EXTREME POSITIVE OPERATORS ON l^{p}

BY
Ryszard Grza̧ślewicz

1. Introduction

The problem of the characterization of the extreme operators was first investigated by A. Ionescu Tulcea and C. Ionescu Tulcea [13]. They considered extreme positive contractions on the space of continuous functions. Next many authors extended this result, and now we have a quite good knowledge about extreme operators on $C(K)$ (see for example [4], [5]). Thus it is natural to consider the possible extension of this problem to other classical Banach spaces. Using the results for $C(K)$ we can get characterizations of extreme l^{∞}-operators and l^{1}-operators (see [18], [14]). Note that for a Hilbert space case the set of extreme contractions coincides with the set of all isometries and coisometries (see [15], [8]). The other cases of l^{p}-spaces are more complicated. Some partial results on extreme l^{p}-contractions for $1<p<$ $\infty, p \neq 2$, are given in [6], [7], [16], [17], [12].

The purpose of this paper is to characterize the extreme points of the positive part of the unit ball of the space of operators acting on infinite dimensional l^{p}-spaces $1<p<\infty$. This result extends an earlier one for the finite dimensional case [9]. Generally speaking the structure of extreme positive contractions is similar to the structure of extreme infinite doubly stochastic matrices with respect to arbitrary positive sequences (not necessarily elements of l^{1}). This description turns out to be more complicated compared with the finite dimensional case.

Let $1<p<\infty$ and $q=p /(p-1)$. As usual we denote by l^{p} the Banach lattice of all p-summable real sequences with the norm

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad \mathbf{x}=\left(x_{1}\right) \in l^{p}
$$

[^0]and standard order ($\mathbf{x} \leq \mathbf{y}$ if and only if $x_{i} \leq y_{i}$ for all $i \in \mathbf{N}$). We put $\mathbf{e}_{i_{0}}=\left(\delta_{i i_{0}}\right)$ ($\delta_{i j}$ denotes the Kronecker's delta). Obviously $\left\{\mathbf{e}_{i}\right\}$ forms the canonical basis of l^{p}. The adjoint space $\left(l^{p}\right)^{\prime}$ is identified with the space l^{q}. For $0 \leq \mathbf{x}=\left(x_{i}\right) \in l^{p}$ we let $\mathbf{x}^{p-1}=\left(x_{i}^{p-1}\right) \in l^{q}$. Note that \mathbf{x}^{p-1} as a functional attains its norm at \mathbf{x} and is the unique functional with this property. Moreover we have $\left\|\mathbf{x}^{p-1}\right\|_{q}^{q}=\|\mathbf{x}\|_{p}^{p}$.

We denote by $\mathscr{L}\left(l^{p}\right)$ the Banach space of all linear bounded operators from l^{p} into l^{p}. An operator T is said to be positive $T \geq 0$ if $T \mathbf{x} \geq 0$ whenever $\mathbf{x} \geq 0$. The positive part of the unit ball of $\mathscr{L}\left(l^{p}\right)$ (the set of positive contraction on l^{p}) is denoted by \mathscr{P}.

To every operator $T \in \mathscr{L}\left(l^{p}\right)$ corresponds a unique matrix $\left(t_{j i}\right)$ with real entries, such that $(T \mathbf{x})_{j}=\sum_{i=1}^{\infty} t_{j i} x_{i}$. We have $T \geq 0$ if and only if $t_{j i} \geq 0$ for all $i, j \in \mathbf{N}$. The operators on l^{p} will be identified with their corresponding matrices. Thus for instance ($\delta_{i j_{0}} \delta_{i i_{0}}$) denotes the one dimensional operator in $\mathscr{L}\left(l^{p}\right)$ which maps $\mathbf{e}_{i_{0}}$ onto $\mathbf{e}_{j_{0}}$. Clearly the adjoint operator $T^{*} \in \mathscr{L}\left(l^{q}\right)$ is determined in the same manner by the transposed matrix.

Let $0 \leq T \in \mathscr{P}$. We say that entries of $T=\left(t_{j i}\right)$ are maximal if

$$
\left\|\left(t_{j i}+\gamma \delta_{j j_{0}} \delta_{i i_{0}}\right)\right\|>1
$$

for every $\gamma>0$ and all $i_{0}, j_{0} \in \mathbf{N}$ such that $t_{j_{0} i_{0}}>0$. Obviously, if some entry of the operator T is maximal then $\|T\|=1$ and if T is an extreme positive contraction then all entries of T are maximal. Note that there exists $T \in \mathscr{P}$ such that $\|T\|=1$ and the entries of T are not maximal (a suitable example is given in the paper).

We define the support of an operator $T=\left(t_{j i}\right) \in \mathscr{L}\left(l^{p}\right)$ by

$$
\operatorname{supp} T=\left\{i \text { : there exists } j_{0} \text { such that } t_{j_{0} i} \neq 0\right\}
$$

For a positive operator $T=\left(t_{j i}\right) \in \mathscr{L}\left(l^{p}\right)$ we denote by $\mathscr{M}(T)$ the set of all non-negative sequences $\left(x_{i}\right)$ such that

$$
\begin{array}{r}
0 \leq \sum_{k=1}^{\infty} t_{j k} x_{k}=y_{j}<\infty \tag{1}\\
\sum_{k=1}^{\infty} t_{k i} y_{k}^{p-1}=x_{i}^{p-1}
\end{array}
$$

for all $i, j \in \mathbf{N}$, and
(3) $x_{i}>0$ if and only if $i \in \operatorname{supp} T$. That is

$$
\begin{aligned}
\mathscr{M}(T)=\left\{\left(x_{i}\right) \geq 0: \operatorname{supp}\left(x_{i}\right)=\right. & \operatorname{supp} T \text { and for every } i \in \mathbf{N}, \\
& \left.\sum_{j=1}^{\infty} t_{j i}\left(\sum_{k=1}^{\infty} t_{j k} x_{k}\right)^{p-1}=x_{i}^{p-1}\right\} .
\end{aligned}
$$

Let $\mathbf{a}=\left(a_{i}\right), \mathbf{b}=\left(b_{j}\right)$ be non-negative sequences. A matrix $P=\left(p_{j i}\right)$, $i, j \in \mathbf{N}$, is said to be doubly stochastic with respect to $\left(\left(a_{i}\right),\left(b_{j}\right)\right)$ if $p_{j i} \geq 0$, $\sum_{j=1}^{\infty} p_{j i}=a_{i}, \sum_{i=1}^{\infty} p_{j i}=b_{j}$. The set of all doubly stochastic matrices with respect to \mathbf{a}, \mathbf{b} will be denoted by $\mathscr{D}(\mathbf{a}, \mathbf{b})$.

To complete a characterization of extreme positive l^{p}-contractions we need a description of extreme points of $\mathscr{D}(\mathbf{a}, \mathbf{b})$ for arbitrary non-negative sequences \mathbf{a}, \mathbf{b}. This problem was investigated under various assumption on \mathbf{a}, \mathbf{b} by many authors (see [20], [21], [3]). Note that the first result of this kind was given by G.D. Birkhoff [1] (see also [22], I, §5). The characterization of ext $\mathscr{D}(\mathbf{a}, \mathbf{b})$ for arbitrary non-negative sequences \mathbf{a}, \mathbf{b} is given in [10].

The main aim of this paper is to prove the following characterization of extreme positive l^{p}-contraction.

Theorem. Let $1<p<\infty$, and let $0 \neq T=\left(t_{j i}\right) \in \mathscr{P}$. Then T is an extreme positive contraction if and only if the following conditions hold:
(i) the entries of T are maximal;
(ii) the matrix $P=\left(t_{j i} x_{i} y_{j}^{p-1}\right)$ is extreme in $\mathscr{D}\left(\left(x_{i}^{p}\right),\left(y_{j}^{p}\right)\right)$, where $\left(x_{i}\right) \in$ $\mathscr{M}(T)$ and $y_{j}=\sum_{i=1}^{\infty} t_{j i} x_{i}$.

2. Proof of the theorem

We will use the following fact, which is a generalized version of the Schur's test [23] (see [11], §5,Th. 5.2.).

Proposition 1. For a positive operator $T=\left(t_{j i}\right) \in \mathscr{L}\left(l^{p}\right)$ let there exist positive sequences $\left(x_{i}\right),\left(y_{j}\right)$ such that

$$
y_{j}=\sum_{i=1}^{\infty} t_{j i} x_{i}
$$

and

$$
\sum_{j=1}^{\infty} t_{j i} y_{j}^{p-1} \leq x_{i}^{p-1}
$$

for all $i, j \in \mathbf{N}$. Then $\|T\| \leq 1$.
Proof. Using the convexity of $f(t)=t^{p}$ for an arbitrary non-negative vector $\mathbf{u}=\left(u_{i}\right) \in l^{p}$ we have

$$
\begin{aligned}
\|T \mathbf{u}\|_{p}^{p} & =\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} t_{j i} u_{i}\right)^{p} \\
& =\sum_{j=1}^{\infty} y_{j}^{p}\left(\sum_{i=1}^{\infty} \frac{t_{j i} x_{i}}{y_{j}} \frac{u_{i}}{x_{i}}\right)^{p} \\
& \leq \sum_{j=1}^{\infty} y_{j}^{p} \sum_{i=1}^{\infty} \frac{t_{j i} x_{i}}{y_{i}} \frac{u_{i}^{p}}{x_{i}^{p}} \\
& =\sum_{i=1}^{\infty} \frac{u_{i}^{p}}{x_{i}^{p-1}} \sum_{j=1}^{\infty} t_{j i} y_{j}^{p-1} \\
& \leq \sum_{i=1}^{\infty} u_{i}^{p}=\|\mathbf{u}\|_{p}^{p}
\end{aligned}
$$

Corollary 1. If for a positive operator $T \in \mathscr{L}\left(l^{p}\right)$ the set $\mathscr{M}(T)$ is non-empty then $\|T\| \leq 1$.

For every matrix $\left(t_{j i}\right)$ define a graph $G\left(\left(t_{j i}\right)\right)$ by the following formula. To the j-th row there corresponds a (row) node $j, j \in \mathbf{N}$, and to i-th column there corresponds a (column) node $i, i \in \mathbf{N}$. There is an edge joining a node i and a node j if and only if $t_{j i} \neq 0$. There are no other edges.

We say that an operator $T \in \mathscr{L}\left(l^{p}\right)$ is elementary provided there are no non-zero operators $T=T_{1}+T_{2}$ and

$$
\operatorname{supp} T_{1} \cap \operatorname{supp} T_{2}=\operatorname{supp} T_{1}^{*} \cap \operatorname{supp} T_{2}^{*}=\varnothing
$$

Note that T is elementary if and only if the graph $G(T)$ is connected. Each operator $T \in \mathscr{L}\left(l^{p}\right)$ can be represented as a countable sum of elementary operators $T_{k}, T=\Sigma T_{k}$ with supp T_{k} disjoint and $\operatorname{supp} T_{k}^{*}$ disjoint. Then $\|T\|=\sup _{k}\left\|T_{k}\right\|$ and $T \geq 0$ if and only if $T_{k} \geq 0$ for all k. Therefore T is an extreme positive contraction if and only if the T_{k} 's are extreme positive contractions. The above decomposition shows us that for our purpose it is enough to consider elementary operators. Therefore without any loss of
generality all operators in $\mathscr{L}\left(l^{p}\right)$ considered in the remainder of the paper will be assumed to be elementary operators.

Proposition 2. Let $T \in \operatorname{ext} \mathscr{P}$. Then the graph $G(T)$ has no cycle.
Proof. Suppose, to get a contradiction, that the graph $G(T)$ has a simple cycle C. Let $F_{n} \in \mathscr{L}\left(l^{p}\right)$ denote the projection defined by

$$
F_{n} \mathbf{e}_{i}= \begin{cases}\mathbf{e}_{i} & \text { if } i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

For n sufficiently large the graph of $T_{n}=T F_{n}$ contains the cycle C. Note that the T_{n} 's are finite dimensional operators and they are not extreme. Recall here that the finite dimensional case if the graph of a positive contraction has the cycle then it is not extreme (see [9, Th.3]), so for each T_{n} there exists $R_{n}=\left(r_{j i}^{(n)}\right) \neq 0$ such that $\left\|T_{n} \pm R_{n}\right\| \leq\left\|T_{n}\right\| \leq 1$ and $T_{n} \pm R_{n} \geq 0$, the graph $G\left(R_{n}\right)=C$ and $t_{j_{0} i_{0}}=\left|r_{j_{0} i_{0}}^{(n)}\right|$ for some $\left(i_{0}, j_{0}\right) \in C$ (not necessarily the same for all n). Choose a subsequence n_{k} of \mathbf{N} such that $\lim _{k \rightarrow \infty} r_{j i}^{\left(n_{k}\right)}=r_{j i}^{\prime}$ exists for all (i, j). Note that $r_{j i}^{\prime} \neq 0$ for some (i, j), i.e., $R^{\prime}=\left(r_{j i}^{\prime}\right) \neq 0$. Obviously $T \pm R \geq 0$ and $\|T \pm R\| \leq 1$. This contradiction ends the proof.

Lemma 1. Let the graph $G(T)$ of $T \in \mathscr{P}$ be a tree. If all entries of T are maximal then $\mathscr{M}(T)$ is non-empty.

Lemma 2. Let all the entries of $T \in \mathscr{P}$ be maximal. Let $\left(x_{i}\right) \in \mathscr{M}(T)$ and $j_{1} \in \operatorname{supp} T^{*}$. Then for every $\varepsilon>0$ there exists N_{0} such that for all $N>N_{0}$ there exists $\mathbf{u}^{(N)} \in l^{p}$ such that

$$
\left\|\mathbf{u}^{(N)}\right\|^{p}-\left\|T \mathbf{u}^{(N)}\right\|^{p}<\varepsilon
$$

and

$$
\begin{array}{ll}
u_{i}^{(N)}=x_{i} & \text { for } i \in\left\{k \leq N: t_{j_{1} k} \neq 0\right\} \\
u_{i}^{(N)}=0 & \text { for } i \in\left\{k>N: t_{j_{1} k} \neq 0\right\}
\end{array}
$$

The proofs of Lemmas 1 and 2 will be presented in Section 4.
Let the graph $G(T)$ of $T \in \mathscr{L}\left(l^{p}\right)$ be a tree (i.e., $G(T)$ has no cycles). Let $i_{1} \in \operatorname{supp} T$. Note that $G(T)$ is a connected tree since T is elementary. We define inductively two families $\left\{I_{n}\right\}$ and $\left\{J_{n}\right\}$ of disjoint subsets of \mathbf{N} and a family $\left\{E_{n}\right\}$ of disjoint subsets of $\mathbf{N} \times \mathbf{N}$. Put

$$
I_{1}=\left\{i_{1}\right\}, \quad J_{1}=\left\{j: t_{j_{1} i} \neq 0\right\}
$$

and

$$
\begin{aligned}
I_{n+1} & =\left\{i \notin I_{n}: t_{j i} \neq 0 \quad \text { for some } j \in J_{n}\right\} \\
J_{n+1} & =\left\{j \notin J_{n}: t_{j i} \neq 0 \quad \text { for some } i \in I_{n+1}\right\} \\
E_{2 n-1} & =\left\{(i, j): i \in I_{n}, j \in J_{n}\right\} \\
E_{2 n} & =\left\{(i, j): i \in I_{n+1}, j \in J_{n}\right\}, \quad n \in \mathbf{N} .
\end{aligned}
$$

Lemma 3. Let all the entries of $T \in \mathscr{P}$ be maximal. Let $\left(x_{i}\right) \in \mathscr{M}(T)$ and $y_{j}=\sum_{j=1}^{\infty} t_{j i} x_{i}$. If $T \pm R \in \mathscr{P}$ for some $R=\left(r_{j i}\right)$ then

$$
\sum_{j=1}^{\infty} r_{j i} x_{i}=0 \quad \text { and } \quad \sum_{j=1}^{\infty} r_{j i} y_{j}^{p-1}
$$

Proof. The graph $G(R)$ is included in the graph $G(T)$ and $\left|r_{j i}\right| \leq t_{j i}$, since $T \pm R \geq 0$. Fix $j_{1} \in \operatorname{supp} T^{*}$. Because in the construction of the sets $I_{1}, J_{1}, I_{2}, \ldots$ the index i_{1} is arbitrary we may and do assume that $j_{1} \in J_{1}$.

Fix $\varepsilon>0$. We need to show that there exists N_{0} such that

$$
\left|\sum_{i=1}^{N} r_{j_{1} i} x_{i}\right|<\varepsilon \quad \text { for all } N>N_{0}
$$

By Lemma 2 we can find $N_{0} \in \mathbf{N}$ such that for every $N>N_{0}$ there exists $\mathbf{u}^{(N)} \in l^{p}$ such that

$$
\left\|\mathbf{u}^{(N)}\right\|-\left\|T \mathbf{u}^{(N)}\right\|<\varepsilon
$$

and

$$
\left(R \mathbf{u}^{(N)}\right)_{j_{1}}=\sum_{i=1}^{N} r_{j_{1}} x_{i}
$$

First consider the case when $p \geq 2$. Using the Clarkson inequality [2] (see also [19], Corollary 2.1) we have

$$
2\left\|R \mathbf{u}^{(N)}\right\|_{p}^{p}+2\left\|T \mathbf{u}^{(N)}\right\|_{p}^{p} \leq\left\|(T+R) \mathbf{u}^{(N)}\right\|_{p}^{p}+\left\|(T-R) \mathbf{u}^{(N)}\right\|_{p}^{p} \leq 2\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}
$$

Hence we have

$$
\left|\sum_{i=1}^{N} r_{j_{1} i} x_{i}\right|=\left|\left(R \mathbf{u}^{(N)}\right)_{j_{1}}\right| \leq\left\|R \mathbf{u}^{(N)}\right\|_{p} \neq\left(\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}-\left\|T \mathbf{u}^{(N)}\right\|_{p}^{p}\right)^{1 / p}<\varepsilon^{1 / p}
$$

Therefore $\sum_{i=1}^{\infty} r_{j i} x_{i}=0$ for all $j \in \mathbf{N}$ and $p \geq 2$.

