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Dedicated to the fond memory of Allen Shields

1. Introduction

For many PDE’s, closed form (or explicit) solutions are so hard to come by
that any examples are valuable in themselves. This paper expounds a new
method that finds closed-form solutions for several non-linear PDE’s, includ-
ing the Klein-Gordon, eikonal and (non-parametric)minimal surface equa-
tions. In Part II, to be published separately, the method will be used to get
some new results on separation of variables in some of the PDE’s of
mathematical physics.

In principle, the method applies to any PDE, but requires some luck or
special ingenuity in practice. Symbolic computation on electronic computers
has been a big help with the often lengthy and complicated computations.
Two established methods of obtaining closed form solutions are the sym-

metry method of Sophus Lie et al. (see [DRE]), and the method of inverse
scattering, of Kruskal, Lax, et al. (See [ZAS]).
The author extends warm thanks to Byoung Keum and Daniel Lee,

formerly of the University of Illinois, for their extensive computer calcula-
tions, using the Mathematica program. Some of this computation formed part
of Keum’s Ph.D. thesis, written under the direction of George Francis.
Ltszlo Lempert made a very valuable suggestion, for which we thank him,
about getting real solutions from complex ones. The author also thanks the
Institute for Mathematics and its Applications for the use of its computer
facilities during its Workshop on Symbolic Computation in June, 1989.
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Finally, he acknowledges a debt of gratitude to Philippe Tondeur for contin-
ued interest, support, and inspiration.
The method is to find so-called quasi-solutions of a given equation P. They

are shown to be actual solutions of a higher-order equation (or system) P*.
Precisely because P* has higher order, it is easier to find solutions of P*
than of P. (Indeed, every solution of P is already a solution of P*.) The
quasi-solutions are found by luck and guesswork---often by trying functions
of a particularly simple form. From these quasi-solutions, one goes back to
find actual solutions, by solving some ODE’s. Here is a simple example.
Suppose we want to find explicit solutions to Laplace’s equation

(1.1) Uxx + Uyy 0

in the (x, y) plane. We write u q(v) (at least locally) and call v a
quasi-solution of (1.1). That is, v is functionally dependent on some harmonic
function. We then say that v is quasi-harmonic. Another way to describe this
is to say that the level lines of v are the same as the level lines of some
harmonic function u (but the scaling of the function-values is different).
Since

(1.2) ux q’(v)vx, u, p’(v)v,,
2x "(’) + ’(’)’x, =’(v)v (v)v.

we get

(1.3) 2 2()(xx + .) + ’()( + ) o,

(1.4) "(v) _Vxx+VyY :=K(x y)2 2#(v) v + v,

Hence K is a function (at least locally) of v, which leads to the necessary and
sufficient condition

Uxx "+ Uyy)(1.5) J v, z .-Vx +Vy
=0,

where J is the Jacobian determinant. This equation reduces to

(1.6) 2 2(Ux "+" Uy)[(Uxxx "" Uxyy)Vy- (Uxxy-{" Uyyy)Vx]
-2(Vxx + vyy)[(VxVxx + VyVxy)Vy- (VxVxy + vv.) Vx o.

In summary, for v to be a quasi-solution of (1.1) it is necessary and sufficient
that it satisfy (1.6). Now, by hook or by crook, find a solution v of (1.6). (For
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example, by searching through low-degree polynomials in (x, y), we find that
v x 2 + y2 works.) For this v, compute K and solve the ODE (1.4) for q,
which is easy enough. (In the above example, v x2+ y2, we arrive at
u a log(x 2 + y2) + b, where a and b are any constants. Not exactly a new
function, but a good illustration of the method.)

In Part II of this paper, to be published separately, these ideas will be used
to obtain new results on separation of variables in some of the PDE’s of
classical mathematical physics.
For more difficult (and particularly non-linear) PDE’s, the same ideas can

be carried out, albeit with some modifications. The rest of this paper is
mainly concerned with three examples of this, namely the Klein-Gordon
equation

(1.7) Uxt f(u),

the p-eikonal equation

(1.8) Uxp + uyp 1

(the case p 2 is the usual eikonal equation) and the non-parametric
minimal surface equation

(1.9) 2 2)U 0.(1 + Uy)Uxx- 2UxUyUxy + (1 + Ux yy

2. The Klein-Gordon equation and the p-eikonal equation

The Klein-Gordon equation, for u u(x, t), is

(2.1) Uxt f(u).

The case f(u) sin u is the Sine-Gordon equationits solutions represent
surfaces of constant negative Gaussian curvature in 1;{3. We now describe all
solutions u of (2.1) having the form u(x,t)--q(A(x)+ B(t)). This is a
model for our method, because the computations are so simple in this case.

THEOREM 2.1. Let q(s) satisfy the ordinary differential equation

(2.2) "(s) kea*f(q(s))

where A 4= 0 is a constant. Then

(2.3)

(2.4)

1
log(ax+a) +A( x) --1 log(At +/3) + 6B( t) -
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where a, fl, y, 6 are constants such that

(2.5)

Then

k +

(2.6) u q(A(x) + B(t))

satisfies the Klein-Gordon equation (2.1). Conversely, irA(x) and B(t) are any
real-analytic functions for which there exists a real-analytic function q of one
variable (assuming that none of q", A", and B" vanishes identically), then there
must be a constant k 4 0 such that q satisfies (2.2) for some constant h 4: O,
and A(x) and B(t) must be given by (2.3) and (2.4), for some constants a, fl,
7, 6 for which (2.5) holds.

Proof. We first prove the "conversely" part. All arguments of q, q’, qf,...
are supposed to be A(x)+ B(t), all arguments of A, A’, A",... are sup-
posed to be x, and all arguments of B, B’, B",... are supposed to be t. We
have

(2.7) ux ota Uxt qfA’B’,

so that (2.1) and (2.6) give

(2.8) ql’B’ f(o)

or

(2.9) A’B’ f(q)/q".

Thus, A’B’ is functionally dependent on A + B, so that

(2.10) J(A’B’,A +B) =0

where J is the Jacobian determinant

(2.11) J(v,w)
Ux U

wx wt

Evaluating (2.10) we get

(2.12)

and hence

A"B’2 A’ZB" O,

(2.13) A"/A’2 B"/B’z.
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Since we have a function of x equal to a function of t,

(2.14) A"/A’2 B"/B’2
Iz

where/z is a constant, with /z 4:0 because of our hypothesis about A" not
vanishing. We have

A’
tzx + a

which we write as

(2.16) A’ AX+a’

and hence (2.3) follows. In the same way, we get (2.4). Also

(2.17)
1

o"(A + B)/f(q(A + B)) (hx + a)(at +/3)
(2.18) Writing s A + B,

k exp{A(A + B)}.

we have

(2.19) q"(s)/f(q(s)) k exp

which is equivalent to (2.2).
In the other direction, let A, B, and q satisfy (2.3), (2.4), and (2.2), and let

(2.5) hold. Then by (2.7), with u q(A + B),

(2.20)
(2.21)

Uxt o"A’B’,

Uxt kea(a+n)f(q(A + B))A’B’ f(q(A + B)) =/(u),

and the theorem is proved.
The p-eikonal equation is

(2.22) Uxp + uyp 1.

Note that the case p 2 is the eikonal equation (see [GAR]). Pursuing the
method of quasi-solutions, we put

(2.23) u q(v)
to get

(2.24) o’(v)P[v + vrP 1,

which implies that Vxp + vvp is a function of v, so that, taking the Jaeobian,
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we have

(2.25) J
+ +
Vx Vy

We try a multiplicative separation of variables

(2.26) v =A(x)B(y).

(Note that in [GAR], for the eikonal equation, an additive separation of
variables in the original equation was used.) Then (2.25) becomes

(2.27) A’p-IA"Bp + Ap-IA’B’p

A’B
A’VBp-IB’ + APB’p-IB"

AB’

We then have

A,V 2A A,v B,V 2B,, B,v
(2.28) Ap_I Av Bv_I B---.

Since the left-hand side of (2.28) is a function of x alone, and the right-hand
side a function of y alone, we have

(2.29)
A’p-2A" A’P
Ap_ Ap =A

(2.30) B’V-2B" B’V
By_ By A,

for some constant A (the same constant in (2.29) and (2.30)). Now (2.29) (and
(2.30)) can be integrated explicitly. Rewrite (2.29) as

A’)v-2 A’4 A’2
(2.31) - A2 A,

and set

A’ A’4 A’2
(2.32) 0 0’A’ A:

Then (2.31) becomes

(2.33) Or-20’= h.
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Skipping some steps, we get

(2.34) "X’p( p I)P/(1-P)

(2.35) B =kexp
Ap(p 1) p/(1-p)

where k, k, A,..., " are constants. From (2.24), we get

(2.36) q:( v)P[ A’PBp 4- APB’’ I.

Now

(2.37) A’PBp APBP(Xx + )"/(P-t)( p- 1)p/(p-1),

(2.38) APB’p APBP(Xy -[- )p/(p-1)(13 1) p/(p-1)

and

(2.39) logAB=logv=
( "XX "dr" )

P/(P- 1)
-[- (y q-)P/(P- 1)

"p( p 1)P/(1-P)
+ log kk.

Hence

(2.40)

(’X + )
p/(p-1)

d" (Xy "q- )P/(P-1) Xp(p 1)P/(1-P)[Iog v log k],

from which we get

(2.41)
1 i

(Xp)I/V[log v (log k)] /v v

and therefore

(2.42)
1 ( p/(p- 1)

+ c) + (Xy + )P/(P-1))
(p-1)/p
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which can finally be rewritten as

(2.43) u (u) [(x Xo) p/(p-1) + (y yo)P/(P-1)] (p-1)/p +o
It is easy enough to check that (2.43) is indeed a solution of (2.22).

3. The minimal surface equation

We consider the minimal surface,equation (non-parametric form)

2 2UxUyU + (1 + 2 0.(3.1) (1 + uy)Uxx x, u:lurr
For some historical background on this equation, see [BAR], [DAR, First
Part, Book III, Chapter I], and [OSS].
For a (real-analytic) function v v(x, y), let

(3.2) 2 2R vx + vr
S Uxx + Uyy

2T VxxV2y 2VxVyUxy + OyyUx

2 2 p(v), whereWe suppose that vx + vy never vanishes (locally). If we take u
q is real-analytic, we get

(3.3)
+ +(1 + u,)Uxx- 2uUyUxy ux ,y q"(v)R + q’(v)S + q3(v)T.

Let w w(x, y) be some (locally) real-analytic function, not constant, that
is independent of v in the sense that

(3.4) (grad v) (grad w) O.

For a differentiable function F, define

(3.5) F#

Ux Vy =J(F,v).

Then, aside from the factor

(3.6) A Vx Vy

which is locally, non-vanishing, F# is the same as OF/Ow.
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Let W be the Wronskian matrix

(3.7)
R S T 1W= Rw Sw T,
Rww Sww Tww

Let W# be the matrix

(3.8) W#
R S T ]R S T
R## S# T##

We note that, as long as A 0, W is singular exactly where W# is singular.

The next theorem gives a necessary and sufficient condition that a function
v be a quasi-solution of the minimal surface equation. In case it /s a
quasi-solution, a method is provided for finding the associated solution
u (v)

THEOREM 1. Let v(x, y) be a non-constant real-analytic function. With the
preceding notation, suppose that

(3.9) det W 0.

Now W has rank 2 if and only if one or more of the cases I-VI below holds.
(Actually, since R O, cases III and IV form a complete list for rank 2
already, but the other cases might be more amenable to computation.) Also,
W# has rank 1 if and only if case VII holds. Then in each of the first six cases,
A, B, and C are functions of v alone, and we write them as A[ v], B[ v], and
C[ v ]. Moreover,

(3.10) AR + BS + CT O.

If v is a quasi-solution of (3.1), then (3.9) holds, and in cases I-VI, we have
dC dB(3.11) EAr=B-d- -C-d-ff

and

(3.12) C/B > O.

In these cases I-VI, u q(v) is an actual solution of (3.1), where

(3.13) q (z) +/- fdct z z az.

Conversely, if v is any function that satisfies (3.9), (3.11), and (3.12) (in any one
of cases (I-VI)), then v must be a quasi-solution of (3.1).
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In case VII, v must be a quasi-solution of (3.1) and u q(v) is an actual
solution of (3.1), where

(3.14) -2f [z] + a + b,

where a and b are any constants. (Note that in this case, both S/R and T/R
are functions of v alone.)

The seven cases are:

(I) S 4 0 and (T/S) O.

(II) S 4 0 and (R/S)# 4: O.

(III) R 4 0 and (S/R)# 4: O.

(IV) R 4 0 and (T/R)# 4 O.

(V) T 0 and (R/T) 4 O.

(VI) T 4 0 and (S/T)# 4: O.

(VII) R 4 0 and (S/R)# 0 and (T/R)# O.

The quantities A, B, and C are defined in the corresponding cases I-VI by:

R (R/S)* T (R/S)#(I*) A -1, B= C=S (T/S)# S’ (T/S)0"

(II*) A (T/S)* T (T/S)a R
B= C---1.

( R/S)o S ( R/S)O S

(III*) A (T/R)a T (T/R)a S
B= C=-I.

(S/R)#’ R (S/R)# g’

(IV*) A
S ( S/R)* _T B 1R (T/R)O R’

(V*) A (S/T)a B -1, C
(R/T)*’

(VI*) A 1 B ( R/T)#

(S/T)*’

C= (S/R)
(T/R)

S (S/T)# R
T (R/T)* T"

R (R/T)* S
T (S/T)* T"

Proof of Theorem 1. Let us call case a the union of cases I-VI and let
case b be case VII. First we observe that cases a and b are exhaustive and
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mutually exclusive. Now in case b, we have rank W# 1, since then S/R=
a(v) and T/R fl(v ) because

0 0(S/R)* 0 ** -(S/R) O, (T/R)* 0 .. -(T/R) O.

To show that in case a, rank W* 2, let us suppose, for example, that we
are in case V, so that T 0 and (R/T) #: O. But W# contains the 2 2
submatrix

R T

which is non-singular because (R/T)’ O.
Of cases I-VI, we will do only case V in detail. The others of these cases

go the same way. From (3.9), we get

(3.15)
R S T
Rw Sw Tw
Rww Sww Tww

Since T #: 0, we can divide by T and use the proof of [STO, Lemma 6.3.1]
to get

(3.16)
R/T S/T 1

(R/T)w (S/T)w 0

( R/T)ww ( S/T)ww 0
=0,

or

(3.17) ( R/T)w(S/T)ww ( R/T)ww( S/T)w O,

which is equivalent to

(318)
0 ( (S/T)w )O-- (RIT)w * O.

(Since we are in case V, division by (R/T)w is possible.) Hence

(S/T)w
(R/T)w

is a function of v alone. Consequently

(3.19)
S R
-f +
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where fl(v) is a function of v alone. We have

S
(3.20) /3(v) T

(3.21)

( S/T)., R
( n/r)., T"

(S/T)w
(R/T)w

(S/T)*
(R/T)*

and so, from (3.19), we have

(3.22) (S/T)* [ S( R/T)#R-S+ T
( S/T)* R ](R/T)* - T=0.

This is obvious, of course, but it is not obvious that the coefficients of R, S, T
in (3.22) depend on v alone. Note that these coefficients are just the A, B, C
of case V*.
Now suppose that v is a quasi-solution of (3.1). This means that u p(v)

is an actual solution of (3.1), for some function tp. From (3.3), this is
equivalent to

(3.23) p"(v)R + p’(v)S + p’(v)3T O.

Compare (3.23) and (3.22). Let ’ be the field, of all quotients of real-analytic
functions of x and y (i.e., of v and w), let r be the subfield of those
functions in ’ that depend on v alone, and let V ,,3 be the vector space
over ,’ of all triples (L, M, N) of functions L, M, N in ’. Consider the
vector (R, S, T) in V. Then (3.22) says that the vector (A[ v ], B[ v ], C[ v ]) is
orthogonal to (R, S, T), and (3.23) says that the vector (qf[v], q’[v], t[U]3)
is orthogonal to (R, S, T). Suppose there were two linearly independent
vectors (Al(V), Bl(V), Ca(v)) and (A2(u) Bz(v) Cz(U)) which were orthogo-
nal to (R, S, T). Then we would have

Zl(v)R( v, w) + nl( v)S( U, W) + CI( v)T( v, w) O,

A:z(v)R(v,w ) + B2(v)S(v,w) + C2(v)T(v,w) O.

