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BAILEY CHAINS AND GENERALIZED LAMBERT SERIES:
I. FOUR IDENTITIES OF RAMANUJAN

BY

GEORGE E. ANDREWS'

1. Introduction

In this paper we shall examine the following four identities of Ramanujan
[14; p. 264, egs. (6)-(9), eq. (6) corrected]:
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and

(1.6) wa) = L al"3") - ﬁ (1_3:,,)1
n=0 = (1 )

Throughout this paper we shall refer to the left-hand side of (1.i) as L,(q)
and to the right-hand side as R(q) (1 <i < 4). These four identities are
those listed as (6)—(9) in [14; p. 264] except (as noted earlier) we have
corrected (1.1) and we have moved ¢%(q) or ¢*(—gq) to the left-hand side of
each identity.

While these identities appear to be closely related to the first five identities
of [14; p. 264] and to other results of Ramanujan [1], they seem to be much
deeper; at least, the proofs given here require extensive and intricate prepa-
ration. It is doubtful that our approach resembles what Ramanujan had in
mind at all. The key elements are: (1) series rearrangement, (2) Bailey pairs,
(3) g-series transformations including Bailey’s nonterminating extension of
the g-analog of Whipple’s Theorem [9; p. 69, eq. (3)]. Of these topics
Ramanujan was a master of (1) and could easily handle (2) in any particular
case. However, the formula of Bailey alluded to above (which is crucial to our
treatment of (1.3) and (1.4)) was probably not known to Ramanujan.

We should also note that these identities closely resemble formulas of G.
Humbert [11] for generating functions &7(q) and %(q) of class-number
related to binary quadratic forms. In particular R,(g?) is an instance of the
generalized Lambert series in [17; p. 6, eq. (3.02), x = 0] while R;(—¢g) is an
instance of the generalized Lambert series in [17; p. 6, eq. (3.07), x = 0].
These facts suggest that the methods developed here may throw some new
light on generating functions for class numbers. We plan to return to this
question in a subsequent paper in this series.

In Section 2 we consider the necessary background and extensions of
classical g-hypergeometric series. In Section 3 we shall develop the Bailey
pairs necessary to treat L{q) (1 <i <4). In Section 4 we finally prove
(1.1)—(1.4). We close with a look at some of the topics we propose to treat in
later work.

2. g-Hypergeometric series

There are several formulas in the literature that we require. These are all
identities for certain g-hypergeometric series:

a;,a;,...,a,;4,t = (ay,a,,...,a,5q),t"
2.]. = )
(2.1) ’d)‘( by,...,b ) EO (g,by,...,b:q),
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where

r n—1

(2'2) (AI’AZ’-”aAr;Q)n l_[ l—[ (1 —Aq )

i=1j=0
and

r n—1

(A, A4z 4,50) 0 = n],_[(l—Aq)

i=1j=

The ratio test shows that (2.1) converges absolutely provided |t| < 1, |q| < 1.
Of course the b; must not be nonpositive integral powers of g to guarantee
that each term of the series is well defined. In all our applications the
condition |g| < 1 will be required for convergence.

We being with Bailey’s nonterminating extension of the g-analog of Whip-
ple’s theorem [9; p. 69, eq. (3)]

(2.4)

aq\/— q‘/_def’ghq’defgh
Ja . —va, aq aq aq aq aq

s$7

_ (aq,aq/fg,aq/fh, aq/gh; q) o aq/de,f,g,h;hq,q
(aa/f,aq/g,aq/h,aq/feh;a). "3 24 94 feh

d’> e’ a
(aq,aq/de,f,g,h,a’q’/(dfgh), a’a’/(efgh); q).
(aq/d,aq/e,aq/f,aq/g,aq/h,a’q’/(defgh), feh/(aq); q).

aq/gh,aq/fh,aq/fg, a’q*/(defgh); q, q
aq®/fgh, a*q” /(dfgh), a’q*/(efgh)

If in (2.4) we replace & by ¢~ where N is a nonnegative integer, then the
second summand on the right-hand side vanishes due to the argument % in
the infinite product portion of the numerator. This yields Watson’s g-analog
of Whipple’s theorem [9; p. 69, eq. (2)]

