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CLOSURE PROPERTIES OF THE CLASS OF UNIFORM
SWEEPING-OUT TRANSFORMATIONS

BY

JONATHAN L. KING

A measure-preserving transformation (S: X, z) on a probability space is
uniform sweeping-out if for any set A of positive mass and any e there exists
N such that: Any collection K of integers will satisfy

kK

if K > N. Nat Friedman introduced this property in [F]. Our goal here is to
affirmatively answer a question of Friedman by showing that the class of
uniform sweeping-out transformations is closed under countable cartesian
product. The proof is a second application of the conditional expectation
argument of [K] followed by a counting argument. I am indebted to Nat
Friedman and Dan Rudolph who pointed out that uniform sweeping-out has
a "mixinglike" characterization. This provoked the "lightly-mixing" charac-
terization which is (CO) below and suggested dusting off the argument which
shows that the class of lightly-mixing maps is closed under cartesian product.
It is not known (in the category of weak-mixing transformations) whether
uniform sweeping-out is implied by the existence of a dense family of sets A
each of which sweeps-out uniformly.
Our cartesian product result appears now, rather than in 1988 when it was

done, because it is now known that uniform sweeping-out is strictly weaker
than mixing. (That mixing implies u.s.o appears in [F].) Terry Adams [A] has
recently announced that the lightly mixing example of [F, K] has the stronger
uniform sweeping-out property. Yet it is not mixing; indeed, not even
partial-mixing.

A "lightly-mixing characterization. Each of the following two properties
is equivalent to uniform sweeping-out. For a /3 [0, 1] let Indices,(A, B)
represent the set of indices k satisfying /z(ShA n B) </3. The function
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Zero(.,-) below is a uniform bound on the cardinality of such a set of
indices. In the sequel and e are numbers in (0, 1). The phrase a b means
that the expression b defines the (new) symbol a.

(CO) For any set A ofpositive mass, any e, there exists M Zero(A, e) such
that for any set B with i(B) > e,

Indices0(A, B) < M.

If S satisfies (CO) then, given any collection K with K > M, let B be the
complement of the union U klSkA. Were x(B) at least e we could apply
(CO) to obtain a contradiction. Hence any M iterates of A sweep out more
than 1 e of the space.
A similar argument shows the converse, that uniform sweeping-out implies

(c0).

(C1) For any set A ofpositive mass, any e, there exists M Small(A, e) and
positive number Size(A, e) such that for any set B with Ix(B) > e,

Indices( A, B) < M.

Evidently (C1) implies (CO). Conversely, fix e, A and M Zero(A, e/2). Set
6 = e/2M. Fix any B of mass at least e. Suppose there were a collection K,
K M, of indices k such that Ix(S’A n B) < 3. Then the difference set

B’ =B [J SkA
kK

has mass at least e/2. Yet Indices0(A, B’)contains K, a contradiction. We
conclude that the quantity Smalls(A, e) is dominated by M.

Remark. For the properties above, to emphasize the dependence on the
transformation S we may write Zero(A, e; S), etc.

The class of uniform sweeping-out transformations is evidently closed
under powers and roots since

Zero(A, e; S") < Zero(A, e; S) < Inl" Zero(A, e; S)

for any non-zero integer n.

Cartesian product. Fix (S: X, ) and (T"),/2), two uniform sweeping-out
transformations. Our goal is to show that S T is uniform sweeping-out by
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showing it to satisfy (CO). Fix some set V c X 3 of positive mass. We shall
compute an upper bound for

Zero(V, 2e; S T)

in terms of Small( e; S) and Small( e; T).
Given a point z X let Vz denote the cross-section of V above z; thus Vz

is the subset of ) such that {z} V equals [{z} ] n V. By standard
measurability arguments, the following holds for tz-a.e.z. Set L Vz. Then
for any positive g the set

has positive z-mass. Consider z and as henceforth fixed. Define the
quantities

Small(A, e; T) and g Size(A, e; T).

For this g, define V as in (1). Finally, set

M Small(V,e;S) and 6 Size(V,e; S).

Wishing to establish (CO) for S T, it suffices to show that

Zero(V, 2e; S T) < M + fl/6.

Fix any set V c X ) with mass at least 2e. Set

x  (Wx) >-

and note that (W)> e follows by a Fubini argument. Define a function

f: Z [0, 1] by

f(k) i {
This function measures the probability that a fiber Wx has k in its bad set
Indicesg(, Wx). Let 1[. denote the Dirac function where l[true] 1 and
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l[false] 0. By Fubini, the sum Ekzf(k) equals

x)

fw. 1[/2(T,4 W,) < ] dtx(x)
k

_< fJIndicesg(,Wx)dtx(x) <_ Iz(W) .
This yields the inequality

E f(k) <_ ffl
kZ

whose usefulness arises from the fact that although f(.) depends on the set
W, the bound /Q does not.

Counting the set of bad k. Suppose k is such that [S T]kv fq W has
zero mass. For/z-a.e. x then z(Tk(Vs-x) N Wx) equals zero. Thus if x SkV
then

n W,,) _< g (2)

by (1). In particular, (2) holds for every x svn w. Thus f(k)>
tx(SkV n W). This last quantity will exceed if k is chosen outside of
K ---< Indices a(V, W; S). As a consequence

(Indices0(V,W; S T) K) < E f(k)
kZ

Since the righthand quantity is dominated by /6 we may conclude that

Indiceso(V, W; S x T) < K + ffI/6 < M + 32"1/6

as desired.

Countable Cartesian products. In order to pass from finite to countable
cartesian products we need to show that the class "Uniform Sweeping-out" is
closed under inverse limits.
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Given (T" X,/x) and a factor algebra - recall that the conditional
probability function [.1-] is canonically defined by the equality

fF6[BI-](X) dtz(x)  z(B n F)

for all F -and measurable B.

INVERSE LIMIT LEMMA. Given (T: X,/x) and an increasing tower

2 offactor algebras whose join is the entire g-algebra. Then

T] uniform sweeping-out for all n T uniform sweeping-out.

Proof Fix e and a set A of positive mass. Pick ,- {nn}n sufficiently far
out in the sequence that .4 is nearly --measurable: Choose it so that/(F) is
positive, where

Let N be the constant arising from the uniform sweeping-out of TI-; thus
for any collection K > N of integers, (F)> 1-e where F denotes the
union UkgTkF. Let A UKTA. Consider a point xF, say, x
TkF. Then

[AIo-](x) >_ [TAI ](x) [AI-](T-x) > 1 e

where the last inequality follows from the definition of F. Consequently

kK

> Jvl e d

-(F)’(a-e) >(1-e > 1-2e.

Thus any N iterates of A sweep out all but 2e of the space.

REFERENCES

[A] T.M. ADAMS, Uniformly sweeping out does not imply mixing, to appear.
[F] N.A. FRIEDMAN, Mixing on Sequences, Canad. J. Math., vol. 35 (1983), pp. 339-352.
[F, K] N.A. FRIEDMAN and J.L. KNO, Rank one lightly mixing, Israel J. Math., to appear.
[K] J.L. KaNo, Lightly mixing is closed under countable products, Israel J. Math., vol. 62 (1988),

pp. 341-346.

UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA


