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1. Introduction

The purpose of this paper is to initiate a systematic study of amenable
hypergroups. The theory of hypergroups was initiated by Dunkl [13], Jewett
[28] and Spector [49] and has received a good deal of attention from
harmonic analysts. Hypergroups naturally arise as double coset spaces of
locally compact groups by compact subgroups. In [42], Pym also considers
convolution structures which are close to hypergroups. A fairly complete
history is given in Ross’ survey article [45].
Throughout, K will denote a hypergroup with a left Haar measure A. It is

still unknown if an arbitrary hypergroup admits a left Haar measure, but all
the known examples such as commutative hypergroups [50] and central
hypergroups [24] do.

Let Loo(K) be the Banach space of all bounded Borel measurable functions
on K with the essential supremum norm. A left invariant mean on Loo(K) is
a positive linear functional of norm one, which is invariant under left
translations by elements in K. K is said to be amenable if there is a left
invariant mean on Loo(K).

Section 2 consists of notations used throughout this paper.
In Section 3, we give examples and discuss stability properties of amenable

hypergroups. In contrast to the result of Granirer [21] and Rudin [47] for the
group case, we exhibit a class of commutative hypergroups K for which every
invariant mean on Loo(K) is topologically invariant.

In Section 4, Reiter’s condition (P1) is shown to characterize amenability
of hypergroups. It is also shown that, if a hypergroup satisfies (PE), then it
has property (P1), and that the converse is not true in general. This is again
in contrast to the group case.

In [33], Lau introduced and studied a class of Banach algebras which
include LI(K). He called such algebras F-algebras. He extended several
important characterizations of amenable locally compact groups to left
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16 MAHATHEVA SKANTHARAJAH

amenable F-algebras. The F-algebra LI(K) is amenable if and only if K is
amenable.

Let G be a non compact amenable locally compact group, and let
TLIM(Loo(G)) be the set of all topological left invariant means on Loo(G). Lau
and Paterson proved in [36, Theorem 1] that ITLIM(Loo(G))I 22d, where d
is the smallest cardinality of a cover of G by compact sets. Later, Yang
improved their result in [57]. In fact, he showed in [57, Corollary 3.4] that

TLIM(L,(G) )l TIM(L=( G))I TIIM(L=(G))I 22d.

Earlier references on the subject include [8], [18], [5], [6], [7], [20] and [35].
Inspired by these, we prove in Section 5 that

TIM(L=( K))I TIIM(L=( K))I 22,

for an arbitrary amenable noncompact hypergroup, where d is defined
exactly as before. We also show that, if the maximal subgroup G(K) of K is
open, then TLIM(Loo(K))I 22. Finally, we give some applications of these
theorems.

2. Preliminaries

Throughout this paper, K will denote a hypergroup (Same as convo in
Jewett [28])with a fixed left Haar measure h. Unless otherwise specified, our
notation will follow that of [28]. The following notations are different from
those in [28]:

x

clA or A
C(K)

The point mass at x K
The characteristic function of the non empty set A

___
K

The closure of the set A c_ K
The bounded continuous complex valued functions on K
Suplf(x)l

The involution on K is denoted by x .
If f is a Borel function on K and x, y K, the left translation xf or Lxf

and the right translation fr or R,f are defined by

Lxf(Y) =xf(Y) f(x) Ry(x) f/d6x * y f( x * y),

if the integral exists. The functions j f" are given by )Z(x)= f($), f’(x)
f(), respectively. The integral f... dh(x) is often denoted by f... dx.

Let (Lp(K), I1" lip), 1 _< p _< oo, denote the usual Banach spaces of Borel
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functions [28, 6.2]. For f LI(K) we write

f*(x)

where A is the modular function on K. Then Ill’Ill Ilflll. If f Lp(K),
1 _< p _< oo, x K, then [[x f[[p < [[f[[p, and this is in general not an isometry
[28, 3.3]. The mapping x xf is continuous from K to (Lp(K), [[ [[p),
1 _< p < oo [28, 2.2B and 5.4H]. For f Lp(K), x K, write

(Note that rE)8x is the same as f. 8x in [25, 20]). Then it is easy to see
that, for f Lp(K), 1 < p < oo, x K, f, f(R)Sx Lp(K) with Ilfxll <
IIfllp A()I/p and Ilf(R)xll -< Ilfllp. Also, if 1 < p < oo, the mappings x f
and x --, fSx from K to Lp(K) are continuous (see [25, 20.4]).
The proof of the next lemma is similar to the group case (see [25, 20.15]

and [28, 5]).

LEMMA 2.1. Let be the family of all neighbourhoods of e and regard
as a directed set in the usual way" U >_ V if U

_
V. For each U 2#, choose

function dv C+(K) such that frchv(x) dx 1 and ckv vanishes outside U.
Then {Cku}v is a bounded approximate identity for LI(K).

Let G(K) {x K: tx t te}. Then G(K) is a (closed)
subhypergroup of K and a locally compact group [28, 10.4C]. It is called the
maximal subgroup of K. For each x K and y G(K), there exists a
unique z K such that 6x * 6r 6z [28, 10.4B]. We write z xy.

Let H be a compact subhypergroup of K. Then the space K//H of
double cosets of H in K is a hypergroup under the convolution defined by

fK//nfdnxI-I * I-Ivn fi_if ’rr( x * * y ) dt,

f Cc(K//H), x, y K,

where zr is the natural projection of K onto K//H [28, 14].
We next recall the definition of hypergroup joins which we use very often

in this paper. Let H be a compact hypergroup and J a discrete hypergroup
with H N J {e}, where e is the identity of both hypergroups. Let K H t3 J
have the unique topology for which both H and J are closed subspaces of K.
Let tr be the normalized Haar measure on H. Define the operation on K
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as follows:

(i) If s, t H, then s "6t 6. 6t;
(ii) If a, b J, a 4= b, then a b 6a * b;
(iii) If s H, a J(a 4= e), then 6. a a s a;
(iv) If a J, a =# e, and . a Y’bjCbb, the Cb’S are non-negative,

only finitely many are non-zero and Z,bCb 1, then

t{t a CeO" "l- E Cbb"
bJ\{e}

We call the hypergroup K the join of H and J, and write K H V J.
Observe that H is a subhypergroup of K, but J is not a subhypergroup
unless J or H is equal to {e}. The hypergroup K H x/J always has a left
Haar measure, as shown by Vrem. In fact,

1
r + E [x]6, where [x] 6.6x({e} )xJ\ {e}

is a left Haar measure on K [53, Proposition 1.1]. He has also showed in [53,
Proposition 1.3] that K//H -- J as hypergroups.