X 43

a2q2+N
( ) a’q\/‘;a _Q‘/;,d,e,f,g,q_N;q, defg
2.5 3P~
aq aq aq aq N+1
a
‘/_— ‘/_ f ’ g > q
(aq,aq/fg;q) n aq/de, f,g,a ;4,9

" (aq/f,aq/8;a)n*" >\ ag/d, aq/e, fea~N /a
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Next we have a formula which can be deduced from (2.5) namely the
limiting form of Jackson’s Theorem [16; p. 96, eq. (3.3.1.3)]

a,q\/g,—q\/c;,d,e,f;q,%

_Va, % 49 4q
\/ZI_> ‘/;’d’e,f

_ (aq,aq/de, aq/df , aq/¢f; q)=
(aq/d,aq/e,aq/f,aq/def;q)."

(2.6) 6Ps

We shall also need in our proof of (1.1) a three term relation among 3¢,
series [15; p. 175, eq. (10.2)]

of

a,b,C;q, W

e, f

(27) 3¢2

_ (efae/biq). , | VDI04
= (e’e/ab;q)oo 3¢2 %’f

ef
(a,b, f/c,ef/ab;q). e/a,e/b,%;q,q

(e,ab/e, f, ~'3f/61190;(1)w3¢)2 ed ef
ab’ ab

Finally to our g-hypergeometric compendium we add Heine’s transforma-
tion, its iterates, and the g-analog of Gauss’s summation [3; pp. 38-39,
eq. 20]

(28) 24,1(“’5’;‘1") _ Bt (c/b,t;q,b)

¢ (C’t;Q)m s at

C

(2.9) _ (e/bobtia). , fabt/e,bia,
(¢, 15 0)w bt

abt

(abt/c;q). , |c/a,c/bsq, —

(2.10) _ (abt/eia)e :
(t:9)w .

a,b;q,c/ab\  (c/a,c/b;q)w
(2.11) 24’1( c )_ (¢c,c/ab;q),
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Our next identity follows from a combination of (2.4) and (2.6) and is
essential in our proof of (1.3).

LemmMma 1.

o (1- aqz”)(f,g;q)n(%)n

(2.12) - ’E,l (1 —aq")(1 — q")(aq/f,aq/2;q),

2n . a2q2 "
© (1—aq )(d’e’f,g,Q)n(zeﬁ)
" ,E’l (1 —aq")(1 —q")(aq/d,aq/e,aq/f,aq/8;q),

_ (aq/de, f,8549)nq"
n=y (1 —q")(aq/d,aq/e, fg/a;4)

(aq,aq/de, f, g,q,a%q°/(dfg), a*q*/(ef2); q).
(ag/d,aq/e,aq/f,aq/g,a*q*/(defg), fe/(aq); q).,

aq/g,aq/f,aq/fe,a’q/(defg); q,q
aq’/fg, a’q*/(dfg), a’q’/(efg)

0

X 43

Proof. Subtract

(aq,aq/fg,aq/fh,aq/8h; q).
(aq/f,aq/g,aq/h,aq/feh; q)«

from both sides of (2.4). The resulting identity is schematically

(2.13)
_ (aq,aq/f8, aq/fh, aq/8h; d)= 550 )
(aq/f,aq/g,aq/h,aq/feh;q). >’

_ (aq,aq/f2,aq/8h,aq/8h; q)= 65 )
(aq/f,aqa/g,aqa/h,aq/fgh; q)..*">

(aq,aq/de, f, g, h,a’q’/(dfgh), a’q’/(efgh); q).,
(ag/d,aq/e,aq/f,aq/g,aq/h,a’q*/(defg), feh/(aq); q).,

493(

The asterisks on the 3¢,( ) and ,¢,( ) mean that the sums start from
n = 1 instead of n = 0.
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We now use (2.6) to write

_ (aq,aq/fg,aq/fgh, aq/gh;q)..
(219 ! (aq/f,aqa/g,aq/h,aq/fh;q).

o a,qx/a_,—qx/g,f,g,h;q,;g—‘;l
= T6Ps
Va,—vVa ,aq/f,aq/g,aq/h

and we substitute this —¢¢¥ into the left-hand side of (2.13). Now every term
in the resulting identity has (1 — k) as a factor. We divide both sides by
(1 — h) and then we set A = 1. The result is precisely (2.12). O

LEMMA 2.

