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Introduction

In this note we prove that for any infinite dimensional vector space V, the
first cohomology group H'(GL(V), V') is trivial. (For us, GL(V) is the group
of all linear automorphisms of V, not just those with finite dimensional
support.) Thirty years ago, D. G. Higman proved in [3] that H{(GL(V),V) =
0 whenever V is a finite dimensional vector space of dimension at least four
over a field K. G. W. Bell gives a proof in [1] that when V is a 3-dimensional
space over the 2-element field F,, the indicated cohomology group is cyclic of
order 2. By the easy argument in the next paragraph, and simple calculations
in dimensions 1 and 2 over F,, H'(GL(V'), V) is trivial for all vectors spaces
over all fields with the one exception mentioned above.

We begin by observing that the only difficulty arises when K = F,. Indeed,
if K # F,, then let a € K be different from 0 and 1. Let d: GL(V) - V be
a derivation. We need to find a vector v € V such that for all g € GL(V),
dg = (1 — g)v. Let v = (1 — a)~ ! da. Using the centrality of a, it is straight-
forward to show that for all g € GL(V), (1 — g)da = (1 — a)dg. Then we
get that

(1-g)v=0-g)(1—-a) 'da=(1-a)"'(1-g)da=dg

as desired. (Note that this argument works for any subgroup of GL(}V)
containing a non-trivial scalar transformation. The referee also points out
that a standard spectral sequence argument shows that all higher cohomology
vanishes for such a subgroup.)

Yet now, in the infinite dimensional case, although we could assume that
K = F,, there seems to be no advantage in doing so. Since the argument we
give works in either case, and is not complicated by allowing arbitrary fields,
we present it in that generality.

We use Hom(V, W) to denote the set of K-linear transformations from V
to W. Unless explicitly mentioned, we do not assume anything about the
dimensions of vector spaces.
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1. Lemmas
We begin with a series of lemmas.

Lemma 1. Let V be a vector space of dimension at least 2. Then there exist
g, h € GL(V) such that g + h = 1.

Proof. First suppose that dim V' = n is finite. Let p be a monic polyno-
mial of degree n over K such that 0 and 1 are not roots of p. Let g be an
endomorphism of V' having p as its characteristic polynomial. (For example,
let g be represented in some basis by the companion matrix of p.) Let
h =1 —g. Then g, h € GL(V), since neither has 0 as an eigenvalue. Now, if
V is infinite-dimensional, decompose it as a direct sum of finite-dimensional
subspaces W (each of dimension at least 2). On each summand W, take g,
as above. Let g be the direct sum of the gy, andlet A = 1 — g. O

We are grateful to U.M. Kuenzi for the easy proof of the following
corollary. When we say that a group of linear transformations acts faithfully
on a vector space, we mean no nonzero vector is fixed by all of the
transformations in the group. We will use V' to denote the profinite comple-
tion of V. By definition, this is tAhe inverse limit of the finite-dimensional
quotients of V. An element ¢ of V' is represented by a coherent system (cy,)
of elements of V' indexed by the subspaces W of finite codimension in v,
where W' < W implies ¢ = ¢, (mod W). GL(V) acts on V by g(&) =d
where dy, = g(cy) for W’ = g~ '(W). This induces an action of GL(V) on
V/V.

CoRrROLLARY 2. Let V be a vector space of dimension at least 2. Let V be
the profinite completion of V. Then GL(V) acts faithfully on V/V.

Proof. Let ¢ €V be such that & + V is a fixed point of GL(V). Let
g,h € GL(V) such that g + h = 1, as in Lemma 1. Then g(é) = é(mod V),
so that #(¢) € V, and hence é € V. O

Let T € Hom(V,W). An automorphism g € GL(V) is called T-equiv-
ariant if Tg = T, or equivalently if Im(1 — g) < Ker T.

LemMA 3. Let T € Hom(V, W) be a linear transformation. Let V,, = ker T,
and suppose that dim Vy > 2. Then the group of T-equivariant automorphisms
of V acts faithfully on V.