Now assume that $1<p<2$. As an immediate consequence of differential calculus we obtain

$$
(t+\tau)^{p}+(t-\tau)^{p} \geq 2 t^{p}+p(p-1) \tau^{2} t^{p-1} \geq 2 t^{p}+p(p-1) \tau^{2}
$$

where $|\tau|<t<1$. By this, putting $T \mathbf{u}^{(N)}=\left(f_{j}\right)$ and $R \mathbf{u}^{(N)}=\left(g_{j}\right)$ we obtain

$$
\begin{aligned}
2 \sum_{j=1}^{\infty}\left|f_{j}\right|^{p}+p(p-1) g_{j_{1}}^{2} & \leq \sum_{j=1}^{\infty}\left|f_{j}+g_{j}\right|^{p}+\sum_{j=1}^{\infty}\left|f_{j}-g_{j}\right|^{p} \\
& =\left\|(T+R) \mathbf{u}^{(N)}\right\|_{p}^{p}+\left\|(T-R) \mathbf{u}^{(N)}\right\|_{p}^{p} \\
& \leq 2\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}
\end{aligned}
$$

Hence

$$
p(p-1) g_{j_{1}}^{2} \leq 2\left(\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}-\left\|T \mathbf{u}^{(N)}\right\|_{p}^{p}\right)<2 \varepsilon
$$

Thus we prove that $\sum_{i=1}^{\infty} r_{j i} x_{i}=0$ for all $p \in(1, \infty)$. To prove that $\sum_{j=1}^{\infty} r_{j i} y_{j}^{p-1}=0$ we apply the same arguments for the adjoint operators T^{*} and R^{*}.

Proof of the theorem. Suppose that $T \in$ ext \mathscr{P}. Then obviously the condition (i) holds. From Lemma 1 there exists $\left(x_{i}\right) \in \mathscr{M}(T)$. Put $y_{j}=\sum_{i=1}^{\infty} t_{j i} x_{i}$.

Suppose that $P=\left(t_{j i} x_{i} y_{j}^{p-1}\right) \notin \operatorname{ext} \mathscr{D}\left(\left(x_{i}^{p}\right),\left(y_{j}^{p}\right)\right)$. Then there exist $P^{\prime}=$ $\left(p_{j i}^{\prime}\right)$ and $P^{\prime \prime}=\left(p_{j i}^{\prime \prime}\right)$ in $\mathscr{D}\left(\left(x_{i}^{p}\right),\left(y_{j}^{p}\right)\right)$ such that $P^{\prime} \neq P^{\prime \prime}$ and $P=\left(P^{\prime}+P^{\prime \prime}\right) / 2$. In view of Proposition 1, $T^{\prime}=\left(t_{j i}^{\prime}\right)$ and $T^{\prime \prime}=\left(t_{j i}^{\prime \prime}\right)$ are positive contractions, where $t_{j i}^{\prime}=p_{j i}^{\prime} / x_{i} y_{j}^{p-1}$ and $t_{j i}^{\prime \prime}=p_{j i}^{\prime \prime} / x_{i} y_{j}^{p-1}$ (we admit $0 / 0=0$). We have ($\left.T^{\prime}+T^{\prime \prime}\right) / 2=T$, so T is not extreme. Thus the condition (ii) also holds.

Now suppose that the conditions (i) and (ii) hold. Let $R=\left(r_{j i}\right)$ be such that $T \pm R \in \mathscr{P}$. Obviously the graph $G(R)$ is a subgraph of $G(T)$. By Lemma 3, $\sum_{i=1}^{\infty} r_{j i} x_{i}=0$ and $\sum_{j=1}^{\infty} r_{j i} y_{j}^{p-1}=0$. Thus

$$
\left(t_{j i} x_{i} y_{j}^{p-1}\right) \pm\left(r_{j i} x_{i} y_{j}^{p-1}\right) \in \mathscr{D}\left(\left(x_{i}^{p}\right),\left(y_{j}^{p}\right)\right)
$$

Because $\left(t_{j i} x_{i} y_{j}^{p-1}\right) \in \operatorname{ext} \mathscr{D}\left(\left(x_{i}^{p}\right),\left(y_{j}^{p}\right)\right)$ we get $r_{j i} x_{i} y_{j}^{p-1}=0$. Hence $r_{j i}=0$, i.e., $T \in$ ext \mathscr{P}.

3. Operators with a graph of finite height

Let the graph of $T \in \mathscr{L}\left(l^{p}\right)$ be a tree. The family I_{n} is a partition of $\operatorname{supp} T$ and the family J_{n} is a partition of $\operatorname{supp} T^{*}$. Moreover

$$
\bigcup_{n=1}^{\infty} E_{n}=\left\{(i, j): t_{j i} \neq 0\right\}
$$

If in the sequence $E_{1}, E_{2}, E_{3}, \ldots$ some $E_{n_{0}}$ is empty then the subsequent sets $E_{n}, n>n_{0}$, are also empty. The number $h(T)$ of the non-empty sets in the sequence $\left\{E_{n}\right\}$ will be called the height of the graph $G(T)$. We say that the matrix T has the FHG (Finite Height Graph) property if $h(T)$ is finite.

