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ALMOST-ATOMIC SPACES
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M.L. REESE

1. Introduction

An infinite dimensional metric linear space X is atomic if every infinite
dimensional subspace has trivial dualmthe most functionally bereft space
conceivable. The question of the existence of such a space was first posed by
Pelczyfiski around 1960 (cf. [6]). Although it has often appeared in the
literature during the intervening years (e.g., see [2], [3], [4], [8]), it remains
unanswered. (This question is known as the Atomic Space problem [3].)
The standard example of a space which itself has trivial dual is Lp,

0 < p < 1. Recently Bastero [1] showed that any subspace of Lp, 0 < 19 < 1,
contains a (further) subspace that is isomorphic to a space with many
continuous linear functionals--namely, q for some p < q < 2. Thus no
subspace of Lp is atomic. Note the resemblance of this to an alternate
version of Pelczyfiski’s question [8]" Must every m.l.s, contain an infinite
dimensional subspace with a separating family of functionals? If there are no
atomic spaces, we can build (in any m.l.s.) an appropriate subspace: In X
pick an infinite dimensional subspace S that admits a continuous linear
functional A with AI(X 1) 4: 0, for some x $1. Then consider ker(A1). It is
not atomic so we can find an infinite dimensional subspace with a nontrivial
continuous functional. And so on. Then {Ai: N} is a separating family for
the span of {xi: N}.

In [5] Kalton and Shapiro show that an F-space (a complete m.l.s.)
contains a basic sequence if and only if it contains a closed infinite dimen-
sional subspace with a separating family of continuous linear functionals.
They prove that in any non-minimal space there is a basic sequence, a
minimal F-space being one that admits no weaker (Hausdorff)vector topoi-
ogy; the only known example is w, the space of all sequences. A complete
atomic space would be another. Drewnowski in [2] worked with the idea of
quotient-minimal (every quotient is minimal). Again w is quotient-minimal
and so would be any complete atomic space. (See [3], Chapter 4.) It is
unknown whether or not the completion of an atomic space is atomic.
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Yet a third formulation of the concept of atomic spacema space in which
every proper closed subspace is finite dimensional--both accounts for the
name and offers another view of the structure. The equivalence is apparent.
Suppose X has only finite dimensional proper closed subspaces. Since the
kernel of a functional on any infinite dimensional subspace S of X is closed
and infinite dimensional, S has trivial dual. Conversely, if every infinite
dimensional subspace of X has trivial dual and S is any proper closed
subspace, choose x X that is independent of S. Then A(y).’= 1 if y x
and A(y) 0 if y S defines a continuous linear functional on the span of
S u {x}. So S must be finite dimensional.

Atomicity can be extended to general (Hausdorff) topological vector spaces;
however, this leads us back to metric spaces. Recall that any t.v.s, with a
countable base of neighborhoods of 0 is metrizable. So for an atomic t.v.s.
(X, -), we could obtain such a topology by taking % c - to be the topology
generated by an appropriate nested sequence of 0-neighborhoods. Then
(X, ’0) is the image of the continuous (identity) map from (X, -). Thus
(X, %) would be necessarily atomic. This suggests the (additional) metric
structure is appropriate; so with it and the third definition, we begin our
study of the problem.

Since an atomic space would be separable, it would have to contain a
sequence of independent vectors with dense linear span. Thus it would be
reasonable (in an attempt to construct an atomic space) to devise an atomic
space topology on the set V of sequences of real numbers that are eventually
zero. If there is no such topology on V, then there are no atomic spaces. In
any infinite dimensional subspace of V there is a sequence (Xn)=a with the
property that, for each n N, Xn(i) 4:0 and xn+ l(J) 4 0 imply < j. So we
may reduce the Atomic Space Problem to determining the existence of a
m.l.s, topology on V with the property: If (nk)]= is an increasing sequence
of natural numbers (a blocking of N) and (xk]= is a sequence of vectors
with

x span(en" nl + +n,_ + 1 < n < n + +n)

and nonzero for infinitely many k’s, then

span(x," k N) V.

An approach to proving that atomic spaces do not exist would be to try to
show that for a given sequence of natural numbers the above property cannot
hold in V with a m.l.s, topology. Thus we define an m.l.s. X to be almost-
atomic if it has a sequence (V= of independent subspaces with dim V
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so that for any choice of x - V (with infinitely many nonzero) {Xn} has
dense linear span (in X). In this paper we shall prove:

THEOREM 1. There exists an almost-atomic space. Moreover, for any
increasing sequence (nk)k=l Of natural numbers, there is an almost-atomic
space with dim Vk nk.