Proof. Write V=V, ® V, and fix a nonzero element a = g, + a; of V.
We construct g € GL(V) such that Im(1 — g) < Ker T and a & Ker(1 — g).
Let fe GL(V,) and h € Hom(V,,V,) with additional properties to be
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specified momentarily. For v = v, + v; with v, € V; we define

gu = fo, + (1 + h)v,.
Since
g lv=Ff"vg+ (1 -f"th),
we have g € GL(V'). We also have Im(1 — g) < Ker T because
(1-g)v=001~-f)vy + hv, €V,.

We need only choose f and & so that (1 — f)ay + ha, # 0. If a;, = 0 then
a, #+ 0, so we may choose f so that (1 — f)a, # 0, and & may be anything. If
a, # 0 then we may choose h and f such that ha, # 0 and (1 — f)a, = 0.

O

Suppose now that W < V. We will use G, to denote the subgroup of
GL(V') of automorphisms which fix W pointwise. Consider the split exact
sequence:

(+) 0> WSVIV/W—0
with a splitting ¢ € Hom(V/W, V) such that ¢ = 1,, .

LemmMa 4. With notation as above, the exact sequence (*) induces an exact
sequence of groups,

(% %) 1 - Hom(V/W, W) > Gy, 5> GL(V/W) > 1,
with ¢ inducing an embedding £: GL(V/W) — G, such that 7€ = Lo wy

Proof. We define i(f) =1+ ifr for fe Hom(V/W,W). We define
w(g) = wg¢ for g € Gy, but note that this is the natural map and does not
depend on ¢. We define ¢(h) = 1 — & + éhar for h € GL(V/W). Verifying
the claims is routine, so we leave it to the reader. ]

For a splitting ¢ of the exact sequence (), we use G%V to denote the
image of §~ in G,. In some of the computations left to the reader in what
follows, it is worth keeping in mind that £~ ! is 7 restricted to G§,. For the
same reason, note that for f € Hom(V/W,W) and for a splitting & €
Hom(V/W, V) of (x), i(f)¢ = f + £ We denote the kernel of # by K, and
observe that Hom(V /W, W) and K,;, are canonically isomorphic via i
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LemMA 5. Suppose that W is a subspace of codimension at least 2 in V. As
£ varies over all splittings of the exact sequence (), U §G§V generates Gy, .

Proof. Fix a splitting n € Hom(V/W, V) of (). By Lemma 4, G, =
Ky, - G}, so it is enough to show that U §G§V generates K. By Lemma 1,
there is a g € GL(V /W) such that 1 — g € GL(V/W). Fix one. Then every
element of Hom(V/W,W) is of the form f(1 —g) for some fe&
Hom(V/W, W). Therefore every element of Ky, is of the form i(f(1 — g))
for some f as above. For each such f, let ¢ = i(f)n. It is easy to see that ¢ is
also a splitting of (*). But since a straightforward computation shows that
i(f1 - g) = £(g~Hi(g) € G§, - G, the lemma is proved. ]

LEmMmA 6. Let f € Hom(V/W, W) with dimker f > 2. Let ¢ be a splitting
of (*) and set q = i(f)¢. Then G§, N G, acts faithfully on V/W.

Proof. By Lemma 3, {g € GL(V/W)\fg = f} acts faithfully on V/W.
Next, we note that Gj, N G}, = £¢({g € GL(V/W)fg = f}. Indeed, if fg =
f, it is easy to check that &(g) = 7(g). It is also routine to see that any
g € GL(V/W) and its image £(g) € G¥, act in the same way on V/W. Since
£ is injective, G§ N G, contains a subgroup which acts faithfully on V/W,
and hence acts faithfully itself. O

2. The theorem

THEOREM. Let V be a vector space over a field K. Then H'(GL(V'),V) = 0
unless dimV = 3 and K = F,.

Proof. By Higman [2] we may assume the result for 4 < dim V' < «. For
dimV < 4, if K # F, then the cohomology vanishes by the remarks in the
introduction. For dim V' = 1 and 2 over F,, the result can be checked quickly
by hand. The exceptional case dim V' = 3 K = F, is treated by Bell in [1].

So assume that dim V' is infinite. Consider the short exact sequence

(%% %) 0->V->V->V/ V0.
This induces a long exact cohomology sequence, part of which looks like

(%% %)
H(GL(V),V/V) - H(GL(V),V) - H'(GL(V),V).