Lemma 4. Let $0 \leq T \in \mathscr{L}\left(l^{p}\right)$ have the $F H G$ property, and let $\left(x_{i}\right) \in$ $\mathscr{M}(T), y_{j}=\sum_{i} t_{j i} x_{i}$. Then for each $\varepsilon>0$ there exists a finite subset I of \mathbf{N} such that

$$
\begin{gathered}
\left\|T^{*}(T \mathbf{u})^{p-1}\right\|_{q}^{q}>\|\mathbf{u}\|_{q}^{q}-\varepsilon \\
\left\{i_{i}\right\}=I_{1} \subset I, \quad\left(T^{*}\left((T \mathbf{u})^{p-1}\right)\right)_{i_{1}}>x_{i_{1}}^{p-1} / 2
\end{gathered}
$$

and for fixed $j_{1} \in J_{1}$ we have $(T \mathbf{u})_{j_{1}}>y_{j_{1}} / 2$ where

$$
u_{i}= \begin{cases}x_{i} & \text { if } i \in I \\ 0 & \text { if } i \notin I\end{cases}
$$

Proof. Let $\left(x_{i}\right) \in \mathscr{M}(T)$. Let $y_{i}=\sum_{i} t_{j i} x_{i}$. Fix $\varepsilon>0$ and $i_{1} \in \operatorname{supp} T$. Fix $j_{1} \in J_{1}$. Let $\varepsilon_{i}>0$ be such that

$$
\left(x_{i}^{p-1}-2 \varepsilon_{i}\right)^{q}>x_{i}^{p}-\varepsilon / 2^{i}
$$

and

$$
\varepsilon_{i_{1}}<x_{i_{1}}^{p-1} / 4
$$

Let $I_{1}^{\prime}=I_{1}=\left\{i_{1}\right\}$. We choose a finite subset J_{1}^{\prime} of J_{1} such that $j_{1} \in J_{1}^{\prime}$ and

$$
\sum_{j \in J_{1}^{\prime}} t_{j i_{1}} y_{j}^{p-1}>x_{i_{1}}^{p-1}-\varepsilon_{i_{1}}
$$

We find $\delta_{j}>0\left(j \in J_{1}^{\prime}\right)$ such that $\delta_{j_{1}}<y_{j_{1}} / 2$ and

$$
\sum_{j \in J_{1}} t_{i_{1}}\left(y_{j}-\delta_{j}\right)^{p-1}>x_{i_{1}}^{p-1}-2 \varepsilon_{i_{1}}
$$

We choose a finite subset I_{2}^{\prime} of I_{2} such that

$$
\sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime}} t_{i j} x_{i}>y_{j}-\delta_{j}
$$

for $j \in J_{1}^{\prime}$. We choose a finite subset J_{2}^{\prime} of J_{2} such that

$$
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i} y_{j}^{p-1}>x_{i}^{p-1}-\varepsilon_{i}
$$

for $i \in I_{2}^{\prime}$. We find $\delta_{j}>0\left(j \in J_{2}^{\prime}\right)$ such that

$$
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i}\left(y_{j}-\delta_{j}\right)^{p-1}>x_{i}^{p-1}-2 \varepsilon_{i}
$$

$i \in I_{2}^{\prime}$. We continue the above process to get (after $h(T)$ steps) a finite sequence $I_{1}^{\prime}, J_{1}^{\prime}, I_{2}^{\prime}, \ldots, J_{n_{0}}^{\prime}$. Let $I=\bigcup_{n=1}^{n_{0}} I_{n}^{\prime}$ and $J=\bigcup_{n=1}^{n_{0}} J_{n}^{\prime}$. We define

$$
u_{i}= \begin{cases}x_{i} & \text { if } i \in I \\ 0 & \text { if } i \notin I\end{cases}
$$

Put $\mathbf{v}=\left(v_{j}\right)=T \mathbf{u}$. For $j \in J$ we have

$$
v_{j}=\sum_{i=1}^{\infty} t_{j i} u_{i}=\sum_{i \in I} t_{j i} x_{i}>y_{j}-\delta_{j}
$$

Hence

$$
\sum_{j=1}^{\infty} t_{j i} v_{j}^{p-1}>\sum_{j \in J} t_{j i}\left(y_{j}-\delta_{j}\right)^{p-1}>x_{i}^{p-1}-2 \varepsilon_{i} \quad \text { for } i \in I
$$

Therefore we obtain

$$
\begin{aligned}
\left\|T^{*}(T \mathbf{u})^{p-1}\right\|_{q}^{q} & =\left\|T^{*} \mathbf{v}^{p-1}\right\|_{q}^{q} \geq \sum_{i \in I}\left[\sum_{j \in J} t_{j i} v_{j}^{p-1}\right]^{q} \\
& >\sum_{i \in I}\left(x_{i}^{p-1}-2 \varepsilon_{i}\right)^{q} \\
& >\sum_{i \in I}\left(x_{i}^{p}-\frac{\varepsilon}{2^{i}}\right) \\
& >\|\mathbf{u}\|_{p}^{p}-\varepsilon
\end{aligned}
$$

Moreover we have

$$
\left(T^{*}\left((T \mathbf{u})^{p-1}\right)\right)_{i_{1}} \geq \sum_{j \in J_{1}^{\prime}} y t_{j i_{1}}\left(y_{j}-\delta_{j}\right)^{p-1}>x_{i_{1}}^{p-1}-\varepsilon \geq x_{i_{1}}^{p-1} / 2
$$

and

$$
(T \mathbf{u})_{j_{1}} \geq \sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime}} t_{j_{1} i} x_{i}>y_{j_{1}}-\delta_{j_{1}}>y_{j_{1}} / 2
$$

Lemma 5. Let $0 \leq T \in \mathscr{L}\left(l^{p}\right)$ have the $F H G$ property and let $\mathscr{M}(T)$ be non-empty. Then $\|T\|=1$ and all the entries of T are maximal.

