. Let T c f be a compact set such that 2T c l. In addition
we suppose that either

(i) 4T c f and there exists A > 0 such that

Il(Z)[ + 12(z)l >Aexp(-Hr(z)), z C,

or
(ii) there exists B > 0 such that

[l(Z)[ + 1/22(z)1 > B exp(( 1/2)Hr(z)), z .C.

Then 1 /IH’() +/2H’(l,). In particular, 1 contains the origin of C.
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Proof. Suppose that (i) verified (we proceed similarly if (ii) is verified).
Let gi i/M2" Then, for any h Coo(C), one has

/21(g + h/22) +/22(g2 h/21) 1

and the theorem is proved if we can find h C(C) such that

(gl + h/22) H’(f/) and (g2 hl) n’(’),).

To do this, from Lemma 2.2, it is sufficient to show that

(gl + h/2) t(g2 h/’l) 0,

(a) h -(gl)//2 (g2)//
and

(b) fcIgl -I- h2] 2 exp(-2Hs1)dm < o% fcIg2 hll, ll 2 exp(-2Hs1) dm <
for some compact $1 1). On the other hand, from Lemma 2.5, (b) is
satisfied if

(b’) felhl 2 exp(-2Hs)dm < o for some compact set S
The existence of h which satisfies (a) and (b’) follows from Lemma 2.3 once
we prove that

exp(- 2HT1) dm < oo for some compact set T c .
Now

cg2
j-- lf-Lj Id’j Old’2 f20fLj

M4 M4

and therefore

M4

Since 01 0/. 2 belong to H"(K) (see Lemma 2.1) and M-4 < B exp(-4Hr),
for some B > 0, setting T 2K + 4T + 4B (with e sufficiently small in
such a way that T c 1)), we have

fc (g2)//2112 exp( 2Hra) am < B’fc exp(4HK + 4HB + 8Hr 2Hrl)dm

 ’fc exp(- 4HB,) dm < oo m
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Remark 2.3. From the convexity of f and from the fact that the convex
hull of a compact set of C is also a compact set, it follows that every compact
set which appear in the previous lemmas and in Theorem 2.1 can be replaced
by a compact convex set.

The following corollary was essentially proved in [9], and is an obvious
consequence of [4], [9]. We only quote it as a motivation for our next, and
final section.

COROLLARY 2.1. Let /,/1,/2 H’(C) be carried by the same compact
convex set K, and suppose that fz L L2 and that 1 and ffL 2 do not have
common zeroes. Then the following statements are equivalent.

(1) Every solution f H(C) of the equation / f 0 has the representa-
tion f ]’1 + rE, where fi is a solution of equation/i * f O, 1, 2.

(2) There exist c > 0 and c2 > 0 such that

1/21(z)l + 1/22(z)1 clexp(-c21zl), z C.

(3) For every c > 0 there exist a compact set T c C and A > 0 such that

[/21(z)[ + [/22(z)[ >_ h exp(-cHr(z)), z C.

Proof. (1) implies (2). See [9].
(2) implies (3). Indeed (3) is satisfied with A c and T-- B(2/c).
(3) implies (1). From Theorem 2.1 we have 1 =/21 +/222, for some

al, 2 H’(C), and so =/1 * al +/2 * a2, being the Dirac measure.
Hence

f f * t =f*/1*al+f*/2*a2=fl+f2

is the desired decomposition.

3. In this section we shall establish an analog of Corollary 2.1 in the case
in which C is replaced by an open convex set f __. C. We assume some
normalizing hypotheses as follows:

(i)

(ii)
(iii)
(iv)
(v)

/1,/2,/ ( H’(C) are analytic functionals whose minimal carriers
are, respectively, three compact convex sets K1, K2, K.
K=K +K2.

K1, K2
__. K.

/21 and /’2 have no common zeroes.
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It is easy to construct many examples of such a situation. Before doing so,
however, two remarks are necessary (although probably obvious):

Remark 3.1. Conditions (ii) and (iv) imply that both K and K2 contain
the origin of C. Indeed if, say, 0 g2, then we could find a small ball B
around the origin such that

B K2 Q, and therefore (nB) (nK2) Q for any n.

Also, by (ii) and (iii), K __. K K + g2

_
K + K2 + K2

_
c_ K +

nK2 for any n; if we now take no such that

K
_
noB,

we see that

K (Kl+2noK2)

which is clearly a contradiction.

Remark 3.2. The important consequence of this fact is that (keeping into
account the assumptions of section 1)we deduce that

f + K _f _fI + Ki +K;

i.e., 12 + K f + K2 1" + K. Therefore, in what follows, we shall
not distinguish anymore between these sets.