The kernel of any linear functional has codimension 1. So it intersects
(nontrivially) infinitely many of the subspaces Vk. The subspace generated by
these intersections is dense (according to the definition). Consequently, every
almost-atomic space has trivial dual.
Theorem 1 shows that the above approach to solving the Atomic Space

Problem does not ask enough about the structure of an atomic space. Any
atomic space would necessarily be ’almost-atomic’ for every sequence of its
(independent) finite-dimensional subspaces.

2. The construction

Since every m.l.s, topology can be given by an F-norm [4], we define the
topology on V via one. If X is a (real)vector space, then a map
X [0, o) is an F-seminorm if

(2)
(3)

IIxll Ilxll, I1-< 1, x X

Ilaxll -0asa-0, xX

IIx + y Ilxll + Ilyll, x, y x

If we also have that Ilxll 0 implies x 0, then is an F-norm.
For an increasing sequence (nkk=l of natural numbers, set I

{2,... ,t/l} and, for N 2,3,..., set IN {n +’’’+nN_ q- l,..., n
+ + nN}. (This is a blocking of N into intervals.) For each N N, let VN
be the linear span of {en: n IN}. These will be the VN’S of the desired space
V. For each N, let

SN- {X VN" IIxlI 1}.

The following (F-norm) construction will yield for any sequence (xn=
(with x V and nonzero for infinitely many n), N N and e > 0, an
element y of the linear span of {xn" Xn N} with

lieN

That is, each eN is in the closed span of (Xn=l We shall recycle the
F-norm construction technique used by Roberts in his production of a rigid
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F-space. [4]

LEMMA. If K c V and w: K [0, ), then

Ilxll inf x E iki
i=l

+

_
w(ki)" M >_ O, k K, I/il 1

i=1

defines an F-seminorm on V.
This can (of course) be done in greater generality; however, this version

suffices for our purposes.
The elements of K will be of the form eu -y, where y is some linear

combination of elements of (distinct) Sn’S. The elements of K will be called
atoms. Although an arbitrary selection will yield an F-seminorm with the
desired properties, it is necessary to have [Ix[[ 4= 0 for all x 4= 0 in (at least)
an infinite dimensional subspace. We shall make a selection that yields an
F-norm on V. In choosing these atoms inductively, we shall define an
increasing sequence (bN) of natural numbers, functions r, a" N N, and a
sequence (Kn) of closed, convex sets.

Let QN and Tu be operators restricting an element of V to Iu and
{1} to 11 to to IN_l, respectively. Define (An) to be an increasing se-
quence of natural numbers with A 1 and A > 4n2(1 + A + + An_l)2,
for each n. Each Su can be written as a finite union of closed, convex
sets--the faces of the unit ball in ll(Iu). Let b 0.

Let b2 be the number of faces of S and for 1 < < b2, define

K AiFi

where F is the i-th face (in some ordering). Also set o- a 1.
Assume bN and Ki, o-i, a (for 1 < < bN) have been determined. For each
< bN, write K as a union (not necessarily disjoint) of finitely many closed,

convex subsets

Ki= UHi,j

each of /1-diameter at most eN 1/4N2. Let (Fk) be a listing of the faces
of Su. Match triples (i, j, k) with integers starting at bN + 1. If n is matched
with (i, j, k) we assign

o-n o-i + 1

a ai.
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When this process is completed at some integer p, match pairs (k, m), for
1 < rn < N, with integers starting at p + 1. If n is matched with (k, m), set

K inFk,

an=m

This ends at bN+ 1" We may assume that o- is non-increasing for bN < <
bN+a. (Reordering may be necessary.) Note that r and a are less than or
equal to N on this interval.

If x Kn, for bN < n < bN+ 1, then

IIQN(X)II/1 An

IlZg(x)lll 1 + i +’’’ "+’ln_ 1.

Also if x’ KN,

IITN(X) ZN( X’)ll/a EN-- 4N2

Define an n-atom z to be an element of the form ean --X, where x Kn.
Assign the weight w(z) r-1 to any n-atom. Note that if TN(Z) 4: O, then it
is a k-atom, for some k < n.
For x V, define Ilxll to be the infimum of

over all finite collections of atoms zj and all aj with lajl 1.
By the lemma, this defines an F-seminorm on V. However, since each K

is convex, we can combine all n-atoms with a’s of the same sign into a scalar
(possibly greater than 1) multiple of a single n-atom. Let k be the least
integer greater than or equal to a. Then [[x can be calculated by minimizing
the following sum over all finite n, all o/1,... an, [1,’’’, n >-- 0, and all

forl<k<n"k-atoms zk and z,

n

X E (OlkZk [kZtk) "[- E (k .qt_ /k)O.-1.
k=l k=l

We may assume that either a or n is greater than 0. In what follows, we
shall show that is actually an F-norm on V. For x Va + + VM, for
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M > 3, with 1, we assert that

1
Ilxll >_ .

Otherwise there would be a representation (as above)with least possible n
with sum less than 1/M. Find N N so that bu < n < bN+ 1" Now o"k _< N,
for bN < k <_ n, so N must be greater than M. Also r[ < l/M; hence

Na<&< < <N.