Proof. By Corollary 1 we have $\|T\| \leq 1$. Let $T=\left(t_{j i}\right)$ have the FHG property and let $\left(x_{i}\right) \in \mathscr{M}(T)$. Suppose, to get a contradiction, that there exists an entry of T which is not maximal. Since the construction of the sequences $I_{1}, J_{1}, J_{2} \ldots$ can start from every positive entry, we may and do assume that $t_{j i}\left(i_{1} \in I_{1}=I_{1}^{\prime}, j_{1} \in J_{1}\right)$ is not maximal. Let $\gamma>0$ be such that $\|S\| \leq 1$, where $S=\left(s_{j i}\right)=\left(t_{j i}+\gamma \delta_{i i_{1}} \delta_{j j_{1}}\right)$. Let

$$
\beta=\frac{y_{j_{1}}^{p-1}}{2^{p-1}}\left[\left(1+\gamma \frac{x_{i_{1}}}{y_{j_{1}}}\right)^{p-1}-1\right]>0
$$

and

$$
\varepsilon=t_{j_{1} i_{1}} \beta q x_{i_{1}} / 2^{q}>0
$$

In view of Lemma 1 there exists $\mathbf{u}=\left(u_{i}\right) \in l^{p}$ such that if $\mathbf{v}=\left(v_{j}\right)=T \mathbf{u}$, $\mathbf{z}=\left(z_{i}\right)=T^{*}\left(\mathbf{v}^{p-1}\right)$ then $\|\mathbf{z}\|_{q}^{q}>\|\mathbf{u}\|_{p}^{p}-\varepsilon$, and $u_{i_{1}}=x_{i_{1}}, \quad z_{i_{1}}>x_{i_{1}}^{p-1}$, $v_{j_{1}}>y_{j_{1}} / 2$. We have

$$
\left[\left(v_{j_{1}}+\gamma x_{i_{1}}\right)^{p-1}-v_{j_{1}}^{p-1}\right] \geq v_{j_{1}}^{p-1}\left[\left(1+\gamma \frac{x_{i_{1}}}{y_{j_{1}}}\right)^{p-1}-1\right] \geq 1
$$

Using the mean value theorem we get

$$
\left[z_{i_{1}}+t_{j_{1} i_{1}} \beta\right]^{q}-z_{i_{1}}^{q} \geq t_{j_{1} i_{1}} \beta q z_{i_{1}}^{q-1}>2 \varepsilon
$$

Therefore we obtain

$$
\begin{aligned}
\left\|S^{*}(S \mathbf{u})^{p-1}\right\|_{q}^{q} & \geq\left\|T^{*}\left[\left(T+\gamma \delta_{i i_{1}} \delta_{j_{1}}\right) \mathbf{u}\right]^{p-1}\right\|_{q}^{q} \\
& =\left\|T^{*}(T \mathbf{u})+T^{*}\left[\left(\left(v_{j_{1}}+\gamma x_{i_{1}}\right)^{p-1}-v_{j_{1}}^{p-1}\right) \mathbf{e}_{j_{1}}\right]\right\|_{q}^{q} \\
& \geq\left\|\mathbf{z}+t_{j_{i_{1}}} \beta \mathbf{e}_{i_{1}}\right\|_{q}^{q} \\
& =\|\mathbf{z}\|_{q}^{q}+\left(z_{i_{1}}+t_{j_{i_{1}} i_{1}} \beta\right)^{q}-z_{i_{1}}^{q} \\
& \geq\|\mathbf{u}\|_{p}^{p}-\varepsilon+2 \varepsilon \geq\|\mathbf{u}\|_{p}^{p}
\end{aligned}
$$

This contradicts the fact that for arbitrary $R \in \mathscr{P}$ we have

$$
\left\|R^{*}(R \mathbf{u})^{p-1}\right\|_{q}^{q} \leq\left\|(R \mathbf{u})^{p-1}\right\|_{q}^{q}=\|R \mathbf{u}\|_{p}^{p} \leq\|\mathbf{u}\|_{p}^{p}
$$

This shows us that all the entries of T are maximal. Moreover, since $\|S\|>1$ for each $\gamma>0$ we have $\|T\|=1$.

Let $m \in \mathbf{N}$. We define the following maps from the set of all positive contractions which the graph is a tree into the set of matrices having the FHG property by

$$
\begin{aligned}
& \mathscr{S}_{m}\left(\left(t_{j i}\right)\right)= \begin{cases}t_{j i} & \text { if }(i, j) \in \bigcup_{n=1}^{2 m-1} E_{n} \\
t_{j i}\left[1-\sum_{k \in J_{m+1}} t_{k i}^{p}\right]^{-1 / p} & \text { if }(i, j) \in E_{2 m} \\
0 & \text { otherwise, }\end{cases} \\
& \mathscr{S}_{m}^{\prime}\left(\left(t_{j i}\right)\right)= \begin{cases}t_{j i} & \text { if }(i, j) \in \bigcup_{n=1}^{2 m-2} E_{n} \\
t_{j i}\left[1-\sum_{k \in I_{m+1}} t_{j k}^{q}\right]^{-1 / q} & \text { if }(i, j) \in E_{2 m-1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{T}_{m}(T)=\mathscr{I}_{m}^{\prime} \mathscr{S}_{m}(T) \\
\mathscr{R}_{m}\left(\left(t_{j i}\right)\right)= \begin{cases}t_{j i} & \text { if }(i, j) \in \bigcup_{n=1}^{2 m-1} E_{n} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Note that $h\left(\mathscr{S}_{m}(T) \leq 2 m, h\left(\mathscr{S}_{m}^{\prime}(T)\right) \leq 2 m-1, h\left(\mathscr{T}_{m}(T)\right) \leq 2 m-1\right.$ and $h\left(\mathscr{R}_{m}(T)\right) \leq 2 m-1$. And $\mathscr{R}_{m}(T) \leq \mathscr{T}_{m}(T)$.