. (- (e -y
(215) Z_: (1 — aqn)(l _fq") (aq/f9q)nfn

n+1
- (1 —aq®) (d,e,f;Q)n(—l)"q( g )”az"

=R (0 (D) (aq/d,aq/e,aqa/f;q).(def)"

- (ag/de, £;0),( )
= (1 —q")(aq/d,aq/e;q),

Proof. In Lemma 1 we replace g by ¢~V where N is a nonnegative
integer. The second term on the right of (2.12) consequently vanishes. We
then let N — « and the result is (2.15). O

This completes our g-hypergeometric arsenal.

3. Bailey chains

Our object in this section is to derive formulas for each of the L,(g) that
eliminate the appearances of ¢2(—q) and 2(q). Our first step is to recall a
weak version of Bailey’s Lemma [6; pp. 25-26, eq. (3.27) and then n — « in
egs. (3.28)-(3.30)].

If for each n > 0,

n

(3.1) B,= % o

=0 (459)n-r(ag;q) s’
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then

- Y
(32) ngo(pl’pz,q)n(pIPZ) Bn

_ (94/p1,84/p23 @) & (P1: P23 ) a(a9/P1P2)"
(aq,aqa/p1p2;9). =y (a4a/p1,04/py;a),

subject to the convergence of the infinite series and products. In each
relevant instance we need only |g| < 1 as always. The sequences «,, B8, are
said to form a Bailey pair if they satisfy (3.1).

Lemma 3. Witha =1 in (3.1), then

(e el

(33) a, = > »>0,
1, n=0,

and

(3.4) g - (2,9/2;49),

(g:9)2n

form a Bailey pair.

Proof. We must verify (3.1) with a = 1.

(3-3) g’ (4;9) - r(q Q) nsr

1 i (—1)'(Z’q(;) + z"q(rzl))

(q q)n r=1 (q;q)n—r(q;Q),H.r

_ (—~ 1) z q(r)
- r——E—-n (q q)n—r(q Q),H.r
_(z.9/259),

(45 a)2n

by [13; p. 75] (cf. [10]), which is the desired B,. O

We now differentiate (3.3) and (3.4) with respect to z multiply by —1 and
then set z = 1. This operation preserves the fact that the results again form a
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Bailey pair:

(3.6) a, = (—1)”"1nq(2)(1 -q"),
d (1-2)(zq;a),-1(a/z;4),
3.7 = —|=
(3.7) Bn dz (a59)2n o1
0, n=0,
=< (a;9),-1(a59)» 0> 0
(g5)2n ’ ’
Lemma 4.
> (-a,-a,9;9);-1(q;9),q’
3.8 L =
(3.8) a(a) j§1 (2:9)2
_ i (-a,-a,a;9);-1(a;9) 4’
o1 (a,—-a,4"% —4%4q);

Proof. Set a =1, p; =p, = —1 in (3.2) and insert the Bailey pair (3.6)
and (3.7). After dividing both sides by 4, this yields

oo}

2 (@50)-1(a59).
~q;q)n-14
,,=1( Yt (45 49)2n

-y (—1)"_11161(”;1)(1 —4")
$*(—a) ;2 (1+q")?

=L,(q). O

We now apply the operator

_d 4
dz%dz

to the Bailey pair in Lemma 3 and then set z = 1. The result is a new Bailey
pair (af’, )

n

69 ap = =[(wre® eyl

= (—1)"_1n2q(;)(1 +q").
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Note that
d d d
(3.10) [EZE“ —z)F(z)L=1 = E(z(l - 2)F'(z) —zF(z))]Z=1
- —F(1) - 2F'(1).
Therefore B = 0 and for n > 0
d d (24;9)n-1(a/7; )
»_ 14,2 1 _
(3.11) g dzzdz(l z) (4:2)ar .