Let K be a hypergroup, and write

Ufr(K) {f C( r)’. x ->xf is continuous from K to (C(K), II II0 },
UCl(K) {f C(K). x f is continuous from K to ( C(K), II II ) },

and

UC( K) UC( K) UCl( K).

Functions in UCr(K) [UCI(K)] are called bounded right [left uniformly
continuous, and functions in UC(K) are said to be uniformly continuous.
A subset X c_ Loo(K) is called left [right] translation invariant if xf X

[fx X] for all f X, x K. Both C(K) and L=(K) are (two-sided)
translation invariant [28, 3.1B and 6.2B]. Note that C(K) is a norm closed
subspace of Loo(K) in a natural way.

LEMMA 2.2. Each of the spaces UC(K), UC(K), UCI(K) is a norm closed,
conjugate closed, translation invariant subspace of C(K) containing the con-
stants and the continuous functions vanishing at infinity. Furthermore,

(i) UCr(K) LI(K)* UCr(K) LI(K). Loo(K),
(ii) UCt(K) UCI(K), La(g)v Loo(K)* La(K)v

(iii) UCr(K)* LI(K) C_ UCr(K) and LI(K)* UCI(K) c_ UCt(K);
(iv) UC(K) LI(K), UC(K) UC(K), LI(K)v.
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Proof Let b LI(K), f Loo(K). Then

[b, f(x) , f(y)[ fK[,(u) -yb(u)]f(t) du

_< II/11oo11., --y 1.

Since x -*x is continuous from K to LI(K), b, f is continuous. Now,

* fll lllfll
and

IIx *( * f) y *(t * f)lloo Ilflloollx y thlll.

Thus, f UCr(K). Then UCr(K) becomes a Banach left Ll(K)-module.
Let e > 0 and f UC,(K) be given. Choose a neighbourhood V of e such
that 118x * f- flloo < e for all x V. Let bv be a non-negative function in
LI(K) such that [ICy[J1 1 and Cv vanishes outside V. Then,

IlCv * f flloo e.

Hence, LI(K),UCr(K) is norm dense in UC,(K). Since LI(K) has a
bounded approximate identity, by Cohen’s factorization theorem [26, 32.22],
we have

LI(K) * UCr( K) UCr( K).

This proves (i). If f UCr(K) write f= b, h where b LI(K) h
UCr(K). Then, for x K, 8x * f (8x * ok) * h UCr(K). So, UCr(K) is left
translation invariant, and it is easily seen to be right translation invariant. To
see (ii), note that, if f C(K), then f UCr(K) if and only if f UCl(K).
(iii) and (iv) are similar or easy to prove. Finally, by [28, 2.2B and 4.2F],
Co(K)

_
UC(K).

Remarks 2.3. (a) Let f C(K) be such that x -Oxf is continuous from K
to (C(K), IIoJ at the identity x e. Then f UCr(K). Indeed, if {bu)v
is the bounded approximate identity for LI(K), as in 2.1, then {u * f}u
converges to f in the I1" II=-norm.

(b) If the maximal subgroup G(K) is open in K, then UC(K) is an
algebra. To see this, let, f, g UCr(K) x . G(K), y K. Then,

x(fg)(Y) (fg)(Y) =xf(Y)[xg(Y) g(Y)] + g(Y)[xf(Y) -f(Y)],

since 60, 6y 6xy. Thus, x --*x(fg) is continuous at e, and hence by (a),
fg e UCr(K).
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(c) If K is compact or discrete, then C(K) UC(K).
(d) If the maximal subgroup G G(K) of a hypergroup K is open,

non-discrete and non-compact, then UCr(K) :k C(K). In fact, let f C(G),
f UCr(G) [39, Problem 1.3]. Let f be the function on K given by j= f on
G and zero otherwise. Then j C(K), but j UCr(K).

(e) Ross has shown in [52, Theorem A.6] that, if K is non-discrete, then
L(g) 4 c(g).

The next result is in contrast to the group case [39, Problem 1.3].

PROPOSITION 2.4. Let K H V J, where H is a compact hypergroup and J
a discrete hypergroup with H N J {e}. Then, C(K) UC(K).

Proof. Let f C(K) and write g flH. Then g C(H)= UC(H) be-
cause H is compact. If x H, then

-g(Y),
xf(Y) f(Y)

O,
yH
yJ\ {e}.

Since H is open in K, the mapping x xf (and similarly x fx) is
continuous at e from K to (C(K), II I1), By 2.3(a), f UC(K).

3. Amenable hypergroups: Examples and stability properties

In this section, we give some important examples and discuss stability
properties of amenable hypergroups.

Let K be a hypergroup with a left Haar measure A, and let X be one of
the spaces UC(K), UC(K), C(K) or Loo(K). A linear functional rn on X is
called a mean if:

(i) m(f) m(f) for all f e X;
(ii) f>_O implies m(f)>O (f>_O loc. Aa.e implies m(f)>O) and

re(l) 1.

It is easy to see that a linear functional rn on X is a mean if and only if
rn(1) Ilmll 1 and thus the set E(X) of all means on X is a non-empty
weak* compact convex set in X* (see [40, p. 23-27]). A mean rn on X is
called a left invariant mean [LIM] if re(xf) m(f) for all f X, x K. A
hypergroup K is called amenable if there is a LIM on C(K). A right
invariant mean [RIM] on X is a mean such that rn(f) rn(f) for all x K,
f X. Let

P(K) { LI(K)" dp > O, I111 1}
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and

Pc(K) P(K) C C(K).

A mean m on X is said to be a topological left (right) invariant mean [TLIM]
([TRIM]) if

m(&, f) =m(f) (m(f,) =m(f)) for allbP(K),fX.

A mean m on X ( UC(K), C(K), Loo(K)) is called inversion invariant if
m(f) m(f) for all f X. Note that, if an inversion invariant mean is one
sided invariant, then it is automatically two sided invariant. We denote the
set of all [topological] left invariant means on X by LIM(X) [TLIM(X)]. The
sets IM(X), TIM(X), IIM(X) and TIIM(X) are similarly defined. For
example, TIIM(X) is the set of all topological invariant and inversion
invariant means on X(= UC(K), C(K)or Lo(K)).

LEMMA 3.1. (i) Every TLIM on X is a LIM;
(ii) /f X-- UCr(K) or UC(K), then every LIM on X is also a TLIM, and

every RIM on UC(K) is a TRIM.

Proof. (i) Let m be a TLIM on X. Since the modular function A is
constant on {x},{y} with value A(x)A(y) for all x, y K, it follows that
& *xf (dp3), f for f X, P(K). Also bE)8 P(K). Hence,

m(xf) m(4*xf) m((,b(D,5,), f) m(f).

(ii) Let m be a LIM on X(= UCr(K) or UC(K)) and b Pc(K). Since
the mapping x 3x * f(f X) is continuous from K to (C(K), II I1) and
the point evaluation functionals in X* separate points of X, we have

6 * f f (ax * f)6(x) dx.

Thus,

<m,b.f> <m, fK(Sx* f)(x) dx)

fK<m, 8x * f>q(x) dx <m, f>.

Hence, m(b f) m(f) for all b P(K), f X, by the density of Pc(K) in
P(K). The rest of the proof of (ii) is similar, ra
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THEOREM 3.2. Let X be one of the spaces UC(K), UCr(K), C(K) or
L(K). Then K is amenable if and only if LIM(X) : th[TLIM(X) th]. In
this case, IM(X) b [and thus TIM(X) b]. Also, TIIM(X) b for
X UC(K), C(K) or L(K).

Proof. If K is amenable, let m be a LIM on UC(K) and n a RIM on
C(K). Define

F(x) (m, fx> for f UC(K), x K.

Then F C(K).
Next, put

<m1,f) (n,F>, f UC(K).

Then m is a two-sided invariant mean on UC(K). Indeed, since

<m, (yf)x) <m,y(f)) <m,L) F(x),

and

) fK<m, fu) dSx f F(u) G(x),

we have

<ml,rf ) <n, F) <ml,f)

and

<m,]’y) <n, F) <n,F> <ml, f>.

Hence, m is a TIM on UC(K) by the previous lemma. Let E be a compact
symmetric neighbourhood of e, and put

1
b A(E) 1 P(K).

Then dpo f do UC(K) for all f Loo(K). Write

M(f) ml(O f ’ko), f Loo(K).

Then M is a TIM on Loo(K) (see [40, {}4]). Finally, note that if M is a TIM on
X ( UC(K), C(K), L=(K)) then 1/2(M + r) is a TIM on X. D



AMENABLE HYPERGROUPS 23

Example 3.3. (a) Commutative hypergroups are amenable. This is a
consequence of the Markov-Kakutani fixed point theorem and shown in [33,
p. 168].

(b) Compact hypergroups are amenable: The normalized Haar measure
is a unique LIM on C(K). It is the unique TLIM on L(K), and it is also
inversion invariant.

Example 3.4. Let K be a hypergroup such that {x}.{y} is finite for all
x, y K. Write Kd for K when it is equipped with the discrete topology. In
this case, the discrete measures E=laiS, x K, {ai} a sequence of
complex numbers such that ET= 111 < form a closed self adjoint subalge-
bra of M(K). Hence, the convolution in M(K) naturally induces a hyper-
group structure on Kd. Such hypergroups include double coset spaces of
locally compact groups by finite subgroups. We say that K is amenable as a
discrete hypergroup if Kd is amenable. In this case, K is clearly amenable.
Also every LIM on C(Kd) is a TLIM.

It is Rickert [44] who initially proved that a closed subgroup of an
amenable locally compact group is amenable. There are many other proofs
available in the literature now. (See [22], [27] and [43]). We show below that
every (closed) subgroup of an amenable hypergroup is amenable. The proof
here applies Reiter’s methods [43, Ch. 8, 5.5(i)].

Let H be a subgroup of the hypergroup K. Let F be a non-negative
continuous function on K such that:

(i) For each x X, there exists h such that F(xt) > 0;
(ii) If W

_
K is compact, then F coincides on WH with some function

q Cc+(K) [24, Lemma 1.2].

Write Fl(x) fi-iF(xt) dt (x K). Then the integral exists and is positive.
Also F is continuous. For, let W be a compact neighbourhood of x K
and as in (ii) above. Then, for y W, we have

IFa(x) -F(y)l- fH d/( xt) dt fH g,(yt) dt
I spt g,

If e > 0 is given, then by [28, 2.2B and 4.2F], we can find a neighborhood V
of x contained in W such that

IIx -ylloo (H c ,spt ) < e for y V,

where tr is a fixed left Haar measure on H. This shows that F is continuous.
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Next put

F(x)fl(x) Fl(X)
x K.

Then:
(i) f13(xt) dt 1;
(ii) If W __. K is compact, then/3 coincides on WH with some Cc+(K).

/3 is called a Bruhat function for H [43, p. 163].

PROPOSITION 3.5. Every subgroup H of an amenable hypergroup K is
amenable. In particular, the maximal subgroup G(K) is amenable.

Proof. Let/3 be a Bruhat function for H. For b C(H), put

fg,(x) fnfl(t)dp(t) dt, xK.

Then f6 is continuous (this can be proved as above) and IIflloo I111. It is
easy to check that (hf), =h(f6) for h H. Let m be a LIM on C(K). Define

(m1, (f)) (m, f), th C(H).

Them m is a LIM on C(H). ]

A subgroup H of K is called normal if xH Hx for all x K. Let H be
a normal subgroup of K, and let K/H be the set of all cosets xH, x K,
equipped with the quotient topology with respect to the natural projection
p(x) xH. Then K/H becomes a hypergroup under the convolution

PROPOSITION 3.6.
amenable.

K is amenable if and only if both H and K/H are

Proof Let m be a LIM on C(K), and write

<M,f)=(m,fop), f C(K/H).

We have

/

=xHf p( y) for all x, y e K, f e C( K/H) (See [28, 2]).
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Hence, M is a LIM on C(K/H), and so K/H is amenable. Conversely, let
m be a LIM on C(H) and m2 a LIM on C(K/H). For f UCr(K), write

fl(x) (ml,fln) (xK).

Then f is bounded, continuous and constant on the cosets of H in K, and
hence we can write fl= F p, F C(K/H). Put (m, f) (m2, F). We
have

xIF( yH) fl(x y) fK(ml,ufln)d$x y(u) (ml,y(xr)ln),

since u--*ufl/ is continuous from K to (C(H), I1" I1) and the point
evaluation functionals in C(H)* separate points of C(H). That is, xnF p
(xf)1. Hence, m is a LIM on UCr(K). ra

Let K be a hypergroup, and let

Z(K) (xK’Sy,Sx=8,SyforeachyK}.