Lemma 6. Let $T \in \mathscr{P}$ have the $F H G$ property, and let all the entries of T be maximal. Then there exists unique (up to a multiplicative constant) sequence $\left(x_{i}\right) \in \mathscr{M}(T)$.

Moreover, if $h(T) \leq 2 m+1$ then all the entries of $\mathscr{S}_{m}(T)$ are maximal, and if $h(T) \leq 2 m$ then all the entries of $\mathscr{\rho}_{m}^{\prime} T$ are maximal.

Proof. Let T satisfy the assumption of the lemma. Our proof is inductive with respect to $h(T)$. First let $h(T)=1$ i.e., $T e_{i_{1}} \neq 0$ and $T e_{i}=0$ for $i \neq i_{i}$. Since $\|T\|=1$ we have $\left\|T e_{i_{1}}\right\|=1$. It is easy to see that $\left(\delta_{i i_{1}}\right)$ is a unique (up to a multiplicative constant) element of $\mathscr{M}(T)$.

Assume that the thesis of the lemma is true for all T with $h(T) \leq N$. Assume that $h(T)=N+1$. We need to prove that the lemma holds for T. First consider the case when $N=2 m$ is even. Put $\left(u_{j i}\right)=\mathscr{S}_{m}(T)$. For $(i, j) \in E_{2 m}$. We define

$$
\eta_{j i}=\frac{1}{\sqrt[p]{1-\sum_{k \neq j} t_{k i}^{p}}}
$$

Note that $1-\sum_{k \neq j} t_{k i}^{p}=1-\left\|T e_{i}\right\|^{p}+t_{j i}^{p}>0$ since $T \in \mathscr{P}$. We have $h\left(\left(u_{j i}\right)\right)=2 N$.

We claim that all the entries of $\left(u_{j i}\right)$ are maximal. Indeed, suppose first, to get a contradiction, that the entries of ($u_{j i}$) are not maximal. We find $\alpha_{j i} \geq 1$ such that all the entries of the matrix $\left(\alpha_{j i} u_{j i}\right)$ are maximal. Put $\alpha_{j i}=1$ for $(i, j) \in E_{2 m+1}$. By the inductive assumption there exists $\left(x^{\prime}\right) \in \mathscr{M}\left(\left(\alpha_{i i} u_{j i}\right)\right)$. For every $i \in I_{m+1}$ we denote by j_{i} the unique element of J_{m} such that $t_{j_{i} i} \neq 0$. Now let

$$
x^{\prime \prime}= \begin{cases}x_{i}^{\prime} \eta_{j_{i} i} & \text { if } i \in I_{m+1} \\ x_{i}^{\prime} & \text { otherwise }\end{cases}
$$

It is easy to check that

$$
\left(x_{i}^{\prime \prime}\right) \in \mathscr{M}\left(\left(\alpha_{j i} t_{j i}\right)\right)
$$

By Lemma 5, $\left\|\left(\alpha_{j i} t_{j i}\right)\right\|=1$. Since $t_{j i} \leq \alpha_{j i} t_{j i}$ and all entries of $\left(t_{j i}\right)$ are maximal we obtain $\alpha_{j i}=1$. Now suppose that $\left\|\left(u_{j i}\right)\right\|>1$. We find $\alpha_{j i} \leq 1$, $(i, j) \in \bigcup_{n=1}^{2 n} E_{n}$, such that all the entries of $\left(\alpha_{j i} u_{j i}\right)$ are maximal. By inductive assumption there exists $\left(x^{\prime}\right) \in \mathscr{M}\left(\left(\alpha_{j i} u_{j i}\right)\right)$. Put $\alpha_{j i}=1$ for $(i, j) \in E_{2 m+1}$. It is easy to check that $\left(x_{i}^{\prime \prime}\right) \in \mathscr{M}\left(\left(\alpha_{j i} t_{j i}\right)\right)$, where $x_{i}^{\prime \prime}$ is defined as above. By Lemma 5 the entries of $\left(\alpha_{j i} t_{j i}\right)$ are maximal, hence all $\alpha_{j i}=1$. This ends the proof of our claim. Therefore if $h(T) \leq 2 m+1$ then all the entries of $\mathcal{\rho}_{m}(T)$ are maximal.

Using inductive assumption we find (unique) $\left(x_{i}^{\prime}\right) \in \mathscr{M}\left(\left(u_{j i}\right)\right)$. Put

$$
x_{i}= \begin{cases}x_{i}^{\prime} \eta_{j_{i} i} & \text { if } i \in I_{m+1} \\ x_{i}^{\prime} & \text { otherwise }\end{cases}
$$

One can easily verify that $\left(x_{i}\right) \in \mathscr{M}\left(\left(t_{j i}\right)\right)$.

Now suppose that $N=2 m-1$ is odd. Let $\left(u_{j i}\right)=\mathcal{\rho}_{m}^{\prime}(T)$. For $(i, j) \in$ $E_{2 m-1}$ we let

$$
\eta_{j i}=\frac{1}{\sqrt[q]{1-\sum_{k \neq i} t_{j k}^{q}}}
$$

By the same argument as in the even case, all the entries of the matrix ($u_{j i}$) are maximal. Using the inductive assumption we find $\left(x_{i}^{\prime}\right) \in \mathscr{M}\left(\left(u_{j i}\right)\right)$. It is not difficult to check that $\left(x_{i}\right) \in \mathscr{M}\left(\left(t_{j i}\right)\right)$, where

$$
x_{i}= \begin{cases}\left(t_{j_{1} i}\right)^{q / p} \eta_{j_{1} i_{1}}^{q} t_{j_{1} i_{1}} x_{i_{1}}^{\prime} & \text { if } i \in I_{m+1}, j_{1} \in\left\{j \in J_{m}: t_{j 1} \neq 0\right\} \\ i_{1} \in\left\{k \in I_{m}: t_{j_{1} k} \neq 0\right\} \\ x_{i}^{\prime} & \text { otherwise }\end{cases}
$$