If B or B2 is zero, then (R/T)# would be zero because R/T would be a
function of v alone. If B or BE is not zero, then we may cross-multiply by
BE, B and eliminate the S-term above to see that (R/T)# would again be 0.
But we are in case V where (R/T)# 0 by hypothesis. Therefore (A, B, C)
and (p"[v],cp’[v],p’a[v]) are linearly dependent over r. This means that
there exists a function h(v) such that

(3.24)
x(o)A[o], a(o)c[o],
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from which we get

’() z[o](3.25) q(v) B[v]

and

c[o](3.26) t’E(v) B[v]"

Since (aside from the trivial case) q const, we have (3.12) and (3.13).
From (3.26), we get

2 loglq(v)l logiC[ v ]1 loglB[ v ]1,

and consequently

’(o) c’[ol ’[](3.27) 2q’(v) C[v] B[v]"

Comparing this with (3.25), we get (3.11). This proves the first (direct) part of
Theorem 1, in cases I-VI.

Let us now prove the converse part in cases I-VI. Suppose that we are in
case V and that v is a function that satisfies (3.9), (3.11), and (3.12). As
above, we have (3.10), where A, B, C are given by V*, and we know that A,
B, C are functions of v alone. Let q(z) be defined by (3.13). We must prove
that u p(z) is a solution of (3.1). Now o’3/o C/B and o"/o’ A/B,
from (3.11) and (3.13). Thus

(3.28)

q"R + (o’S + (0’T 1 ( At0-r xR + S + -T -ff- ( AR + BS + CT) =0.

But by (3.3), this is equivalent to u p(v) being a solution of (3.1), and the
theorem is proved in cases I-VI.

In case VII, we have R 0 and (S/R)= 0 and (T/R)= O, so that
B T/R and C -S/R are functions of v alone. (Notice that if S 0,
then the conjunction (R/S)#= 0 and (T/S)’= 0 is equivalent to the
conjunction (S/R)#= 0 and (T/R)’= O, with a similar statement in the
case T 0, so there is no point in introducing additional cases.) Recall that
tp being a quasi-solution of (3.1) is equivalent to

(3.3) Rq" + Sq’ + Ttp’3= O,
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or

So T
(3.29) o"+ - + -o --0.

Let o’, so that (3.29) is equivalent to

S T
(3.30) ,+

_
+ .3= 0,

which is a Bernoulli equation. Hence, on dividing it by 3, it becomes a
linear equation in 1/2. Solving this equation and substituting back, we
get (3.14).

4. Legendre transformations

It is possible to apply Legendre transformations (see [COH]) to the
minimal surface equation (3.1). We refer to [BJ(] for a detailed exposi-
tion-we summarize the relevant parts of that paper. Legendre applied a
real Legendre (hodograph) transformation (see [LEG]) to get a linear equa-
tion instead of (3.1), but Bj6rling applied a complex one to get a simpler (in
some respects), linear equation, for which he was able to find the "general
solution" in terms of two arbitrary functions of one variable.

Notation. For the original minimal surface equation (3.1), we still use x
and y for the independent variables, but we now use z (instead of u) for the
dependent variable. Then (3.1) becomes

(4.1) 2 2z + (1 + 2 0.(1 + Zy)Zxx ZyZxy Zx)Zyy

Now we take a real Legendre transformation, using : and r/ for the
independent variables and to for the dependent variable, with the relation

(4.2) to(, n) + z(x, y) x + y,
zx, x to, 1 zy, y t%,

so that, in terms of the new variables, (4.1) becomes

(4.3) (1 + 2)o + 2r/o, + (1 + rtZ)o,n O.

It turns out that it is easier to find quasi-solutions of (4.3) (and hence
actual solutions) than it is of (4.1). But even easier than (4.3) is the equation
of Bj6rling that arises from the following complex Legendre transformation.
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We choose new independent variables a and /3 and a new dependent
variable w as follows. First, we replace (x, y) by (u, v) where

u+v
(4.4) u =x + iy, x= 2

v =x-iy, y= 2i

Then we have

(4.5) w(a,fl) + z(x,y) =plu + qlv,

Pl 2a[3
Pl1 + V/1 + 4pxqi a + fl

/91 1
1 V/1 + 4Plql

ql 2(a +/3)’

cgw
u 0191

Ow
Oql

Then the equation equivalent to (4.1) is

2a 2/3(4.6) w’t +
a2 f12 wa "a 2 f12 w/3 0,

Incidentally, the general solution of (4.6), as found by Bj6rling, is

q(a) 2q,(,8)
(4.7) w + 2(a + ,8) (a) 2q,’(,8)1,

where q and q are "arbitrary" functions of one variable. The trouble with
this, as with our own methods when applied to (4.6) is that solutions of (4.6),
when transformed back into solutions of (4.1), may give non-real (i.e.,
complex) solutions of (4.1), which have a certain rococo interest, but are not
to the point.