K is called a central hypergroup or a Z-hypergroup if K/Z(K)CG(K is compact
[24]. Central hypergroups admit left Haar measures and are unimodular [24,
p. 93].

COROLLARY 3.7. Central hypergroups are amenable.

Let J, L be hypergroups with left Haar measures. Then it is easy to see
that the hypergroup J L has a left Haar measure. The next result is a
consequence of 3.6 if either J or L is a group.

PROPOSITION 3.8.
amenable.

J L is amenable if and only if both J and L are

Proof. Let m be a LIM on UCr(L) and m2 a LIM on C(J). Write

(f:x)(y) =f(x,y) forfUCr(JXL),xJ,yL.

Then (f x) UCr(Z) because Ily(f x) -yo(f x)ll II<e,y)f --<e, yo)fllo.
Let F(x) (m1, (f: x)) (x J); since

II(f" x) (f" x0)ll -< II<x,e)f-<o,e)fll, F C(J).
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Next, put (m, f) (m2, F). We have

((a,b)f X)( y) (a,b)f(x, y)

fjfLf(U,U ) da, tx(u) db *

fb(f’u)(y) dta*tx(U).

Hence, ((a,b)f X) fJb(f U) dta * ax(U) because the mapping u b(f U)
is continuous from J into (C(L), II I1) and the point evaluation functionals
in C(L)* separate points of C(L). Thus

<ml,((a,b)f" X)) fj<ml,b(f’u)> dta*tx(U) Fa(x ).

So, m is a LIM on UCr(J L) and hence J L is amenable.
The converse is easy. []

PROPOSITION 3.9. If the hypergroup K is the directed union of a system of
amenable subhypergroups, then K is amenable.

Proof. See [40, Proposition 13.6].

PROPOSITION 3.10. Let H be a compact subhypergroup of K. If K is
amenable, so is K//H. If x * tr tr x for each x K, where tr is the
normalized Haar measure of H, then the converse is also true (cf. [3, 2.2] and
[30, Remark 2.2]).

Proof. Let m be a TLIM on C(K). For f C(K//H), write (M, f)
(m, f 7r), where 7r is the projection of K onto K//H. Let b Pc(Kl/H).
Then an easy computation shows that

(b, f)o zr tr, (b r), (f 7r)(See [28, 14.2G]).

Thus M is a TLIM on C(K//H) because tr .(b 7r) P(K). To prove the
converse, let

f’(x) fJ(x*t) dtr(t) =f*tr(x), f c( I().
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Then f’ is continuous, bounded and constant on the cosets. Indeed, if f > 0,

f’(z0) sup f’(z), z0 {x}.H;
z{x}* H

then since f’(zo t)=f’(z0) for H, we have f’(u)=f’(z0) for all
u {z0} {t}. Thus, f’ is constant on {x} H spt (5x tr Spt tr 5x
H *{x}, x K. Next observe that, if f’ F 7r, then

F( xH yH) f:’ d6x tr y

fs’ dSx * 8y

fi,:f:’(u, t) dSx. 8y(u) dtr(t)

fif:’(u) d(, 8y(u) dr(t)[f’(u, t) f’(u) fort e HI.

Thus,

(xf)’(Y) =xFer(Y)

Finally, if m is a LIM on C(K//H), put

(M,f) (m, F), f C(K).

Then, M is a LIM on C(K). r

Let G be a locally compact group and let B denote a subgroup of the
topological automorphism group Aut G. We say that G is an [F/A]s-group
provided the closure B- of B in Aut G is compact [37]. Let G be an
[F/A]o-group. Then the space Go of B-orbits [x](x G), forms a hyper-
group under the convolution defined by

fG:dS[x] * [yl fs_fo "rr((x) y)

fn_(fo 7r)(x/3(y)) d/3, f [28, 8.3].

COROLLARY 3.11.
group Go is amenable.

Let G be an amenable [FIA]o-group. Then the hyper-
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Proof. Let G’ be the semidirect product of G and B-, and let H’= {e}
B-. Then G’//H’ GB as hypergroups [28, 8.3B]. So, GB is amenable by

3.10. []

CogOLLagY 3.12. Let K H V J, where H is a compact hypergroup and J
is a discrete hypergroup with H q J {e}. Then, K is amenable if and only if J
is amenable.

Proof. H is a compact subhypergroup of K, r 8x 8x * r for every
x K, and K//H --- J [53, Propositions 1.2 and 1.3]. Now, the result follows
from 3.10. []

Following [3], we say that a compact subhypergroup H of K is supernor-
real in K if {}. H {x} __q H for each x K (observe that the compactness
is not needed for this definition). If H is supernormal in K, then 8x * r
r. 8x for x K [3, Lemma 2.2.1]. The converse is not true in general. In
fact, {e} is supernormal in K if and only if K is a group. Let H be
supernormal in K. Then K//H(= K/H) becomes a locally compact group
under the multiplication:

fK/JdSxn * 8yn f/ r dSx , y

fnfOp(X*t*y) dt, X, y K, f Cc(K/H)

(See 54, Theorem 2.1 ])

Hence, it follows from the proof of 3.10 that, if an arbitrary hypergroup K
has a supernormal subhypergroup H, then K admits a left Haar measure
such that

f C(K).

One should note that if H is a compact hypergroup and J any discrete group
with H N J {e}, then H is a supernormal subhypergroup of K H v J.
The next result follows immediately from 3.10.

COROLLARY 3.13. If K admits a supernormal subhypergroup H, then K is
amenable if and only if K/H is amenable.

Examples 3.14. (a) Let SL(2, C) be the locally compact group (with the
usual topology) of all 2 2 complex matrices with determinant 1, and SU(2)
the compact subgroup of unitary matrices in SL(2, C). Then, SL(2, C) is
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non-amenable [40, Corollary 14.6], but the hypergroup SL(2, C)//SU(2) is
commutative [28, 15.5] and hence amenable.

(b) Let H be a compact group and G (a discrete) free group on two
generators with H t3 G {e}. Since G is non-amenable [40, Proposition
14.1], the hypergroup K H v G is non-amenable by 3.12. But, the maximal
subgroup of K is H which is compact (and hence amenable).

Granirer [21] and Rudin [47] established independently that if G is a
non-discrete locally compact group which is amenable as a discrete group,
then LIM(L=(G))\ TLIM(L=(G))= b. The next result is in contrast to
theirs.