As H? is _the set of fixed-points of the action, by Corollary 2,
HGL(V),V/V) = 0. Suppose that d: GL(V) —» V is a derivation. We
must show that the cohomology class of d is 0 in H{(GL(V),V). By the



314 GARY A. MARTIN AND MARTIN ZIEGLER

injectivity of the second map in (* * * ), it suffices to show that the
cohomology class of the image of d in H (GL(V),V) is 0. Since the map is
induced by the inclusion of V' into V/, we need only show that d is an inner
derivation from GL(V) into V. That is to say, there isa ¢ € V such that for
all ge GL(V)dg = (1 — g)é.

The construction of ¢ will make use of the following claim.

CLam. If W < Vand 4 < codim W < oo, then there is a unique cy, € V/W
such that for all g € Gy, dg = (1 — g)cyy(mod W).

Proof of claim. Let £ € Hom(V/W, V') be a splitting of (), i.e., a section
of the projection 7 of V" onto V/W. Since GL(V /W) acts faithfully on V/W
and ¢&: GL(V/W) — Gy, is an embedding, we have that G, acts faithfully
on V/W. This is easily seen to 1mply the uniqueness of cy.

To prove existence, consider wdé: GL(V/W) — V/W. It is routine to
check that this is a derivation. By the finite dimensional case, it is an inner
derivation, so there is a ¢¢ € V/W such that for all h € GL(V/W), wdéh =
(1 — h)c?. From this it follows that for all g € G, dg = (1 — g)écé(mod W).
Since g fixes W pointwise, dg = (1 — g)c*(mod W). We now note that c* is
independent of the choice of £. For given some other splitting n of (x),
f=mn— &€ Hom(V/W,W) so n = i(f)& Suppose first that dimker f > 2.
Then if g € G§, N G},

(1-g)cf=(1-g)c" (modW).

which implies that g fixes ¢® —c¢”. So by Lemma 6, c® = c". Now, if
dim f < 2, write f=f, + f, where f,, f, € Hom(V/W, W) each have ker-
nels of dimension at least 2. (Decompose V/W as V; & V,, where each space
has dimension at least 2; let i; =1® 0 and i, =08 1; let f, =fi; and
f, = fi,.) Now take & = i( f,)¢ and n = i(f,)e. Then the precedmg argument
applied twice gives ¢ = ¢”. So we may set ¢y, = c¢ and note that for all
g € U,G§, dg = (1 — g)cy(mod W). It is easy to see then that this remains
true for all g in the group generated by U GW By Lemma 5, this is Gy, .
This establishes the claim.

For 4 < codim W < « define ¢y, as in the claim. For codim W < 4, pick
W' < W with codimW > 4 and define c,, = cy.. The uniqueness of cy,
implies that (cy,) forms a coherent system and that, in the case codim W < 4,
¢,y is well defined. So (c;,) represents an element ¢ of V. Let G = U, Gy,
where W ranges over subspaces of finite codimension in V. Then for each
g € G, dg = (1 — g)¢. To see this, suppose that g € G, We must show that
for each W’ of finite codimension dg = ¢y, — gcy-{mod W') where g(W") =
W'.If W < W, then W” = W' and this follows from the claim. If not, let
U=W nW. Then dg =c, — gcy(mod U). By coherence, both dg =
cy — gey(mod W) and ¢y — gey» = ¢y — gey(mod W'). The result follows.
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It is clear that G is a normal subgroup of GL(V). The inclusion map and
the natural projection from GL(V) onto GL(V)/G induces the so-called
restriction-inflation exact sequence on cohomology:

(*****)

0- H'(GL(V)/G,(V)g) » H(GL(V),V) - H\(G,V)

where (V)G denotes the elements of V' that are fixed by all elements of G.
We proved in the preceding paragraph that the image of d in H 1(G V) is
the 0 cohomology class. Thus it suffices to show that H YGL(V) /G, (V)G) =
0. But for this it suffices to show that (V)G = 0. So suppose that 0 € V is
nonzero. Then for some W of finite codimension, vy, # 0 (mod W). Since G,
acts faithfully on V/W, there is a g € Gy, such that gvy, # v, (mod W).
Then gb # 0, as desired. O
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