_(4:9)s-1(959)n
(259)2n

+2(q;q)n-1(q;q)n{"'1 —a' X": q’ }

(a;9)2n

_(@9)n-i(a5D)n | 5(9:9)n-1(d59)n 4"
(45 9)2n (4:9)2n,  1-4"

(a:9)7 1
(1 =a")(a@)2n-1"

LeEMMA 5.

o

_ (-4,-49,4,49;9) 19"
(312) Lda) = El (1 =q")(4;4) 201

Proof. Set a =1, p; = p, = —1 in (3.2) and insert the Bailey pair (3.9)
and (3.11). After dividing both sides by 4 this yields

- — 2 n (q’q)i—l _ 1 had (—l)n—lnzq(n-;l)
n§1( qaq)n—lq (1 _qn)(q;Q)z,,_l ¢2(—Q) ngl (1 +qn)

=Ly(q). 0

To treat L,(q) and L,(q) we require a further Bailey pair:

LemMa 6. With q replaced by q* in (3.1) and a = q°, then

(313) a, = (_l)n_l(zn+lqn2+n _ z—nqn2+n)/(1 . q2)
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and

(Z; qz)n+1(q2/2; qz)n
3.14 =

Proof. 'We must verify (3.1) with g replaced by g2 and a = g2

(3.13) g (4% 9%),.- ,(q 4%) s

Z ( 1)’(z—r r24r _ Zr+lqr2+r)
r=0 (q qz)n r(q 4 )n+r+1

n 1) z~ r 24r
- v (-
o1 (@754 )n_r(q Y & I
(Z;qz)n+1(q2/z;q2)n

(% a*) 2041

by [13; p. 75] (cf. [10]), which is the desired B,. O

We now differentiate (3.13) and (3.14) with respect to z, and then set
z = 1. As before we still have a Bailey pair:

(3.16) a® = (=1)""'(2n + 1)g" /(1 - ¢?)
d (z9°,4°/2; q%)
3.17 D=1=(1-z2 ?
( ) dZ( ) (qz;q2)2n+1 -
__(a*a*4*),
(4%59%)2n41

Lemma 7.

2 2 2 2
9,9,.97,97;9",49
(318) 3(6]) == 24¢3( __qz’q3’ __q3 )
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Proof. Replace g by g? in (3.2), then set a = g2, p, = p, = q. Finally
insert the Bailey pair (3.16) and (3.17). This yields after multiplication by g:

® 2. 2\2
q%;q?)
_ Z q; q> iq2n+1 ( n
n=o( ) (4% 2%)an1
_ (qz’qS;qZ)m L (1 _ q)2q2n+1 (_1)n‘1(2n + l)qn2+n
(a*,4%4%). /2o (1 — g2y (1-4%

1 & (-1)'2n—1)g"!
¥*(q) ,E‘l (1 — g1y

= L;(q). O

For the Bailey pair required for L,(q), we replace z by zq? in Lemma 6,
multiply the results by z~!/2, then apply the operator (d/dz)z(d/dz) and
finally set z = 1. This yields

d _d

(3,19) a§2)= EZE(_1)”_1(Zn+1/2q(n+2)(n+1)

__Z—n—l/anz—n)] =1/(1 _ qZ)

= (=D)"(n + P01 - a1 - a?).

Applying (3.10) again, we find 8§ = 1/4, and, for n > 0,

d_d —27%2(24,4*)n+1(4%/2;8*) -1
3.20) BY = [—z—(l —z)( L = )
(3:20) B = |7z (4% 0*)2n+1 ot
(4% 99 n+1(a% %) n—1 ( "l (=g S 9V )
- 242y A4 )y 4
(4% 4%)2n+1 ,-; 1-q% E& 1-q%
_ 2(d%a)n+1(d% a4 n1 (_1 I R G )
(4% %) 2n+1 1-g* 1-g**?
_ 2(q2;qz)n+1(q2;q2)n-1( —1+g**? )
(4% 0%)2n+1 1 -a*)(1 - g**?)

2
. =2(4%a%)
(@% 92



GEORGE E. ANDREWS
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LEMMA 8.
hd 2 (612'42)2

(3.21) Ly(q) =1 -8 ¥ (4:4%),4>"~ 55>

n=1 (q 5 q )2n

Proof. Replace g by g? in (3.2), then set a = g%, p, = p, = g. Finally
insert the Bailey pair (3.19) and (3.20). This yields after multiplication by 4

o 2. 2\2
a’;4%), -1
1—82 q;q2iq2n( n
n=1( ) (4% a%),,
_ (@ a%a). ¢ (1-g)’a” (=1)"Cn+ 1)’q" (1= q""?)
(1-4%)

(044754 1 T0 (1 - g> 1)
1 i (-1)"q”*"(2n + 1)’(1 + ¢**1)
¢2(q) o (1 _ q2n+1)
O

=L,(q).
The Bailey pairs from Lemmas 3 and 6 have other applications which we

shall discuss briefly in the Conclusion.
4. Ramanujan’s four identities
Section 3 provides useful representations of each of the L,(q). To prove

Ramanujan’s identities we shall transform each R,(q) in such a way that the
desired result follows from an instance of some identity in Section 2.