Let us now provide some meaningful examples of sets (I,K, K1, K2)
which satisfy all these conditions.

Example 3.1. Let fl be any open convex set, and take K K g
2 {0}.

Then all of the above conditions are trivially satisfied and the example is still
of mathematical interest, as in this case /-1 *,/-/,2 *,/ * define differential
operators of infinite order (in striking contract with what would have hap-
pened in the C case); one can also use this example to provide factorization
of hyperfunction solutions of such operators (by taking appropriate boundary
values of holomorphic functions).

Example 3.2. Take II+ to be the open upper half plane. Then
several different examples can be constructed by taking three positive num-
bers a, b, c, and setting

K1= [-a,b] i[0, c], K2= [-b,a] i[0, c]
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and therefore

K [-a b, a + b] i[0,2c].

It is clear that other, less regular, examples can be obtained. The reader may
notice that examples of this kind may appear when dealing with generaliza-
tions of the Fabry gap Theorem [1].

Example 3.3. In some recent generalizations of [1] to the case of faster
growths, [11], the necessity arises of considering to be an open convex cone
with vertex the origin. So, if

’ {Z C: Tr O < arg z < ur + O} F

for some O (0, 7r/2), one can take, for Kg, sets such as, for 1, 2,

O’i} {0}K {z C: 1/27r- 0 arg z < rr +

for any ’1, 02 < O. Let us finally notice that both Examples 3.2 and 3.3 can
be easily adapted to f II+- i6, I F,9 i6.

Let us now consider, under the hypotheses which we just mentioned, the
convolution equations

/xl*f 0,/.2" f O,*f 0,

defined for f H(O), and denote, respectively, by W1, W2, W the closed
subspaces of their solutions in H(I). As it is well known, IV/+/-c_ H’(I),

1, 2, is the set of all functionals vanishing on W. Since H(fl) is a Frech6t
space, the space W/’ is the quotient spac_e__W/= H’(fl)/W +/- (Dieudonn6-
Schwartz [3]). We observe that (H’(12)W +/-)is isomorphic to H’(12--’/ff’i +/-

and moreover it is straightforward to verify that

W/+/-= (/,i*)’(H’(a))

It follows that if/2 is of completely regular growth, then

since in this case b2/H’(l’l) is closed.

Remark 3.3. It is easy to see that/x 2 is a linear and continuous operator
from W1 to W1. Hence, /x 2 induces an operator on the quotient space



SOLUTIONS OF CONVOLUTION EQUATIONS II 429

H’(f-----/11+/- isomorphic to 1,;, namely

defined by

The image of this operator is therefore

Im(a2 ff’2+/-/ll-
Then, from the definition of the topology of quotient spaces, it follows
immediately thatI__._.._m(2?a2) is closed in H’/l,f’x if and only if l,f’lx + if’2+/-

is closed in H’(f).
We provide now the main results of this section.

THEOREM 3.1. Let 2 be a function of completely regular growth. Then
every solution f H(f) of equation tx * f 0 has the representation f fl +
f2 where fi is a solution of equation Ixi’f=0, i= 1,2 if and only if
Im(ixz * I,’1) W1.

Proof. Let g W1. From the surjectivity of /2 * it follows that there
exists h H(12) such that/2 * h g. We see that h W. Indeed,

Ix*h (/21./22)*h =/21.(/22*h) =ixl*g=0.

From the hypotheses it follows that h h + h2, h W, hence

g /2 * h /2 * (hi + h2) /2 * hi.

Conversely, let f W. Then Ix f 0, i.e., (/1 * /2)* f--" 0. Let g :=/2 * f,
so that we have g W1. Then, from the hypothesis, there exists fl 5 W
such that Ix2 * fl g, i.e., /2 * (f fl) 0, from which f fl f2 WE"

We now look for some alternate conditions which will improve the factor-
ization result, and which follow from functional analytic arguments.

PROPOSITION 3.1. Im(ix 2

in W1.

* I) W1 if and only if Im(ixz * wl) is closed

Proof Let Im(ix 2 wl) be closed in W1. Let E be the linear span of the
space of solutions of the equation Ix1 * f 0 which are of the form zkebz.
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We know [5] that E is dense in W1. By using standard arguments one can
prove that there exists a solution h e E of the equation/z2 h g for every
g e E. From this and from the assumption that Im(/z2 [w) is closed in W1,

it follows that the equation/x2 h g has a solution h in W1 for every g in
W1.

PROPOSITION 3.2.
closed in H’ (I ).

.l_Im(/z 2 * [W1) is closed in W if and only if W +/- + W2 is

.I. .LProof. As we have outlined in Remark 3.3, W + W2 is closed inH’
if and only if Im(7a)is closed in W1. Moreover, Im(7a:)is closed in .W if
and only if Im((/x 2 ,)’) is closed in H’()/W1+/- since the operator Tar is
generated by the operator (/x 2 ,)’ via Fourier-Borel transform, (DieudonhE-
Schwartz, [3]). Finally, Im((/z 2 ,)’) is closed in H’(f)/W1+/- if and only if
Im(/x2 * Iw,) is closed in W.

As it is well known, one can deduce from the Spectral Synthesis Theorem
in H’(II), that

/21H’(12) +/22H’() is closed in

if and only if

/2,H’(n) +/22H’(n)

We therefore return to the study of the ideal generated by (]1, ]’2) in

H’(f)"

PROPOSITION 3.3. Suppose that 0 e . If fH’() + f2H’(1) H’()
then there exist a compact set T D. andA > 0 such that

Il(Z)l + 12(z)l >Aexp(-HT(Z)) foreveryz e C.

Proof From the hypotheses, it follows that 1 =/-1fl -1-/2f2, for some
f, f2 H’(f). Hence

1 < I/1[ Ifll + 121 If21- [ZllAleXp(Hr,) + ^Iz2IAz exp(Hr2)
_< max(Z1, Zz)exp(nr, uT2)(lzl[ + ^/xzl )

from which the proposition follows.
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Remark 3.4. The reader will notice that this result gives a partial con-
verse of Theorem 2.1; it is however interesting to notice what happens when
f does not contain the origin, which is a case of frequent interest.

THEOREM 3.2. Let f c_ C be an open convex set such that
and let K c_ 1) be a convex compact set. Let/z 1, ]2 H’(C) be carried by K.
Then if

/IH’(a) +/.2n’(n) H’(n)

there exist a compact T c f, and positive constants A, B such that, on C

]/l(Z)[ + [2(z)l > A exp(-Hr(z) nlzl).

Conversely, if

1/21(z)1 + 1/22(z)1 > A exp(-Hr(z))

then

/.ln’(a) +/22H’(a) H’(a).

Proof. First we notice that if f + f
___
f and if 0 f, then f C.

Since the situation for f C is well known, we can assume f C and
therefore 0 ff f. Let therefore g H’(f) be a function with no zeroes.
Then, for some compact S c f, and some positive constants A, B,

Ig(z)l < A exp(Hs(z)) < A exp Blzl

One can therefore apply the minimum modulus theorem to prove that, for
some positive constants C, D,

Ig(z)l > C exp(-Dlzl).

By noticing that, for some fl, f2 H’(f), we have

g fl/1 + f2/.2,

we immediately get the result as in Proposition 3.3. To prove the second part
of this theorem, on the other hand, it suffices to follow the arguments of the

""proof of Theorem 2.1, with gi g" Ixi/M2 m
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We can therefore state and prove the following conclusion.

THEOREM 3.3. Suppose 61, 62 are of completely regular growth and sup-
pose that every solution f H(f) of the equation tz * f 0 has the representa-
tion f fl + f2 with lzi. f O, 1, 2. Then:

(i) If 0 f, there exist a compact set T c 1" andA > 0 such that, on C,

I/l(Z)l + l2(z)l > A exp(--HT(Z));

(ii) If fl + II
_

II, 0 q fl, there exist a compact set T c fI and A, B > 0
such that, on C,

[/l(Z)[-t-12(z)l > A exp(-Hr(z) nlzl).

Proof The result follows immediately from the previous propositions and
Theorems 3.1, 3.2 since from the hypothesis that /21,/22 are of completely
regular growth, we have 1/"=/2/H’(I’I). 1

As a partial converse we have:

THEOREM 3.4. Suppose 1,/ 2 are of completely regular growth. Then:
(i) If 0 1 and, for some compact T c 12 such that 4T c , and some

A>0,

[/l(Z)[ + [2(z)l Z exp(-Hr(z)), z C,

then every solution f H(I) of Ix * f 0 factors as

f fl +f2, fi H(a), Ixi* fi O.

(ii) If 0 q but ft + ft c_ f and, for some compact T c f and some
A,B > O,

1/21(z)1 + 1/22(z)1 > A exp(-Hr(z) nlzl),

then every solution f H(I) of tx * f 0 factors as before.

Proof Once again, this is a consequence of the Propositions of this
section, as well as of Theorems 2.1 and 3.2. m
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