
ILLINOIS JOURNAL OF MATHEMATICS
Volume 36, Number 1, Spring 1992

WEIGHTED SPHERICAL RESTRICTION THEOREMS
FOR THE FOURIER TRANSFORM

BY

STEVEN BLOOM AND GARY SAMPSON

1. Introduction

Spherical restriction theorems are of the form

(1.1) )
1/q

f o-1 c lf(x)ldx

where n-1 is the surface of the unit ball in Rn, with the usual surface
measure dtr, and where f belongs to a suitably nice class of test functions.
The first such result was discovered by Stein and published by C.

Fefferman in [4]. Here q=2 and 1 <p<4n/(3n+ 1). That such an
inequality could hold was fairly surprising. After all, why should the LP-norm
of f control the behavior of f on a set of measure zero? Certainly, (1.1) must
be absurd when p =q 2, since f can be obtained from f by Fourier
inversion, and this is unaffected if.we change f on a set of measure zero.

Actually, this reasoning is rather naive. (1.1) does fail when p q 2, but
for entirely different reasons. Indeed, weighted (2, 2) results do hold, as we
will see in Theorem 2.1. Consider a small arc F in R2 parametrized as
(1 t 2, t), 0 < t < t. Obviously this approximates the circle. We consider
the possibility of a Restriction theorem to F,

(1.2) IIrllq CIIfllp.

Let D be the rectangle

1 1 1}x <_ -,O <_ y <_ -g

Received May 29, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 42B10; Secondary 42B15.

1Research supported in part by a grant from Siena College.

(C) 1992 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

73



74 STEVEN BLOOM AND GARY SAMPSON

and put

f(x,y) =eiXg(x,y)

where g > 0 is supported in D. Then

ff e-i(x’Y)’(1-t2’t)eiXg( x, y)[q dr.

Now in [0,i] D, Ixt2- ytl _< 1 and so e
Hence,

i(xt2-yt) is essentially a constant.

flfr’ <5(ffg)
and if (1.2) holds, we’d have

By H61der’s inequality,

sup Ilgll g > 0 and supported in D IDI 1-p
-1 3(l_p-1)

and so, letting i ---> 0, (1.2) forces

1 (1)->31-(1.3) q

and of course p =q 2 is ruled out. (1.3) is sharp. In 1974, Zygmund [10]
proved:

THEOREM 1.4. Let 1 _< p < 4/3 and 1/q >_ 3(1 l/p). Then

for suitably nice functions f (say f C).

From our perspective, a weighted version of (1.1),
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would lead to a corresponding weighted H61der’s calculation, and depending
on v, (1.3) could vary considerably. (1.5) does hold for p q 2 and a wide
range of weights v, the zero measure objection notwithstanding.
Zygmund’s proof of Theorem 1.4 was very clever. Let us outline his

argument: Consider fir where F is a small piece of the unit circle, say
(cos t, sin t), for 0 < t < 1. Let T be the dual Restriction operator,

i(x y). (cos sinTg( x, y) e t)g( t) at.

It suffices to show IlZgllp, < CIIgll,. For this,

(1.6)

Tg(x, y)l2
2 Re f01 -i(x y).(cost-coss, sint-sins)g(s)g(t ) dsdt.e

Now change variables: Let u cos cos s, and v sin t sin s. Then
(1.6) is the Fourier transform of some function h in the u v plane,

ITg(x, y)[2 2 Re ft(x, y)

and by Hausdorff-Young,

IITgllp, c11112,/2 < C11h11,/2.

Now change variables back to the (t,s) plane. Straightforward estimates
finish the proof.
The splendid observation, that the square of the dual operator is essen-

tially a Fourier transform works only because the dimension of E_ is half
the dimension of Rn, in other words, because n 2. At present, there is no
sharp analog of Theorem 1.4 known in dimension 3 or higher.
An entirely different argument, starting with Parseval’s theorem, was

discovered by Tomas. This yields:

THEOREM 1.7.

2nI1_111 _< Cllfll if 1 <p < n+3"

Actually, Tomas proved this for p < (2n + 2)/(n + 3). Stein adapted his
argument to cover the endpoint p (2n + 2)/(n + 3), and Tomas described
this sharper proof in his paper [7]. The same argument that led to (1.3) shows
that p (2n + 2)/(n + 3)is sharp.
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Our concern in this paper is with the weighted Restriction theorem (1.5).
When v is essentially a power weight,

if Ixl 1
(1.8) v(x)

ixl if Ixl > ,
we find necessary and sufficient conditions on a and/3 for (1.5) to hold over
a wide range of p and q. The best results, naturally, are obtained in two
dimensions, although we do obtain sharp results in higher dimensions, but for
a more restrictive range of p’s and q’s.

Deriving weighted versions of the Restriction theorem seems to have
caught several mathematicians’ fancies lately. In [3], Chanillo and Sawyer
showed that (1.5) holds when p q 2 and

(1.9) v--(n+ 1)/2 LI(Rn).

Applied to power weights, this allows weights when /3 > 2n/(n + 1) and
a < 2n/(n + 1).2

This is fairly good, although not sharp. The sharp conditions are a < n
and/3 > 1, and this is shown in Section 2, where we analyze the (2, 2) point.

Chanillo and Sawyer found a fascinating application of this result to an
analytic continuation problem. They also unveiled this little gem: Suppose
p (2n + 2)/(n + 3), the critical endpoint in the Tomas-Stein theorem, and
Ill[I; 1. Then

fill’ flfl2v where v [fl-2

Now, 1/2(n + 1)(p 2) p, and so (1.9) holds, and hence

proving the Tomas-Stein result. The unweighted (p, 2) Restriction theorem is
a special case of the weighted (2, 2) Restriction theorem. This is a special
case of the following proposition.

PROPOSITION 1.10. Let 1 < p < q < o. A linear operator T maps Lp - Lq

boundedly if and only if T" Lq(w) --, L boundedly whenever w-1 Lp/(q-p).

2Chanillo and Sawyer actually obtain a wide range of conditions sufficient to (1.5), but for
power weights this L condition yields the sharpest result.
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Proof One direction is the Chanillo-Sawyer argument. For the other
direction, it will suffice to show that the adjoint operator T*" Lq’’’>
Lq’(w -q’/). But H61der’s inequality gives

SIT:>gflq’w-q’lq. (fIT:>gflP’)q’/P’(sw -q’/p’

In [1], Benedetto and Heinig derive weighted norm inequalities for the
Fourier transform of functions with vanishing moments, when the weights
can include radial measures. As an application, they view the Restriction
operator as a weighted Fourier transform, and obtain sufficient conditions for
(1.8) to imply (1.5), specifically

(1.11) n(p- 1) </3 <n(p- 1) +p.

This is a very clever idea. Unfortunately, in the setting without vanishing
moments, condition (1.11) is very far removed from the sharp conditions.

Section 3 is devoted to the description of the various necessary conditions.
In Section 4, we analyze the general (p, q) point in two dimensions, and
Section 5 deals with higher dimensions.

2. The (2, 2) point

The main result of this section is:

THEOREM 2.1. Let

v(x) { Ixl if Ixl _< 1

Ixl iflxl > 1.

Then

IIjn_,ll2 --< CIIflIL(;%

holds for all f C(Rn)/f and only if a < n and > 1.

We will prove this by studying the dual Restriction operator T,

Tg(x) frz e
n-1

-iX’tg(t) dtr(t).
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We will also use a damping factor. Most any one will do, but to be specific
(in this section--in Section 3, a different damping factor will prove useful),
take

R+ R+
given by

o(x) (l+xN) -1

where N is a large integer depending on the dimension n appropriately
chosen for the proof. Set qR(X)= q(x/R). Observe that the derivatives of
qR satisfy

(2.2) (gk)(X) < CkX-kR(X) for k 1,2,3,

LEMMA 2.3. 117._112 < CIIfll:( for all f C(R") if and only if

ZglllT(-(x),(ixl)) < CllgllLz(r,=_l

for all R, > O, with C independent of R.

Proof Fix f C and let Ix < R} contain the support of f. Then

Now qgR(lXl) > on the support of f, and so

and one direction follows. The argument for the other direction is virtually
identical.
We will make heavy use of Bessel functions of order v, J(r). Several facts

will be pertinent.

J/2-1(Ix l)
(2.4) [ eix’t dtr( )

n-1 IX[ n/2-1

(2.5) Jn/2_l(r) (2/Trr)-X/2cos(r- (n 1)7r/4) + e(r)
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where e(r) O(r-3/2) as r 0% and

d
(2.6) d---rJ(r) rJ_l(r) for v > 0.

See Watson [9], for these, and our other assertions about Bessel functions.

Proof of the necessity in 2.1. In Lemma 2.3, take g 1. By (2.4),

ITg( x) J,/_l(Ixl)lxl 1-n/,

and so the lemma gives

(2.7) fo rn-lw(r)qR(r)lJn/2-1(r)[2 2-nr dr<C

where w(lxl) v-l(x), and this constant C is independent of R. Near zero,
by (2.4),

Jn/2_l(r) = crn/2-1,

and so the integrand in (2.7) is essentially r
Let

n-l-a. Hence a < n.

Ik {r [27rk,2zr(k + 1)]" Icos(r- (n 1)r/4)I 1/2}.

By (2.5), for r I, IJn/z_l(r)l > Cr-1/2. It also follows that

2zr(k + 1)W(r) ql( r) dr < Cflkw ( r) qn( r) dr
rk

< Cflkrw(r)qR(r)lJn/2_l(r)l2
dr

and (2.7) gives, for some integer K,

z f2,n-(k + 1)w( r)cpR(r) dr < C,
k>K2rk

and so

f2v(r)q.(r) dr < C.

Choosing R much larger than 2zrK forces/3 > 1.
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For the sufficiency, we will use a surface measure version of Minkowski’s
inequality, whose proof, which is quite standard, we will omit:

LEMMA 2.8. If 1 <_ p <_ 0% and if

then

sup f la(s-t)ldtr(t) < ,
$n-1 n-1

Proof of the sufficiency of Theorem 2.1. Fix a (R and consider

1/1)

flZgl2q(Ixl)v-l( x) dx

lg(s)eiX’s dtr(s)fE._g(t)e -ix’t art(t) dx

f, lg(s)f, lg(t)f0 rn-lq(r)w(r)f eirz’(s-t) dtr(’r)drdtr(t)dtr(s)
n-1

where again w(Ixl) u-l(x)

ffg(s)g(t)frn-w(r)(r) J/2_(rls tl)
(rls tl) /2-1

dr dtr( t) dtr( s)

by (2.4)

ffg(s)g(t)ls -tl-n/2I(ls

where

I( t) fo rn/2Jn/2_l( rt)q( r)w( r) dr.

It will suffice to show that

(2.9) II(t) _< Ct-n/2



WEIGHTED SPHERICAL RESTRICTION THEOREMS 81

with C independent of R. For if (2.9) holds, then

-’ <_ cff lg(s)l Ig(t)l Is tl t-n dtr(s) dtr(t).

Now,

sup f, l[S t[-n dtr(t) <_ cf20 r#-nrn-2 dr < oo

Sn_

since/3 > 1. So, by Lemma 2.8 and a Cauchy-Schwarz,

flZgl=v- <_ Cf Ig(t)l2 dtr(t)
’n--1

and the theorem follows from Lemma 2.3.

foltrn/2j/2-1( rt ) q( r) w(r) dr < Cfoltrn/2(rt)n/2-1r-a dr <_ Ctn/2

since a < n. For the term from 1 to 0% let D be the operator

1 d

Using (2.6), we have

fl q(r)r- d[rn/2Jn/2(rt)]

q(r)r-OJn/2(rt)[7 flO(qgr-O)rn/2+lJn/2(rt) dr

and the term at infinity vanishes. Continuing this integration by parts, we
obtain

I(t) c(t) + (--1)ktl-k fl rn/2+kJn/2+k_l(rt)Dk[qr-t dr.

Because of (2.2), each of the infinity terms vanish (so long as N is much
larger than k), and so c(t) is a bounded term. Thus (2.9)will follow if we can
demonstrate that

(2.10) 1-k fl rn/2+kJn/2+k-l(rt)Dk[qr-] dr <_ Ctt-n/2
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for some positive integer k. We split up this integral into the pieces from
zero to l/t, and from 1/t on, calling them A + B. From (2.2), we get

[Dk[r-l[ < Ckr--2k[1 + (r/R)N] -
and from (2.4),

IJ/2+k_l(rt)l <_ C(rt) n/2+k-1 when r < lit.

A < Ct 1-k lilt n/2+k( n/2+k-1 -/3-2k[Jl r rt) r 1 + (r/R)N
-1_

Ctn/2 fll/trn--I dr <_ Ct-n/2

(so long as /3 < n. If/3 >_ n, the estimates change, but the proof does not).
For B, we use the asymptotic estimate ]J(r)l _< Cr-/2 from (2.5). This

gives

B <_ Ct 1-k fl rn/2+k(rt) -I/2r-l-2k dr <_ Ct a-n/2
/t

so long as k > (n + 1 2/3)/2, and the proof is complete.

We close off our study of the (2, 2) point by investigating power weights v
that are no longer radial. That is, v will have the form

The analysis of such weights can get very complicated, and for simplicity, we
will consider this case in two dimensions only. Here,

.(x, y) =w(x)w(y)

where

Ix[/2 if Ixl 1
w(x)

ixl/2 if Ixl > 1.



WEIGHTED SPHERICAL RESTRICTION THEOREMS 83

This is, essentially, a smaller weight than the radial weight considered in
Theorem 2.1. Still, one would reasonably expect the weights to behave
identically, and for the Restriction operator to be bounded if and only if
a < 2 and/3 > 1. And so, the actual result, that/3 > 4/3, seems surprising.

THEOREM 2.11. Let

flxl if Ixl 1

Ix if Ix > 1

and let v(x, y) w(x)w(y). Then

if and only if a < 1 and > 2/3.

Proof We will consider only the portion of the circle (cos t, sin t) with
0 < < 1. With T the usual dual operator,

ITg(x, y)l 2 g( t) g( s)cos[ x(cos cos s) + y(sin sin s)] dsdt.

Now apply the addition law for cosines. Since w is an even function, the sine
terms vanish, and we have

g(t)g(s) w-l(x)cos[x(aos COS s)]dx

f0 w-l( y)cos[ y(sin sin s)] dy ds dt.

Clearly for these inside integrals to be well-behaved near zero, a < 1.
Consider integrals of the form

(2.12) fo W- ( X)COS("FX) d, with z small.

These are clearly bounded when /3 > 1. When /3 < 1, (2.12) is essentially a
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constant times IT[/3-1, and so, up to a constant factor,

f f01f0[Tgl2v -1 . g(t)g(s)lcos s COS tl/3-Xlsin s sin t[/3-1 dsdt

folf/g(t)g(s)tt-l(t S) 2(/3-1) dsdt.

And so, assuming that a < 1, the Restriction problem is entirely equivalent
to the behavior of the bilinear form

(2.13) fo f0g(1 t)g(s)t/3-1(t s) 2(/3-1) dsdt

where g L2([0, 1]). We need to determine when (2.13) is bounded by
Cilgll22. Take g -p, where 0 < p < 1/2. So g L2, and

ft/2 _p( )2(/3-1) f//2(t s dsg(s)(t s)2(/3-a) ds Jo s S ds + s)-P 2(/3-1)

. Cpt2/3 -p-

and (2.13) is essentially

3/3-2p-2

Since this must be integrable, we must have 2p + 2- 3/3 < 1, or /3 >
(2p + 1)/3, and since this holds for all p < 1/2,/3 > 2/3 is necessary.
For the sufficiency, the bilinear form in (2.13) is bounded on L2 if the

operator S, given by

Sg(t) t/3-1 f/(t S)2(/3-1)g.(s) ds

is bounded on L2, and this holds, by Schur’s Lemma, if there exists a positive
function h for which

(2.14) Sh( t) + S*h( t) < Ch( t)

where

ft -1( )2(/3-1)h(S*h(t) s/3 s t s) ds
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is the adjoint operator of S.3 Let 2’ > 0 and take h(t) t -7. Then

Sh ( t ) /3 -1[fot/2s 7 (

< Ct3(/3 1)+ 1-7 Ct-7

ft -7( )2(/3-1)/ s ds

if/3 > 2/3 and if y < 1.
Likewise,

) 2(/3-1)S-7 fl 2(/3 1)S*h(t) < (s- ds q" /3-1-7ts ( S t) ds
J2

where this last integral should be taken to be zero if > 1/2,

f0’ f, is<_ Ct/3-1-7 $2(/3 1) dS + C 3(/3-1)-7 ds.

When/3 < 1, we choose y so that 3(/3 1) y < -1, to obtain

S*h(t) <_ Ct 3(/3 1)+ 1-7

here as well. If/3 > 1, then the first integral above dominates, and the same
estimate prevails. Hence, the Schur condition (2.14) holds, and the proof is
complete.

3. Necessary conditions

Suppose that [[)n_lllq CIIfll/() where 1 < p, q < oo, with

f lxl if Ixl 1

Ix iflxl >1.

3It is easy to see why (2.14) is sufficient. Clearly the operator f h-lS(hf) is bounded on
L, and by duality, f hS(h-lf) is bounded on Lt. Complex interpolation establishes the
boundedness of S on L2.

Although we need only the sufficiency of (2.14) in our argument, every step so far, including
Schur’s Lemma, is reversible, and (2.14) is also a necessary condition for the boundedness of the
Restriction operator.
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Then the dual operator T’Lq’(,n_) LP’(vl-P’). Taking g 1,

Zg( x) J/2_(Ixl)lxl 1-/2,

and so a necessary condition is

(3.1) fv(x)-P’( J"/2-1(lxl) )
p’

ixln/2_
dx <_ C.

From the estimates (2.4), this tells us that v-’ is integrable at zero, or

(3.2) a < n(p- 1)

while (2.5) and (3.1) show that

r(1-p’)+(1-n)p’ /2+n-

is integrable at infinity, or

n+l
(3.3) /3> 2 p-n.

Next, fix e > 0 and let e
Rn. Set

(1, 0,..., 0) be the standard basis vector for

D {rt’O < r < 1/(ne2), t ,,_,, and le tl < e}.
Let g > 0 be supported in D and put

f(x) =eie"Xg(x).

Then for s n-1 with le sl _< e and for x D, we have

But

[(e s). x r[(e s)" t[
rl(1 Sl)t s2t2 Sntn

<r(1-Sl) + (n 1)e2r.

2 2g2 >__. (1 $1) 2 .-b sg -.I- -t-sn (1 s) + (1 s) 2(1 $1)

and so

I(el- s) .x[ < re:(1/2 + n 1) < 1.
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Hence,

fDei(el-s)’Xg( X) dx f g( x)
Therefore,

n_l,lel-sl<_e

which means that

en-1 g <_ C gPv

If we take g U 1-p’, we obtain

E
n U -p’ _<C

(this is justified, since v 1-p’ is integrable, i.e. by (3.2)).
On the other hand,

fDvl-p’ >_. f, [1/ne2rO-P’)rn-1 dr
._l,lel-sl<e"l

> Cen-1 fll/ne2r(1-p’)cl+n-1 dr.

We gain no information from this if/3 > n(p 1), but if/3 < n(p 1), we
have

UI-p’ >_ cEn-le213(p’-l) -2n

which forces

(3.4) /3 >n(p- 1)
n- 1(2 p-1
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Notice that (3.4) is more restrictive than (3.3) when p < q. Otherwise, (3.3)
prevails.

Finally, suppose that/3 < 0. Let gk(t) eikel"t and let x ke + y. Then

Tgk(X ) f, eikel"te -i(kel+y)’t do-(t) f, e -iy’t dtr(t)
n-1 n-1

J/2- I([Y I)IY 11-/2.

In particular, Tg(x)l >- c > 0 if lyl < 1. So,

v -# /P > cP’fyllkel + y1-13P’/P dy

which tends to infinity as k tends to infinity. Yet each Ilgkll’ < C, so that v
cannot be a good weight. We’ve shown

(3.5) /3 >_ 0.

Let us summarize all of these results:

THEOREM 3.6. Let

If 1< p, q < o% and if

flxl ilxl l,

Ixl /flxl>l.

then fl >_ 0 and a < n(p 1). Moreover:
(a) ifp < q then

fl>n(p-1) n-1( p).2 p-l+q

fl> 2 p-n.

(b) ifp > q then

In some circumstances, we can improve on condition (a) above.

THEOREM 3.7. Under the hypotheses of Theorem 3.6, if in addition, p <_ 2
and 1/p + 1/q <_ 1, then

(3.8) Pfl >n(p- 1)- (n- 1)-.
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Proof. We will show that (3.8) is necessary whenever p < 2. The other
restriction, that 1/p + 1/q < 1 is simply because (3.8) is weaker than (3.6)
(a) otherwise.
We can assume without loss of generality that /3 < n(p- 1) (and a as

well). By the argument of Lemma 2.3, with T the usual dual operator,

where q is a nice cutoff function and C is independent of . For this
argument, we will take

Let w(r) v -p’/P(x) when Ix r. Then, as usual, we have

IlZgll 2
-,/) (s) (t) r"L2(qv g g

n-1 n-1

Xdrdtr(s) art(t).
From (2.4),

w(r)
J/2_l(rls tl)
(rls tl) n/2-1

J/2-1(Ixl)
lim c > 0,
x-,O Ixl n/2-1

and so, if Ix k,

Jn/2-1(Ix I)
is essentially a constant.