Liszlo Lempert has suggested to the author the following device for
getting real solutions to (4.1) from complex solutions to (4.6). Namely,
transform (4.6) to (4.3) (in principle, by going from (4.6) to (4.1) and then
from (4.1) to (4.3).) Now, (4.3) is linear, and the coefficients are real, so we
may take the real (or imaginary part) of to to get a solution 03 of

(4.3’) (1 + :2)aS:e + 2:r/aSe, + (1 + r/2)aSn, O.

Finally, we perform the transformation (4.2) to get a real solution to (4.1). In
a moment, we will do this in a more direct way. What happens in practice
(see the next section) is that it is easy to get many explicit (complex) solutions
to (4.6), and that (at least on a computer), the procedure described above for
getting real solutions of (4.1) goes smoothly, except at the final point where
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we have

(4.8) x x(:, r/)
Y

and we must invert to find

(4.9) : .:( x, y)
,

In practice, so far, the explicit form of (4.8) is reasonably complicated, and
there seems to be no practical way to actually perform the inversion to get
(4.9).
Now for the details of the direct implementation of Lempert’s suggestion.

From (4.2) and (4.5), we get

(4.10) w(,, ) ,o(, n) (x + rn) (pu + qv).

We suppose we have an explicit expression for w(a, ). We wish to express
(4.10) entirely in terms of : and r/. Now

1 1 1 1

(4.11) a
2 2

/3 ’11+ v/l+ +r/ 1-- 2 2"

To see this, we note that, from [BJO], Pl OZ/OU, ql OZ/OV SO that

Oz Ox Oz Oy
(4.12) Pl Ox Ou Oy Ou

Oz Ox Oz Oy
ql +Ox Ov Oy Ov

But, from (4.4),

(4.13)

(4.14)

Ox 1 Oy 1
Ou 2’ Ou 2i

Ox 1 Oy 1
Ov 2’ Ov 2i’

1 1
Pl -Zx +

1 1
q -Zx- zy

1 2 2
Plql (Zx + zy)
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Now, again from [BJO],

Pl Pl(4.15) a /3
1 + ,’/1 + 4plq1 1- ,/1 + 4plql

From these formulas, (4.11) follows directly from (4.5).
Now we need x and y (or equivalently, u and v) in terms of : and r/. By

(4.11), it would be enough to get u and v in terms of a and/3. But from (4.5)

Ow Oa aw Off Ow Oa Ow aft
oop’ v=(4 16) u 0a 0/91 0ff Oql Off Oql

Now from (15), we compute OOt/Opl Oot/Oql Ofl/OPl Ofl/Oql. The results
are

(4.17) 0131
(1 + /1 + 2+ r/Z)_ 1/2(z+ .2)(1 + :2..l_ ,02 )-1

(1+ g/l+ 2 + r//)

(4.18) Oql (1 + V/1 + :z + r/2 )2
1 (1 1)

2

V/l+:Z+r/2 - + 7r/

(4.19) 0/3=
OPl

:2 2(1 1 + :2 + r/2) + (:2 + r/2)(1 + +’r/

(1 /1 + :2 + r/2)
2

1 1 )2
(4.20) 0/3

2 -s + r/ ...
Oql (1- /1 + 2 + ’r/2)2V/1 + 2 + ’r/2

The remaining quantities on the right-hand side of (4.16) are Ow/Oa and
Ow/O. But w is an explicit function of a and /3, and hence so are these
partial derivatives. Then we can use (4.11) to get them explicitly in terms of :
and r/. Hence, from (4.16) and the above remarks, we have u and v as
explicit functions of : and r/. Thus, we have an explicit version of (4.8). We
invert (4.8) to get (4.9). Then we use (4.5) (after replacing w(a, ) by its real
part if(a,/3)) to get (x, y) explicitly, which will be a real solution of (4.1).
We repeat what we said above about carrying out these computations in

actual cases. Despite apparent complexities, everything goes well until we get
(4.8). To invert (4.8) to get (4.9), though, in the cases we have tried, seems
impossible in practice, at least with the presently available machines and
programs.
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5. Computer implementation

In this section we present a summary of what the computer did in some
special cases, in implementing the methods described in {}{}3, 4. At the
University of Illinois, this computation was done by Byoung Keum and
Daniel Lee, who were then graduate students, using Mathematica. The
author did some further computation on Macsyma while attending the
Workshop on Symbolic Computation at the Institute for Mathematics and its
Applications in Minneapolis. He takes this opportunity to thank Keum and
Lee for all their help, and the IMA for the use of its facilities. The
implementation was quite direct, except for the following scheme introduced
by Daniel Lee for making certain functional dependencies explicit. Without
some such procedure, the method would not work in practice.