THEOREM 3.15. Let H be a compact hypergroup, J a discrete hypergroup
with IJ[ >- 2, H J {e}. Let K H v J be amenable. Then every LIMM on
Loo(K) satisfies the equation

<M,f> (M, flj.> + (M, 1H>fJdtr, f e Loo(K),

where J* J \ {e}, and tr is the normalized Haar measure on H. In particu-
lar, every LIM on L(K) is a TLIM.

Proof. Let x J*. Then, for f L(K), we have

[f(x):xf(Y) f(x y) f(x y),
Ce fHfd" + Eb j*Cbf(b),

yH
y J*, y CX"
y=,

where tx t EbejCbtSb, Cb 0, only finitely many nonzero, EbjCb 1.
(Recall that is the convolution in K, and that the points J* are isolated

in K). Now,

f(x),

x(flJ*)(Y) f(x , y),
Eby*Cbf(b),

yH
y J*,
y=

and

0,
x(fl/-/)(Y) Cefnfdtr

y2
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This implies that xf =x(flJ*) +,(lI-I)fi.ifdo’. Hence,

<M, f) <M,x(flj, )) + <M,x(ltc))fHfd@
(M, fl,) + (M, ln)fJdo" (1)

Let b P(K). Since

E b(y)[y] [ b(y)dy < oo

yj, "J*

and

E b(y)[y]t$y*f(z) (61j*)*f(z),
yJ*

we have

(M, (bla.). f) (fy,dp(y)dy)(M, f) (2)

Next,

(d, IH)* f(z)
fi.l( y)f( * z) dy, z H

dy)f(z), z J*

Hence,

<M,(IH)* f> <M,(4,IH)* fI,*> + <M, 1i-i> fi_i(d)li-i)* fdo" (by(l))

(i#_s(y) dy)<M..fl,.}+ <M.I.}(i(Y) dY)(Sfd)
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By (2) and (3), we get

(M, f), by (1).

Thus, M is a TLIM.

+(M,f)

Example 3.16. Let I+ be the nonnegative integers and I+ t2 {oo} its one
point compactification. Let 0 < a < 3. Let i5oo be the identity element, and
define

m * tn tmin(m,n), m, n I+, m n,

O, t<n

tSn({t})
1 2a
1-a t=n

ak, t=n+k>n,

and t n for all n.
The compact hypergroup obtained this way is denoted by Ha. This class of

hypergroups is studied by Dunkl and Ramirez [14]. The normalized Haar
measure on Ha is given by

(1-a)ak, k
0, k--oo.

Consider the subhypergroup H {1, 2,..., oo} of the hypergroup H
hypergroup Jo {0, oo}, the convolution on Jo being given by

and the

a
tSoo +

1 2atso.tS*tS= 1-a 1-a

Then Ha H x/Jo [53, Example 4.5], and hence by the previous theorem
Haar measure is the unique LIM on L(Ha). This is also easy to see without
referring to 3.14: Let m be a LIM on L(Ha), f L(Ha), P(Ha). Then
II ll, converges to zero, where bn th on {0, 1,..., n} and zero other-
wise. Hence,

m(qb f) limm(n th(k)(1 a)ak)k=0
re(f) m(f).

Thus m is a TLIM on Loo(Ha), and hence m A. o
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We close this section with the following remark. Let K be a hypergroup
with a left Haar measure. Suppose that {x}. {y} is finite for all x, y K. Let
K have a nondiscrete normal subgroup of finite index. If Ha is amenable,
then

LIM(Loo(K) ) \ TLIM(Loo(K) ) .
In fact, let rn LIM(Loo(H)) \ TLIM(Loo(H)). Let v be the normalized
Haar measure on K/H. We take the restriction of h to H to be the left Haar
measure on H (H is open in K). For xK, fLoo(K), put fl(x)=
(rn,xfli4). Then fl is bounded, continuous and constant on the cosets of H
in K (see [21, p. 619-620]). Next, write (M, f) (v,F), where ]-1 F
Then

xi_IFOTr(y) F(xH. yH) =fl(x* y) (m,y(xf)) (xf)l(y)

for all x, y K, since {x} .{y} is finite. Hence, M is a LIM on Loo(K). For
f Loo(H), let f be the function on Loo(K) given by f= f on H, and zero
otherwise. Then

<m,f>,
o,

xH
otherwise.

Then, (M, f> u({H})(m, f). Since rn is not a TLIM, it follows that M is
not a TLIM.

4. Reiter’s conditions

Let K be a hypergroup with a left Haar measure A. We say that K satisfies
(Pr) [(P*)], r 1 or 2, if whenever e > 0 and a compact [finite] set E __. K are
given, then there exists a b Lr(K) dp > O, 114 I1 i such that

IIx * ll < e for every x E.

We say that K satisfies Reiter’s condition if it has property (P1). The proof of
the next result is adapted from Hulanicki [27, {}4].

TrIEOrEM 4.1. K is amenable if and only if it has property (P1) [(P’)].

Proof If K is amenable, let e > 0 and E
_
K compact be given. Fix

P(K). Choose x1,..., xn E and open neighborhoods V/of xi, 1 < <
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n such that

n
___

U v,
=]

and llSy * fl 8x */ Ill < e for each y V/.

Next, we can find O P(K) such that II0 */ II1 < e.
Now, there exists a net {b}

___
P(K) such that I1 * 111 converges

to zero for all th P(K) (see [33, Theorem 4.6] or [22, {}2.4]). Choose
th0 tho P(K) such that

I1 * 0 b0lll < e,

and

l <_ k <_ n,(x*d/ P(K)).

Put =/3 * b0 P(K). Then,

This implies that

l<k<n.

Let z Vk for somel<k<n. Then

If K satisfies (P’), then it is easy to see that there is a net {b,} c_ P(K) such
that I[5 * b 11 converges to zero for all x K. Hence, there is a LIM
on Loo(K). rn
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COROLLARY 4.2. Let MI(K) be the set of all probability measures on K.
Then K is amenable if and only if there is a net {b} c:: P(K) such that
II z IIx converges to zero for all Ix M(K).

Proof. See [39, p. 127] or [56, Lemma 5.1]

The proof of the next theorem is slightly more delicate than the group case
because the relation (fg) =fg does not hold, in general, for hypergroups.

THEOREM 4.3. IfK satisfies (P2), then it has property (P1). Conversely, if
in Reiter’s condition (P1) can be chosen of the form 1/A(A) la, where A is a
Borel set in K with 0 < A(A) < oo, then K has property (P2).

Proof If K satisfies (P2), let e > 0 and compact E __C_ K be given. Let
b L2(K), b > 0, 11112 I be such that IIx * 112 < e for all x E,
and put b2 P(K). Following [4, p. 319], write

tx.d/(y ) d/(y) fg[O(Z ) 0(Y)] d* By(z)

f,[ 6(z) 6(y)] a, ,(z)

+ 2[ b( y)8x 4(y) b2( Y)] GI(Y) + G2(Y).

We have

frla2(y)ldy < 211b11211i b bl12 < 2e for all x E,

KGI(y)
dy IIx * 11 + 111122 I1( * )11 211 bl12

+ 2[114112 Ili * 6112] -< 411 * 4 4112 < 4e

for x E. Hence,

IIx * O 0111 < 6e for all x E.
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Conversely, if th 1/A(A) 1A P(K) satisfies IIx
x E, let

, 1/2 1

A(A)I/2 1.

Then,

II < e2 for all

II * , 2 A(A) Ix * 1A(Y) 1A(Y) 12 dy

-< A(A) [x * la(y) l(y)ldy 211i5x

Hence, IIx * 112 < e for all x E. t3

Let/x Tg be the left regular representation of K on L2(K), given by

Tgf lx * f f L2( K), Iz M( K).

LEMMA 4.4. The following two statements are equivalent.
(i) K satisfies (P2).
(ii) K satisfies (F): There is a net {f}

_
LE(K), [If.liE 1, such that

converges to 1 uniformly on compact subsets of K.
In this case, we have:
(G) fg dlx[ < II T, for all I M(K);
(D) IIZ,ll IIzll for all tz M+(K).

Proof. (ii)(i) If e>0 and compact EK are given, choose f
L2(K), Ilfll2 1 such that I1 f* f’(x)[ < e for all x E, and let th Ill.
Then,

0 _< If* f’(x)l -< b* b~(x)
and

0l-b,b’(x)_<l-[f*f’(x)l _< Ii-f*f’(x)l <e, xE.

This shows that, ling * 112 < 2v, all x E (see [27, p. 100-101]).
(i) (ii) Easy.
(G) If f f," converges to 1 uniformly on compact subsets of K, then

d/x lim f d/z lim ( y)f( y) dy dl(x)

lima fKTg]( y ) dy.
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This implies that fK d/zl _< IIr II for each/x M(K).
(D2) follows from (G). D

The next result can be found in [16, p. 61, Theorem 1.4] for a second
countable commutative hypergroup. For the sake of completeness, we give a
proof.

LEMMA 4.5. Let K be a commutative hypergroup with the Plancherel
measure zc on the dual I. Then sptTr contains the trivial character 1 if and
only if K satisfies (F) or equivalently (P2).

Proof. If 1 spt 7r, then by considering the inverse Fourier transform
one can easily find a net {f,,}

___
L2(K), IIfl12-- 1 such that f. f con-

verges to 1 uniformly on compact subsets of K (see [28, p. 87, Proof B]).
Converse follows from 4.4 (a) and [28, 7.31].

Example 4.6. Let K be the hypergroup given in [28, 9.5]. This is known as
Naimark’s example. Then 1 spt 7r and hence K does not satisfy (P2). But
K satisfies (P1) because it is commutative. An example of a commutative
discrete hypergroup which does not satisfy (P2) can be found in [32, Example
2f].

TI-IEOREM 4.7. If a hypergroup K has a supernormal subhypergroup H, then
K satisfies (P2) if (and only if) K is amenable.

Proof. If K is amenable, then K//H is an amenable locally compact
group by 3.10 and [54, Theorem 2.1]. If tr is the normalized Haar measure of
H, then 8x.tr tr*ix for each x K [3, Lemma 2.21]. Let f,g
Cc(K//H). Then it is easy to verify that (f. g ~)o 7r (f zr).(g 7r)
Since K//H satisfies (F), it follows that K has property (F).

Remarks 4.7. Some important characterizations of amenable locally com-
pact groups are extended to hypergroups in [48]. In particular, analogs of
Day-Rickert fixed point theorem [22, 3.3] and Reiter-Glicksberg property
[43, Chapter 8, 6] are obtained for hypergroups. (See also [15] and [23]) The
statements and proofs are similar to the group case, and therefore the details
are omitted to save space.

In [33], Lau introduced and studied a class of Banach algebras which
include LI(K). He called such algebras F-algebras. Using the theory of von
Neumann algebras he extended several fundamental characterizations of
amenable locally compact groups to F-algebras which admit topological left
invariant means. The F-algebra LI(K) has a topological left invariant mean
if and only if K is amenable. The interested reader should note that
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F-algebras are called Lau algebras in [41]. Properties related to amenability
are also considered in [16, Chapter IV] for commutative hypergroups.
Our last result of this section is also in contrast to the group case. Let E

be a two-sided Banach Ll(K)-module. Then E* is also a two-sided Banach
Ll(K)-module. By a derivation D of LI(K) into E*, we mean a linear map

D: LI(K ) -o E*

such that

D(b ) D(b) q + b. D(b) for all b, q Zl(g).

If f E*, then the map 6f" LI(K) -, E, given by 6f(b) b .f-f. th is a
bounded derivation, called an inner derivation. Following Johnson [29], we
say that the Banach algebra LI(K) is amenable if every bounded derivation
of LI(K) into E* is an inner derivation. The next result follows from [33,
Theorem 4.1].

PROPOSITION 4.9.
amenable.

If the Banach algebra LI(K) is amenable, then K is

The converse of the above result is not true in general. The author is
thankful to Dr. Brian Forrest for suggesting the following:

Example 4.10. This is the same as [4, Example 4.5]. Let G Rn and let B
be the group of rotations in G. Consider the hypergroup K GB (see the
remarks prior to 3.11). As a set, K is identified with R+= [0, oo). The
hypergroup / is isomorphic with K and so LI(K)and A(K)are isometri-
cally isomorphic, where A(K) is the pointwise algebra of Fourier transforms
on K. The functions in A(K) are continuously differentiable in (0, o). Let
be the derivative evaluated at p: i(f) f’(p) for f A(K). For n > 3, 6 is
continuous in the topology of A(K) (See [43, Chapter 2, 6.3(4)]). Accord-
ingly, 6 is a point derivation at p (See [4, 4] and [1, page 360]). This shows
that LI(K) is not weakly amenable and hence not amenable. (The commuta-
tive Banach algebra LI(K) is weakly amenable [1] if every bounded deriva-
tion of LI(K) into a commutative Banach module is necessarily zero.) Since
K is commutative, it is amenable. One should note that La(K) is isometri-
cally *-isomorphic to the closed self adjoint subalgebra of LI(Rn) consisting
of radial functions. Thus, the amenable Banach algebra LI(Rn) has a closed
self adjoint subalgebra with a bounded approximate identity, which is not
even weakly amenable. D
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5. On the size of the set of topological invariant means on Loo(K)

In this section, we obtain the exact cardinality of the set of topological
invariant means on Loo(K). Throughout this section, K will denote a non-
compact amenable hypergroup. Let d be the smallest cardinality of a cover
of K by compact sets.