THeoREM 1. Equation (1.1) is valid; i.e.,
Li(q) = Ry(q).

(4.1)
Proof. We transform R,(q) as follows:
(n+1)(2n+1)(1 +q2n+1)

- 4
)y
n=0 (1 _q2rz+1)2

_(a%54%0 & (4:97).9
(q;qZ)i n=0 (qz;qz)n(1 — q2n+1)

(4.2) R\(q)

2n+1
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by (2.5) with g replaced by g%, e, N > », a =q% d =f=g =q. Also by
(3.12)

oo (q2.q2)2qn+l
1 — n+1 2. 5,2 . a2
no (1 =4"")(a%:a%),(a;0%) 41

_ i (qZ;qZ)iqn+1(1 +qn+1)
noo (L —a**%)(a%4).(a50%) 41

3 q s a’.q9%,qa*4,q
(1-a)(1-4q*)|*" 4, q*

2 2 2.,.2 2
q-,497°,497°;49",4
+613¢2( , ))

(43) Li(a)

a’, q*
3 q (4% 4% 4% a*; 4%).. s 4,4,49;9% 9>
1-a)(1-4% (d*.a,4%a;:d), > ° 4,9°

(by (2.7) with g replaced by a>,a=b=c=q%e=q° f= q4)
— (612;(12)3o o (q;qz)nqz"“
(a;0%)2 n=o (@%32%)a(1 — q*"*")

=Ry(q)

by (4.2). O
THEOREM 2. Equation (1.2) is valid; i.e.,
(44) Ly(q) = Ry(9).

Proof. In Lemma 2 replace g by g2, divide both sides by (1 — f), then set
a=f=1,d= —1, e = —q. This yields

(1 + q2n)( l)n 1 n2+n o (_1)”qn2+2n
4.5 2 2 Z P
( ) (1 _ qzn) + = (1 _ q2n)

Z (459*)n(4%59%)-19™"

1-¢"")(-4% —q;4%),
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Algebraically combining the sums on the left-hand side term by term we find

(G M G S CF qZ) (4% 4%)a10™
(46 nz=:1 (1+q")° Z (¢, —4* —a;d%),
= §(1 - Lz(‘l)),
by (3.21). Hence
( 1)” n+n
(4.7) Ly,(g)=1+ 8n§1 ——————(1 )
= Ry(q). o

THEOREM 3. Equation (1.3) is valid; i.e.,

(4.8) Ls(q) = R;(a)-

Proof. In Lemma 1 replace g by g2, divide both sides by (1 — f), then set
a=f=1,g=q,e= —1,d = —q. This yields

49 _y M +2 L
(4.9) nzl Q-a) nZI -2y

_ 5—"; (a5 4°)n(4 'qz)n g

\ (1-4”)(—a, -4 q%),

a4,.4,9% a%* a* q*
- 1 _ 24¢3 3 2 3
q q,—q9", —q
_ {2 (2:9%) (2% 4%), 19"

1-q"")(-4q, -4%4%),

+ L3(q)’

by (3.18).

We can replace the series on the right-hand side of (4.9) with the expres-
sion on the left-hand side of (4.6). Hence

@10)  Lya)=- % sy D"

ne 1(1+ )2 a1 (1+q")?
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To conclude our proof we must show that R,(q) is equal to the right-hand
side of (4.10). Now

5 D' & (1) ng

et 1—q a1 1-g*

(411)  Rs(q)

(2n + 1)q4n2+4n+1

1— q4n+2

2 2ng*” s
=Y —m- X

n-11l—4 n=1

4n%+4n

2n + 1)q4n +8n+3

0
; 4n+2

-4

2ng™ "
+ Z
n=1 1 _q

= 8:(q) — Sx(a) + S3(a) — Su(a).