In a typical situation for this paper, (see (1.4) and (1.5))we have v as a
function of x and y and K as a function of x and y and we are sure that K
is a function of v because the Jacobian J(v, K)vanishes identically. But we
want a closed-form expression for K as a function of v. From v
function(x,y), we get y function(x,v). Using this, we rewrite K
function(x,y) as K function(x,v). We solve this for x to get x
function(K, v). Then using this in y--function(x,v) above, we get y
function(K, v). Now, using both x and y as functions of K and v, we rewrite
K function(x, y) above to get K function(K, v). We solve this last equa-
tion for K as a function of v. This procedure works most of the time, but
other times the steps cannot be carried out in closed form.

First of all, in the direct method (without Legendre transformations) of {}3,
one would naturally try (even without prior knowledge) v x2+ y2 and
v y/x, and they lead directly to the catenoid (see [BAC]) and the helicoid
(see [BAC]), respectively. If one starts with v cos y/cos x (which probably
requires some outside inspiration), it leads to the actual solution u
log(cos y/cos x), which is Scherk’s surface (see [BAC]). The other choices of
v that we tried just didn’t satisfy the conditions of Theorem 1, so they were
no good.
When we made the Legendre transformation (4.5), we found some quasi-

solutions of (4.6) that led us back to the helicoid and the catenoid at the end.
2 2 3 3A recurring quasi-solution of (4.6) was//a (occurring also as/ /a /a

etc.) which led to the actual solutions of (3.1) below (written as they came off
the computer):
(5.1)

27x 2 2X4- 8/x3y + 27y 2 + 12X2y 2 + 8/Xy- 2y4

18x 2 + 36/xy- 18y 2

(5.2)

2x-2iy+ -16 1 x+iy +(-2x+2iy)
/

u log 1/2

2x+2i+ -16 1
x+i + (-2x+2iy)
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The quasi-solution a -/3 of (4.6) leads to an actual complex solution (5.3)
of (3.1) that is certainly complicated, but perhaps there are ways of simplify-
ing it.

(5.3) u= -- -1-2x+2iy+ x+iy
1/2

2iy
-l + 2x + 2iY + x + iy 1/2)

+ {(x+/y)([- E/y]1-2x-2iy+ X+iy

1/2

-l+2x+2iy+
x+iy

x+iy

1/2

+(x + )[-1 2x- 2iy +

1/2[x -l+2x+2iY+x+iy,

+ -1-2x-2iy+
x+iy

[ 2iy ]1/2)+ -l+2x+2iY+x.+i

We now describe our one attempt to computer-implement the method at
the end of 4 for getting real solutions of (3.1) from solutions of (4.6). In
brief, we started with the quasi-solution a 2 +/32 4a/3 of (4.6), which led to
the actual complex solution (5.1). Everything went well until we arrived at

3r/5 + 2r/3 + (-34- 6:2)r/(5.4) x
T]6 .+. 32r/4 + 34,r/2 + :6
3:,r/4 + 6:,r/2--- 3:5 2:3

’0
6 + 32’r/4 -’l- 34’r/2 --1-- 6"

These equations must be inverted to solve for sc and r/ as functions of x
and y, and there seems to be no practical way to do this.

Finally, we mention our first attempt to find quasi-solutions of 3.1, namely
to let v be the cubic

v X 3 + ax2y + bxy 2 + Cy 3,
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and then to find the conditions on a, b, c that make det W O. There was
no trouble in getting the machine to do this for us, but unfortunately the
conditions took seven pages of printout, and they were so complicated that
there was no apparent way to interpret them, so we abandoned this line of
attack.
As with many of our computations, maybe faster machines and better

programs will someday make these computations feasible when they are
presently not feasible.
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