Ixl/2-1

Let D be a disk on n-1 Of diameter k/R. Let g- Xo. Then, ignoring
constants,

L2(qv _p,/p) , rn w(r) dr IDI2Rn-p’/p . Rn-p’/p-2(n-1)

and so

Rn-flp’/p-2(n-l) flrgl2qv-p’/p

(f )2/p,(f )
1(2/p’)

< Tglp g,v-p’/p v-p’/p

by H61der’s Inequality

= II TglI#(-,"")(Rn-#P’/P) l(21p’).
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And so,

R(n-p’ /p)2/p’-2(n-1)/q C,

and letting R oo gives the result.

4. The (p, q) loint in two dimensions

We start by extending the (2, 2) result of Theorem 2.1 to arbitrary q.

THEOREM 4.1. Let

[Ixl /f Ixl 1
u( x)

Ixl if Ixl > 1,

and 1 < q < . Then

if and only if a < n and
(a) /fq<2thenfl> 1,

while
(b) if q > 2, then

2
/3 >_n- (n- 1)

The necessity side of this theorem follows immediately from Theorem
3.6(b) and Theorem 3.7.
For the sufficiency, in case (a), we simply apply the following lemma to

Theorem 2.1:

LEMMA 4.2. If IIf._,lla -< CIIflIL(O and if s < q, then

as well.

Proof. Use H61der’s Inequality.

The sufficiency of case (b) rests on the "fractional" integration theory
applied to _, which we give in the following lemma.
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LEMMA 4.3. Let 1 < p < oo and 0 < a < (n 1)/p. For t n-1, set

Ig(t) f g(s)lt sl-"+ dr(s).
n--1

Then I" Lp Lq is a bounded operator so long as

1 1 a
q -p n-l"

Proof We will assume with no loss in generality that g > 0 and that
Ilgllp--1. Let Mg be the maximal function of g on E,-1. We follow
the proof given for the one-dimensional fractional integral operator in
Torchinsky’s text [8, p. 151], proving the estimate

(4.4) Ig(t) N C[1 + Mg(t)] 1-ap/(n-1).

H61der’s Inequality and the boundedness of the maximal operator would
then give lg L so long as

ql n-I <P’

which is the condition on a in the hypotheses.
So we must prove (4.4). Fix some r/with 0 < r/ _< 1. Write Ig as

fls g( s)ls tl ’-n+lI,g(t)
--tl<rl

=A+B.

+ fls g(s)ls tl ’-n+l
-tl>r

Break A up into intervals where Is tl 2-kr/ tO get

A < ClMg(t)

and apply H61der’s Inequality to B to get

B<_ Ilgllp(fls_tl>n
CTla-(n- 1)/p.

Is tl ("-n+l)p’ dot(s)

Now we choose r/so that

a-(n 1)/p qMg(t),
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in other words,

rl Mg( ) -p/(n-1),

This r/ < 1 so long as Mg(t) > 1. Otherwise, take r/ 1, and then A + B <
C. But with this choice of

A + B < C’qMg(t) C[Mg(t)] 1-ap/(n-1)

and (4.4) follows.
Now we can complete the proof of Theorem 4.1. We will need to show that

IlZgllL%-b <- CIIgll,.

Following the proof of Theorem 2.1,

and so we require the fractional operator I_ to map Lq’ into Lq bound-
edly, and this will ensue from the last lemma, provided

1 1 /3-1
q n-1

or

2
/3 >_n- (n- 1)-

Next, we require a generalization of Zygmund’s Theorem.

THEOREM 4.5. Let 1 < p < 4/3. If

1
->3q-

1

and if

Ixl
v(x)

Ixl
if lxl <_1

if lxl > 1,
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then

if and only if > 0 and a < 2(p 1).

Proof For the sufficiency, we follow Zygmund’s proof as outlined in the
introduction. From (1.6) and the appropriate change of variables, we have

and we dovetail back into Zygmund’s proof if we can show

The h in question is supported in {Ix] < 2}. So this is a weighted Fourier
transform problem,4

ll.f’l,,’:(.-,,’/,,) CIIfXtlxl<2lll<,’/2)’.

When v is increasing, this will hold, by the Jurkat-Sampson Theorem [5],
when

fixsup s2 U //9 dx ( oo,
O<s<2 I<l/s

which is true when/3 > 0 and a < 2(p 1).
The necessity is immediate from Theorem 3.6.

We are almost ready to interpolate. We need the conditions at the
(4/3, 4/3) point first, and then we can let loose the machinery.

PROPOSITION 4.6. For v(x) as above,

IIf11114/3 < CIIflIL4/3(,)

if and only if a < 2/3 and fl > O.

4One could try more general weights at this stage of the argument in an effort to obtain more
general Restriction theorems. After finishing an early draft of this paper, we received a preprint
from Carton-Lebrun and Heinig [2], where they do just that to Sj61in’s extension of Zygmund’s
Theorem [6]. They obtain sufficient conditions for weighted norm inequalities that are quite
sharp in the Zygmund region, but well removed from the necessary conditions away from the
region.
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Proof. The necessity is Theorem 3.6(b). For the sufficiency, let P0 < 4/3
and let be the Restriction operator. By Theorem 4.5,

L’(Vo) --* L,o

where vo has powers ao < 2(po- 1) and /30
2.1,

0. Likewise, from Theorem

Lz(vl) L2

where a < 2 and 1 > 1. Let 0 < < 1 and put

1 t 1-t
F po

Interpolating with change of measure gives

where

_
L’(v) Lp

and hence,

as expected, and

U ut/2ug(1-t)/pO

a <2(p- 1)

(4.7) /3 fll
P --PO
2 -Po

For p 4/3, and/3 > 0 will suffice, if P0 is sufficiently close to 4/3.
From (4.7), for any 4/3 < p < 2, we obtain

fl > -p- 2

which was also necessary by (3.6)(b). Thus when p > q or in the Zygmund
region, the necessary conditions are also sufficient. Straightforward interpola-
tion extends these conditions into the remainder of the region p < 2, first
along the line 1/p + 1/q 1, and then into the rest of the region. In some
of these cases, since one boundary has a condition of the form /3 strictly
greater than some exponent, that is all we obtain inside. We have"
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THEOREM 4.8.
RE of the form

Let 1 < p < 2, 1 < q <_ oo. Let v(x) be a power weight in

f lx if lx l

Ixl iflxl>l,

Then, in order to have

it is both necessary and sufficient that a < 2(p 1). Regarding fl:
(a) If 1 <p<4/3andif

1 (->31-

then > 0 is both necessary and sufficient.
(b) /f 4/3 < p < 2 and if q < p, then fl > p 2 is both necessary and

sufficient.
(c) When p 2 and q > 2, fl > 2(1 l/q)is both necessary and sufficient.
(d) When p < 2 and 1/p + 1/q 1, then

fl>2(p- 1) P
q

is sufficient, while

/3> 2(p- 1) P
q

is necessary.
(e) When p < 2 and 1/p + 1/q < 1, then

/3> 2(p- 1) P
q

is both necessary and sufficient.
(O In the remaining triangle,

3
/3> -(p- 1) P

2q
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is sufficient, while

3 p
/3 > (p- 1) 2q

is necessary.

The proof of this theorem is fairly straightforward. To illustrate, we will
prove (e). The necessity for (e) is Theorem 3.7. For the sufficiency, fix a
q0 > 2,/30 > 2(1 l/q0), and a0 < 2. Put

/Ixl’ if Ixl < 1
Vo(X)

Ix if Ix > 1,

By Theorem 4.1(b),

and so the operator

maps L2 Lq boundedly. Trivially, :L L. Let

"zf ’(fu(l-z)/2) for 0 < Re z < 1.

Notice, when Re z 0, z L2 - Lq, while when Re z 1, z L1 L.
The operator norms are independent of Im z, and so we can apply complex
interpolation. Fix 0 < < 1, and define (p, q) by

1 1 -t 1 1 -t
p 2 + t, q qo

Then

"-t LP "- Lq,

or equivalently,

p(12-t) ) Zq.

Notice that

p-1
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Hence

t.o Lp(ug-1) -.-> Zq.

Let

vg-l(x) [ Ixlu( x)
Ixl

if Ix] < 1

if Ix > 1.

Here a ao(p 1) < 2(p 1), and any such a will do. Likewise,

(1)/3o(p- 1) >_2 1- oo ( p-l).

But

2 2 1 p
q0 (l-t) q (p- 1)q

and so

fl>2(p- 1) P
q

Here too, any such/3 is admissible.
Finally, judicious choices of q0 and will pick up any (p, q) in the region.

5. Higher dimensions

When n > 2, the Restriction theorem should still hold in the Zygmund
region

1 n-1 1+ > 1 p<q,p n+l q

but this has only been proven when q > 2, and so q > 2 will certainly be the
limit of any sharp power weight theorems currently obtainable.
We will have to make do with a higher-dimensional analog of Theorem 4.5

when q > 2. In order to generalize the Stein-Tomas proof, we need a
weighted disk-multiplier result.

LEMMA 5.1.
and let

Let X be the characteristic function of the unit ball B in Rn,

Sf(x) 2,f(x).
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x) I Ix[ if Ix[ _< 1
u(

1 if[x[ > 1

and if a < n, then S" L2(U) -’-* L2(v 1) boundedly.

Proof By the Jurkat-Sampson Theorem [5], the
,.". L2(v) --) L2(w) provided w is radial, decreasing, and

Fourier transform

INs INl/s

Since

for all s > 0.

flxl <_ /s
U -I(x) dx -- s-n(1 + s),

(5.2) will hold if w is bounded and decreases rapidly enough. In particular,
(5.2) holds when w X. Thus,

Now fix f and g 5 L2(u) with Ilfllz() and Ilgllz(o) 1. It will suffice to
prove that

f(sf)g <_ c.

But, by Plancherel’s Theorem,

f(sf)g =c "--clfjl C(fBli’2)l/2(fB[’2 )
by (5.3).

THEOREM 5.4. Let q >_ 2, p > 1 with

1 n-1 1
.->1n+l q

1/2
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flxl if Ixl 1
U( X)

Ix[ if Ix[ > 1

then

if and only if fl > 0 and a < n(p 1).

Proof The necessity has been done. For the sufficiency, since the restric-
tion operator maps L --, L=, it suffices to prove the theorem at the endpoint
q 2 and p 2(n + 1)/(n + 3), with /3 0. Put w v 1/p-1). By Lemma
5.1,

S. L(w) --, L(w-,),

where

Sf(x) =/,f(x)
Jn/2(lYl)

lyl n/2
, f(x).

Set

Kz(x )
L/2(n + 1)z/2(Ix )

IX [n /2(n + 1)z/2

and

Lf( x ) W(1-z)/2gz * (fw(1-z)/2)

Since K0
,, when Re z 0, Tz L2 L2. Also, Kl(X) cos(lxl), and so

Kz" L L, when Re z 1, with sufficient control on the operator norms
to invoke complex interpolation (this is exactly the Stein-Tomas argument).
Thus for 2/(n + 1),

T Lp L,’,

or equivalently,

(5.5) f "-’> gt * f" ZP(v) LP’(w-1)
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But

Jn/2-1(Ixl)
gt(x)

ix[n/2_l d(x)

is the Fourier transform of the surface measure of the unit ball. Finally,
Plancherel’s Theorem gives

f Ill 2 dtr ff(d,f) < Ilfll)lld,fll,’w-b < Cllfll 2LP(v)
n--1

by (5.5), and the proof is complete.

So we have sharp results in the truncated Zygmund region and along the
line p 2. The obvious interpolations yield

THEOREM 5.6. Let

[ Ixl if Ixl _< 1
u( x)

Ixl iflxll,

1 < p < 2, and 2 < q < o. Then in order to have

a < n(p 1) is necessary and sufficient. Regarding fl:
(a) When

1 n-1 1--+ .->1p n+l q

> 0 is both necessary and sufficient.
(b) When p 2 and q > 2,

2
fl > n (n -1)-

is necessary and sufficient.
(c) When p q 2,/3 > 1 is both necessary and sufficient.
(d) When p < 2 and 1/p + 1/q 1, then

P>n(p- 1)- (n- 1)
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is sufficient, while

P(n a)-4
is necessary.

(e) When p < 2 and lip + 1/q < 1, then

Pfl >n(p- 1) (n- 1)ff
is both necessary and sufficient.

(f) In the remaining triangle,

>n(p-1) n-2 l(p_l+ qP-P-)
is sufficient, while this condition with > is necessary.
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