We examine these terms separately. To do so we require the following simple
summation which is obtained by differentiating the finite geometric series:

m n x — xm+l mx'"“
(4.12) ngnx = -2 - 3= formzo.
Consequently
(4.13) S(q) =2 Y ng*tenm

n=1m=0

o
s
s
3

n=1m=n

© m
=2 Z Z nq4nm
m=1n=1
_s i q4m _ q4m(m+1) 3 mq4m(m+1)
m=1 (1 —q“’")z 1 _q4m
@ am _ 4dm(m+1)
q q
=2 Z - S3(q)’

I

1 (1-g*)

m
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and

0 q(2n +1)2

(4.14)  S,(q) - ngomm

q(2n +1)2

=2 Z 4n+2

=2 Z Z nq(2n+1)(2m+1+2n)
n=0m=0

=2 i i nq(2n+1)(2m+1)

n=0m=n

m
q(2m+1) Z nq4(m+2)

=2 Z

m=0 n=0
_, i q(2m+1) q4m+2 _ q(m+l)(4m+2) ~ mq(m+1)(4m+2)

_ 4m+2 2 (1 _ 4m+2)
m=0 (1 q ) q
o 6m+3 4m?+2m ®

B q (1 -q ) q(2m+1)(2m+3)
=2 % (1= g2y’ “Sda) L e

Obtaining S,(q) + S5(¢) from (4.11) and S,(g) + S,(g) from (4.14) and
substituting the results into (4.11), we find

o (q4m _ q4m(m+1)) © q(2n+1)2
(4.15) Ry(q) =2 Y% - Y —
3 o (1 _ q4m)2 o 1 — q4n+2
5 i q6m+3(1 _ q4m2+2m) B q(2m+1)(2m+3)
m=0 (1 - q4'"+2)2 m=0 1- q4m+2
o 4m o0 6m+3
q q
=2y —F—— -2y
m=1 (1 - q4m)2 m=o (1 - q4m+2)2
1 qn(n+2)
Z (=D :
-1 (1=g>)
~ o q(2n+1)2(1 +q4n+2)
o (1 _ q4n+2)

= 2T,(q) — 2T,(q) — 2T5(q) — Tu(9).
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Now
et q2n+1 oo 0o
(4.16) E — 5 = Z Z g@n+oem+n
n=0 1= q n=0m=0
o n o0 15
= Z Z + Z Z q(2n+1)(2m+1)
n=0m=0 n=0m=n+1
= i i q@rrhemTh i i g@n+hem+D
m=0n=m n=0m=n+1
i q(2m+1)2 i q(2n+1)2+4n+2
= — t —_—
0 1 — q4m+2 ot 1 — q4n+2
=T(q),
and

(4.17) Z(_l)nn_ﬂ=z( a)"q" (1 - q")’

st (1+g%° 5 (1-aq*)
_ ( 1) qn +n(1 + an) o7 .
Z (1 q2")2 3((])
= — ;- q—2n - 2T4(q),
ngl (1 _ qz,,)z (q9)

by Lemma 2 wherein we replace g by g2, divide by (1 — f) and set
a=f=d=e=1.Also
(4.18)

0 n o

B q B Z qn(l _ 2qn + an)
P L0 S— (—q”f
© 4n

Sy oy 4

n=1 (1 - qz”) n=1 (1 — q4")2

4n+2
s2 %
n=0 (1 - q
© 6n o 6n+3
q
-l ——5- L

=1 (1 _ q4n) ne0 (1 _ 4n+2)2

4n+2)2

__y __qn___ +2T 2 ___qﬁiz__
ngl (1 _ q2n) (q) + nZO (1 _ 4n+2)
- L T - Tya).

n=1(1—g* )
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Utilizing (4.16), (4.17) and (4.18) to eliminate T,(q), T5(¢) and T,(g) respec-
tively in (4.15), we find

(4.19)