Likewise/3k < N.
Because of the symmetry of the ll-norm, we may assume that a > ,,. We

first consider the case fin > 0 and show that then we can find an even smaller
sum by replacing anZ nZ’n by Tu(YZn), where 3’ an fin > O, and
replacing atoms zg and z, by atoms Tu(z,) and TN(Z’), for bN < k <_ n 1.
(These atoms have greater weights.) The new representation is

bN n

x- E E
k k =bu+

bN n

k k =bN+
(dk + fik)(O’k- + 3(r, 1) -1

Let us estimate the difference D of this and the original sum

D <I[TN(YZ.) TN(a.Z.- nZ’n) ll6
,,-a { 1 1

k =bN+

(1)r.-1

tnTN(Zn Z’n)]lh
n-1

k=bN+

1(6, + fi,) ’k_ 1 1)
( 1 )On_ 1 (ln -{- [n) 0"2

<N’eN+
1

1 1) ( l’n q’- )0";
1

bN+ O’k(O’ 1) + Crn-1 --(a + )O’n-1
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which, using the fact that rk is decreasing on IN, is

%-1 k --bN+

1 1 1 ,,,
<-4- /

tr- i M tr- I

1 1 1-M
< +4(o-n 1 ) r,, 1 M

<0

for M > 2. This contradicts the minimality of n since we have just demon-
strated a smaller sum for n 1. Thus we may assume that/3, 0.

In this case we write

1
nn QN(anZn)]]11’

since IlQN(Zn)llll An" Again we replace all zk and z, by TN(Zk) and
TN(Z’), for bN < k < n 1, and this time delete z. Our result is

bN n

x E (, t’) E
k k =bN+

bN 1 n-1

+ E + + E
k k =bN+

( r, ( ) t r(’ ) )

1(elk + Jk) crk 1

Once more we estimate the difference:

n-1

D < IlTN(a,,z,,)116 + E (dek + k)
bN+

1 (1)r.-1

1 1)_
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The last inequality is similar to the one before. Now consider an.

O AL-111 QN(z)Ill1
n_. (akQn(Zk) kQn(Z’k))

bN+

bN+ ll

<An +
n-1

E
bN+

-1(1 +<A
n-, )E (NAk + Nak)
bg+

since IlQN(Zk)lltl Ak

+ + A 1)2, we have
and ak, flk N. Recalling that A > 4n2(1 + /’1

N
2n2( 1 + /1 q’- "’"--/n-1)

Consequently,

D < Cen(l + /1 nt- "J-/n--1) -[-
1 1

Therefore D < 0, for M > 3. This again contradicts the minimality of n. It
follows that is indeed an F-norm on V.

Proof of Theorem 1. Suppose < XN>N is a sequence in V with xN VN
nonzero for infinitely many N’s. It suffices to show that for each m, e

span(xN: N N). Fix m N and let e > 0 be given. We may assume that
if xu#O, then xNSN; that is, [[Xullt1= 1. Also assume that M is a
natural number with 1/M < e.
We claim that there exists

E INXN
N=I
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where ]-/’N is a nonnegative integer (for each N), y Kp (for some p),
% M, and ap=m.

Recall that, for each N N and bN < n < bN+ 1, the values of both r and
an are 1, 2,..., N. Let (Xui) be a subsequence of (XN) SO that Xui :/: O, for
each i, and N > m. Set /x k 0, if k 4: N/, for some 1 < < M. We must
choose tzNI, ,/.zNM.

Set /XN Ap, where bN < Pl < bN+l, apl m, and %1 1. For j
2,...,M, inductively set /XN,. Ap, where bN,. <P.i < bN+l, and tXNXN
+ +N.XN,. Kp, ap m, and rp rp_ + 1 j. Thus

E ]dNXN lplXN "l- -Jf-IpMXNM
N=I

is a linear combination of the XN’S and e y is a p,t-atom. Therefore

1 1
Ilem Yll < < e

% M
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