LEMMA 5.1. Let A be a closed set in K that can be written as the union of
less than d compact subsets of K. Then re(A) 0 for all LIM’s m on Loo(K),
where re(A) m(la).

Proof. For xK, we have {x}.A NA4:th if and only if xA.
[28, 4.1B]. Since A A is the union of less than d compact subsets of K (See
[28, 3.2B]), there exists an x K such that {x}. A N A b. By induction,
we can find a sequence {xn}=

___
K such that {xi} A {xj}. A b (i 4: j).

Now, {:}. {y} tq A 4: th if and only if y {x}. A, for all x, y K. Also,. 6 is a probability measure. Hence, x * la vanishes outside {x}. A, and
is less than or equal to one on {x}. A. That is, 6x * la < ltx. a for x K.
This implies that re(A)< 1/n for each positive integer n, and hence
m(A) O.

Let / be a cover of K by compact sets with I/I d, where I/I is the
cardinality of Y. Let 12 f(Y) be the set of all finite subsets of Y and
consider f as a directed set in the usual way: A > A if A

_
A1. Fix a TLIM

m0 on Loo(K). Let U be a compact symmetric neighbourhood of e and
{fk7=l a countable set in Loo(K).
The next lemma and its proof are inspired by recent work of Yang [57,

Theorem 3.3].

LEMMA 5.2.
(i)
(ii)

(iii)
(iv)

There exists a net {q} ca __C_ Pc(K) such that:
/f h 4: h1, then U, spt q U, sptql b;
114, * b bx I[1 (and IIb * 4’ b II1 if mo is a TIM) converges to
zero for every 4 P(K);
If mo is inversion invariant, so is each
Ifm is any weak* clusterpoint of {Ok} in Loo(K)*, then m(fn) mo(fn),
n 1, 2, If K is g-compact, then we can find a sequence {tOn} c_
Pc(K) satisfying (i), (ii), (iii) and (iv).

Proof. We assume that m0 is inversion invariant (the other cases are even
easier) and for convenience that IIfll-< 1 for all n. Let {the} be a net in
Pc(K) converging to m0 in the weak* topology with b b for all a. By
[20, page 17-18], we can assume that

limllb 4 11 0 limllb b 111 for all b P(K),
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and

w* limb m0.

Now, we’ll order the set fI by {iot}l<ot<d and let a < d be an ordinal.
Suppose that for each /3 < a, we have constructed a mean Oxa Pc(K)
satisfying:

(a) If/3 < 3’ < a, then U, spt x
(b) If/3 < a, then

N U,spt @a, b;

1 1
I1* % 0Aalll < IAI and IIa AII1

for each s UAa;
(c) If/3 < a, then
(d) If fl < a, then

is inversion invariant;

1
Ix(f.)- m0(f.)l < Ihl

for 1 _< j _< Ixl.
Write

A.= U sptg, A=4).

For s K, U (s} q spt q 4) (/3 < a) if and only if s U spt . Hence,
the neighbourhood U,{s} of s meets at most one element of the family
{spt O}la<a. Thus A, and hence U3 A, U3 is closed in K [28, 4.1E].
Since the latter set is the union of less than d compact sets, by 5.1,
m0(U3 A, U3) 0. Fix b Pc(K)with spt 4) --- U, 4) ha. Let 0 < e < 1
be given. Choose Sl,..., sn in U h, and neighbourhoods V of s such that

n

i=1

and

IIb(Da-bOa,lll<e for allsV/,l<i<n.

Next, find Pc(K) such that I1 * I1 < , I1 * II1 < e.
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Finally, choose bo b,, such that

I1 * o o111 < e, I1o * o111 < e,

olla < , I1o * ((,) o111 <

Io(f’) mo(f.)l < e, 1 _< j _< IAI
forl _< i_<n,

and

6o(U3 A u3) < .
Let B be any symmetric compact set contained in K \ (U3, A,,

with bo(B) > 1 e (A,, is symmetric). Define b P(K) by
U3)

1(4, f ) B,bo( ( bo, f ls,,), f Loo(K).

Then

2I1 o111 < e l, e ( E (
1 e

b * b b. Then Oa Pc(K), and it is easy to see that

for each s LI = 1V/ and

I@a(fy) -mo(f.)l < 4e1, 1 _< j _< IAI
(See the proof of 4.1). It is also not hard to show, by repeated applications of
[28, 4.1B], that U. A tq U.spt @a b. Since B,, is symmetric, b and
hence @ is inversion invariant. So, @ satisfies (a), (b), (c) and (d). Thus, by
transfinite induction, we have a net{@a}a C_Pc(K) such that each
satisfies (a), (b), (c) and (d). It is now easy to verify that the net {@a}aa
satisfies all the properties of the lemma. By easy modifications of the above
arguments, we have the last statement (See [7, V]). t3

Let f be a directed set, and let loo(f) be the Banach space of all bounded
real valued functions on f/, with the supremum norm. Write

1( f)*" th(x) < lim sup x(A) for all x Ioo(f/)).
Then is the set of all b loo(f/)* such that I111 = 1 and b(x) lima x(h)
whenever the limit exists. Let A be an infinite set and f f/(A) be the set
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of all finite subsets of A directed by inclusion. Then it is shown in [57,
Lemma 2.1] that I[ 22.

Let L(K) be the Banach space of all bounded Borel measurable real
valued functions on K with the essential supremum norm. Let {bx}x ,o be a
net in Pc(K). Suppose that for each s K, there is a neighbourhood U of s
vhich meets at most one element of the family {spt b}a. Let be the
weak* closed convex hull of the set of all weak* cluster points of {b} a in
L(K)*. Then is a non empty weak* compact convex subset of the set
,(L(K)) of all means on L(K). Let be defined, as before, for the
directed set 1. The proof of the next result is exactly as in [57, Lemma 3.1].
Note that the group structure and the topological invariance of the net
{}A are not used here.