Ra)=- ¥ —2 4y 4

n=1 (1 + ) n=1 (1 - qz”)z

n

© 4n+2 6n

q - 4
2y Ly 1)
ne1 (1 — q4n+2)2 ne1 (1 _ q4n)2 2
d -1 "qn2+n L 2n Ll q2n+1
SRy ey e

n=1 (1+ Q")2 as1 (1—g>yY  S1l1-4a
® 4n+2

q
= Ly(q) + Z — -2 ————

’ n=1 (1 - 2") n=0 (1 - q4"+2)2

© 6n © 6n+3 © 2n

q a q

rpo iy C oy

ne1 (1 _ q4n)2 oy (1 _ q4n+2)2 ne1 (1 _ q2n)2

© 2n+1 4n+2

q 1-g

e

"o (1 _ q4n+2)2
(by (4.10))
o g% o0 g*"*?
L)+ Loy
3 o (1 _ q4n)2 fart (1 _ q4n+2)2
© 6n © 2n
q q
ry 4 iy 4
n=1 (1 - q4")2 n=1 (1 - q2")2
b 2n © 4n+2
q q
R e e
3 n=1 (1 _ q4n)2 ne0 (1 _ q4n+2)2
e 6n © 4n
a a
Yy 2L iy 4
o1 (1 —q"")2 i1 (1 - g*’
Z 2n i q2n i q4n
L)+ L L —-lr—2L—-¢¥ 21—
’ n=1(1- 4")2 n=1(1-— qz")2 n=1(1— q“")(2
© 6n © 4n
q q
ry 2 iy 4
ne1 (1 - q4n)2 ne1 (1 — q4n)2
© 2n 2n 4n © 2n
qg"(1+29" +¢q q
=Ly(q) + X ( 2 ) o2
n=1 (1 -4*) n=1(1—-q°")

= Li(q). O
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THeOREM 4. Equation (1.4) is valid; i.e.,

(4.20) L,(q) = Ry(q)-

Proof. From (3.8) we see that

qqqqq
-q%,¢*%, —q*

(4.21) Ly(q) = - )4¢3(

Nowin (24)seta =gq, f=d =h = q'/?, g = —g'/?, e = —q. After simpli-
fication this yields

(1 _ q1/2) q"
4.22 An 2 77
( ) nZO (1 _ n+1/2)

_ (qz;qz)i o (1 _ q1/2)(q;q2)nqn

(1 - q)(1 + q"?)(a% q*) 2 n=0o (1 —a""'?) (2% 4%),

(1 - q"2(1 + q'72) -4,9,-49,9;49,9
(1-a*)(1+q7"?) 7\ =a*2,¢7% -¢* |

Multiplying by q'/?(1 — g'/?)~? yields

n+1/2 2. ,2\2 o c 22\ an+1/2
() ¥ 4 SpuLh - (@ig )™
n=0 (1 - "2 (q;4%)2 n-o (1~ 4 )a* a*),
+ L,(q)
by (4.21).
We now dissect the terms making up (4.23). First
® qn\? ®  ®
424) Y =Y ¥ mgmnti/

n=0 (1 - q"“/z)2 n=0 m=0

= i i zmqm(2n+1)

n=0m=0
+ Z Z (2m + 1)qm(2n+1)+n+1/2
n=0m=0
@ 2n+1
=2y 1 q'/’H(q)
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Next

n+1/2

(a%a%) & (a:d°),4a
4.25
¢ (a5 9%)- I T A ),

= _(.q_z’iz);‘i i Z (q 4q ) m(n+1/2)

(a:42)% n=om=1 (@ @a),”

2
(4% 4%). & (q a’), @n+1) 12
_ m n +q / K q
(q;qz)fo nZOmZ>l (q* ‘IZ) (@)

3 (4% 4% & (g:9%),4*"!
= 2 Z — 2n+l\( 2. 2
(Q;qz)m n=0 (1 q )(q 4 )n

+ q'?K(q).

We now regard (4.23) as an identity for functions of g'/? and we extract
the even portions using (4.24) and (4.25). Thus

2n+1

_ (qz;qz)fo > (g:4%),a> !
(a;42)% no (1 —a*"*')(a%:a%),

+ L,(q).

Now in (2.5) we replace g by g2, we let e and N > o, d =f=g =gq,
a = q*. Upon multiplication by g(1 + gX1 — ¢g)~? this yields

2n+1)q(2n+1)(n+1)

(4.27) y Uta .
ne (1 _ q2n+1)

2n+1

_ (a5 & 5 (a:9%),a

(q 4 )w = (q qz),,(l _q2n+1) .

Combining (4.26) and (4.27) we obtain

2n+1

428) L, =2m—q——2—w(1 3
(428) L) =2 X e~ B

+ q2n+1)q(2n+1)(n+1)
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We must now identify R,(q) with the right-hand side of (4.28). Now

© n(n+1)/2

nq
(429)  Rya)= X FT—n
1 1 q

n

8 |

znqn(2n+1) e (2n + l)q(n+1)(2n+1)
+
o 1 _ q2n frt 1 — q2n+1

Ui(q) + Uy(q).

|
Ny

Now

znqn(Zn—l) Z q2nm

1 m=1

fe]
Z 2nqn(2m+l)

n=1m=n

2 i i nqn(2m+1)

m=1n=1

Il
s

(430) Uya)

I

n

Il
™M

It

l
s

g2m+l — g@m+m+D ~ mq(2m+l)(m+1))

= (1- q2m+1)2 1— g2+t
(by (4.12))
Nl 2m+1 _ ,Cm+1)(m+1)
q q
=2 - Uy(q)
0 (1 _ q2m+1)2 2
2 g@mEom )
+ Y
m2=0 1 — q2m+1
Combining (4.29) and (4.30), we find
(4.31)
o0 2m+1 o @m+1)m+1)
q q
Ry =2 % 4§ At
4 moo (1 - q2m+1)2 m=o (1 - q2m+1)2
N i q(2m+1)(m+1)(1 _q2m+1)
o (1 _ q2m+1)2
) © q2m+1 B o q(2m+1)(m+1)(1 +q2m+l)
me0 (1 . q2m+1)2 m—0 (1 _ q2m+1)2
=L,(q),

by (4.28). O
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Conclusion

In previous papers we examined some applications of g-hypergeometric
series to number theory and generalized Lambert series [2], [7]. In light of our
comments in the introduction it is clearly plausible that the methods devel-
oped here may reveal new results for the class-number generating functions
and related number-theoretic problems.

The Bailey pairs arising in Section 3 also pose surprising questions. For
example, if we insert the Bailey pair from (3.6) and (3.7) into (3.2) with
a =1, p,;, p, > ® we obtain

© an(l _ q)(l _ q2) e (1 _ qn—l)
(51) ,,2=:1 (1 _ qn+1)(1 . qn+2) v (1 _ q2n)
= _T_i___ i (_1)”“1nqn(3n—1)/2(1 _ qn)
,,I;Il(l —q") n=1

g+ +q*+2¢" +¢° +q%+2¢"+q" +2¢"0 + ---

We calculated the first 10000 coefficients on the computer; they are all small
nonnegative integers and only 2299 are positive. Most surprising of all, the
coefficients are multiplicative. This is quite reminiscent of the phenomenon
treated at length in [8] for Ramanujan’s series

N n(n+1)/2

q
(>2) LOrai+ra) ~(ra)

It turns out that the mystery of (5.1) can be explained by identifying that
function with

3n+1 3n+2 )

53 3 d S—
( ) n§0 (1 _ q3n+1) (1 _ q3n+2)

I
IIMB
——
™
—
[SSTR W
N ——
\—_/

This latter expression has turned up in number-theoretic work by Klooster-
man [12] and others [5], and indeed appears in [14; Ch. 21, p. 11] in other
identities. We shall subsequently examine this topic. Also Lemmas 3 and 6
imply the main results in [4].
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Finally we cannot resist remarking that there are numerous rather surpris-
ing g-series identities that flow from our results. Indeed by (4.1), (4.2), and
4.3)

(5.4) i (4%:9%),9" _ (g% 42 & (g;49%),a™"
nso (L =a""N@58%) w1 (g;4%)% nmo (1 —a*1)(a%a%),
 (a%dP) s 4,9;9%,4°
- 2%1
(q;qz)i(l - q) a’

Thus the arsenal of Heine transformations (listed as (2.8)—(2.11)) may be
applied. Perhaps the most elegant result follows by applying (2.10):

- (¢%4a°)qa" - (4%4%),a"
(5.5) EO 0= a g " ¢(Q)n§o @

Presumably the interest of further applications has been adequately sug-
gested by the above brief sketch.

I wish to thank Bruce Berndt for calling (1.1)-(1.4) to my attention. He
also discussed them at length with me and gave me a number of useful
suggestions in the final preparation of this paper.
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