LEMMA 5.3. There exists a linear isometry of l(f)* into Lr(K)* which
maps dp weak* homeomorphically onto .
The next theorem is due to Chou [5, Theorem 5.3] for a g-compact and

noncompact amenable locally compact group. Granirer, assuming the contin-
uum hypothesis, gives a different proof of this result in [20, p. 61]. It is due to
Yang [57, Corollary 3.4] for an arbitrary locally compact group (See also [36,
Theorem 1]).

THEOREM 5.4. Let K be a non compact amenable hypergroup, mo a TIIM
on L(K) and fk} -- L(K). Then the cardinality of the set

A {m TIIM(Loo(K))" mo(fn) m(f,,),n 1,2,

is at least 22d. In particular, ITIIM(Loo(I))I > 22d.

Proof. Follows easily from Lemmas 5.2, 5.3 and [57, Lemma 2.1].

The next theorem is essentially due to Lau and Paterson [36, Theorem 1]
for the case when K is a group.

THEOREM 5.5. Let K be a non compact amenable hypergroup. Then

TIIM(L=( r))l TIM(L(K))I 22d.

If the maximal subgroup G(K) is open, then ]TLIM(L=(K))[ 22d.

Proof To prove the first statement, by 5.4, we only need to show that

ITIM(L(r)l -< 22a.
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Let H be a compact subhypergroup of K such that K//H is metrizable [52,
Theorem 1.4]. Let H0 be an open noncompact q-compact subhypergroup of
K containing H (see [28, 10.1B] and [55, p. 71,/3]). The smallest cardinality
of the cover of K//H by compact sets is d. Let E be a compact subset of
K//H. For x K, the set

( Ho//H) HxH ( Ho//H)

is open and (r-compact in K//H. Since E can be covered by a finite number
of such sets it is separable by [52, Lemma A.2]. Hence, there is a dense
subset T of K//H of cardinality d. Let (r be the normalized Haar measure
of H, and let 4) P(K). For fL(K), the function ((r,4)),f,

)=((r * 4) (r *(4) * f * ()* (r is continuous and constant on the double cosets
of H in K (See the proof of 3.11). Consider

A {((r 4)) * f *((r * )v. f Loo(K)}
as a subspace of C(K//H). Since every function in C(K//H) is determined
by its values on T, we have IC(K//H)I <_ ca 2d. If rn is a TIM on L(K),
then

m(((r,),f,((r,b) v) =re(f) forallfLoo(K),

and hence rn can be considered as a continuous linear functional on A.
Thus,

ITIM(L(K))I _< IA*I <_IC(K//H)*I c2"= 22d.

To see the second statement, we first assume that G G(K) is open and
noncompact. Let L be a (r-compact noncompact open subgroup of G and H
a compact normal subgroup of L such that L/H is separable [36, p. 79].
Write

(K/H) {Hx: x K}.

Using [28, 10.3B and 10.4B], one can show that, for each x K, the mapping
Hg ---) Hgx is continuous (g L). Also, the set

(L/H)x {Hgx: g L} {Hy: y Lx}

is open in (K/H)r. Therefore, every compact set E
_
(K/H) is separable,

and hence there is a dense set in (K/H),. with cardinality d. If G is compact
and open, then (K/G)r is discrete and I(g/G)rl d. The rest of the proof
now follows as in the group case [36].
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The following result is due to Chou [6] for the group case.

COROLLARY 5.6. If K is an infinite discrete amenable hypergroup, then

IIM(/(K))I IIIM(/(K))I ILIM(I(K))I 22’K’.

COROLLARY 5.7. Let K H V J, where H is a compact hypergroup, and J
is an infinite discrete hypergroup with J N H {e}. If K is amenable, then

LIM(L(K))I IM(L( K))I IIM(L(K))I 22...

Proof Let rn be a LIM on l=(J). Write

fl(x) fHf(X * t) dt, xK,fL(K).

Put (M, f)= (m, F) where fl= F r (zr is the projection of K onto
K//H= J). Then M is a LIM on L(K) since (xf)l(y)=x(fl)(y)=
xi4F(yH) for all x, y K. It is easy to see that the mapping rn M is a
bijection of LIM(I(J)) onto LIM(L(K)). D

PROPOSITION 5.8. Let K be a noncompact amenable hypergroup. Then the
convex sets TLIM(Loo(K)), TIM(L(K)) and TIIM(Loo(K)) do not have any
weak* exposed points or weak* G points (see [20, p. 11-13]).

Proof Imitate [56, Corollary 3.7].

The next proposition is due to Granirer [21, Proposition 5] for the case
when K is a tr-compact locally compact group.

PROPOSITION 5.9. Let K be a non compact amenable hypergroup. Let
7rl(X)[FI(X)] be the subspace ofX spanned by

{th*f-f:b P(K),feX}

[{, f f,h,- h,f,h eX,,$ e P(K)}],
where X= UC(K), UCr(K), C(K) or Loo(K). Then X/cITrl(X)oCl and
X/crl(x)c is not norm separable.

Proof. Choose a sequence {fn} -X such that B + Cll(X) C1 is dense
in X, where B is the linear span of {fn}" Let mo be a TIM on Loo(K) and
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consider the set

M= {m TIM(Loo(K))" m(fn) mo(f),n 1,2,... }.

If m M, then since m(clF(X)) 0 and re(l) 1, we have m(f) too(f)
for all f X. It then follows that m m0. This is a contradiction by 5.4.
Thus, X/clrlX.c and X/cllX.c are not norm separable, t2

Remarks 5.10. There is a natural multiplication on UCr(K)* under which
it is a Banach algebra: For f UCr(K) t UCr(K)* define df(x) qb(xf ).
Then dpf UCr(K). Indeed,

(dpf)(y) fKf(u) tx* ty(U ) fK<t,uf> tx ty(U) <t,y(xf)>.

Hence, if {x} converges to x in K, then

which converges to zero. Next, define b, UCr(K)* (t UCr(K)*) by
(b,, f> (b, ,f). Then UCr(K)* becomes a Banach algebra with a unit
(See [19, p. 130-131] or [38, 41). If K is compact, then C(K)* M(K) is
semisimple because the left regular representation of K is faithful [28, 6.2I].
If K is noncompact and amenable, then it follows, as in the group case, that
the radical R(UC(K)*) of UC(K) is not norm separable (see [19, p.
131-132]).
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