Analogously, if $h(T) \leq 2 m$ then all the entries of T are maximal.
Remark 1. (a) From the construction presented in the proof of Lemma 6 it follows that if $\mathscr{M}\left(\mathscr{S}_{m}(T)\right) \neq \varnothing\left(\mathscr{M}\left(\mathscr{S}_{m}^{\prime}(T)\right) \neq \varnothing\right)$ then $\mathscr{M}(T) \neq 0$. Therefore, if $\mathscr{M}\left(\mathscr{T}_{m}(T)\right) \neq \varnothing$ then $\mathscr{M}(T) \neq \varnothing$.
(b) We get also that if $\|T\| \leq 1$ then $\left\|\mathscr{S}_{m}(T)\right\| \leq 1$ and $\left\|\mathscr{S}_{m}^{\prime}(T)\right\| \leq 1$, hence $\left\|\mathscr{T}_{m}(T)\right\| \leq 1$, too.
(c) Let $h(T) \leq 2 m+1$ and let the entries of T are maximal.

If $\left(x_{i}^{\prime}\right) \in \mathscr{M}(T), x_{i}^{\prime \prime} \in \mathscr{M}\left(\mathscr{T}_{m}(T)\right)$ and $x_{i_{1}}^{\prime}=x_{i_{1}}^{\prime \prime}=1$ then $x_{i}^{\prime}=x_{i}^{\prime \prime}$ for $i \in$ $\bigcup_{n=1}^{m} I_{n}$.

Although \mathscr{T}_{m} is not a linear map, it has other useful properties.
Lemma 7. Let $T \in \mathscr{P}, m \in \mathbf{N}$.
(a) $\mathscr{T}_{m}(T) \geq 0$,
(b) $\left\|\mathscr{T}_{m}(T)\right\| \leq 1$,
(c) $\left(\mathscr{T}_{m}^{m}(T)\right)_{j i} \geq t_{j i}$ for $(i, j) \in E_{2 m-1}$.

Moreover if $h(T) \leq 2 m+1$ then:
(d) All the entries of T are maximal if and only if all the entries of $\mathscr{T}_{m}(T)$ are maximal.

Proof. (a) and (c) are obvious. (b) follows from Remark 1. For (d), let $h(T) \leq 2 m+1$. Suppose that all the entries of $\mathscr{T}_{m}(T)$ are maximal. Then in view of Lemma 6, $\mathscr{M}\left(\mathscr{T}_{m}(T)\right) \neq \varnothing$. By Remark $1, \mathscr{M}(T) \neq \varnothing$. From Lemma 5 all the entries of T are maximal. The reserve implication follows directly from Lemma 6.

4. Proofs of the main lemmas

Let $T \in \mathscr{P}$. We define a family of matrices $U^{m k}(m, k \in \mathscr{N})$ by letting

$$
U^{m k}=\mathscr{T}_{m} \mathscr{T}_{m+1} \mathscr{T}_{m+2} \cdots \mathscr{T}_{m+k-1}(T)
$$

By Lemma 7 (b), (c) we obtain $\left\|U^{m k}\right\| \leq 1$ and $1 \geq u_{j i}^{m}{ }^{k+1} \geq u_{j i}^{m k} \geq 0$, respectively. Let

$$
u_{j i}^{(m)}=\lim _{k \rightarrow \infty} u_{j i}^{m k}
$$

We define a map \mathscr{E}_{m} by

$$
\mathscr{I}_{m}(T)=\left(u_{j i}^{m}\right)
$$

We have $\left\|\mathscr{\mathscr { G }}_{m}(T)\right\| \leq 1$, since $\left\|U^{m k}\right\| \leq 1$. By definition, $U^{m k}=$ $\mathscr{T}_{m}\left(U_{m}^{m+1, k-1}\right)$. Since the function

$$
u_{j i}^{m k}=t_{j i}\left[1-\sum_{a \in I_{m+1}}\left[t_{j a}\left(1-\sum_{b \in J_{m+1}}\left(u_{b a}^{m+1, k-1}\right)^{p}\right)^{-1 / p}\right]^{q}\right]^{-1 / q}
$$

is continuous and increasing in $u_{b a}^{m+1, k-1}$ and

$$
\sum_{k \in J_{m+1}} u_{b a}^{(m+1)}<1, \sum_{a \in I_{m+1}} \cdots<1 \quad(\|\mathscr{G}(T)\| \leq 1)
$$

by passing to the limit as $k \rightarrow \infty$ we obtain

$$
\mathscr{\mathscr { G }}_{m}(T)=\mathscr{T}_{m} \mathscr{G}_{m+1}(T)
$$

Proof of Lemma 1. Let all the entries of $T \in \mathscr{P}$ be maximal. We claim that all the entries of $\mathscr{E}_{m}(t)$ are maximal. Indeed we only need to show all the entries of $\mathscr{G}_{1}(T)$ are maximal, because of Lemma $7(\mathrm{~d})$ and the fact that

$$
\mathscr{G}_{1}(T)=\mathscr{T}_{1} \mathscr{T}_{2} \cdots \mathscr{T}_{m-1} \mathscr{G}_{m}(T)
$$

Suppose, to get a contradiction, that the entries of $\left(u_{j i}^{(1)}\right)=\mathscr{I}_{m}(T)$ are not maximal. Let $\alpha_{j i} \geq 1\left((i, j) \in E_{1}\right)$ be such that all the entries of $\left(\alpha_{j i} u_{j i}^{(1)}\right)$ are maximal. Put $\alpha_{j i}=1$ for $(i, j) \notin E_{1}$. Since

$$
\left(\alpha_{j i} u_{j i}^{1}\right)=\mathscr{T}_{1} \mathscr{T}_{2} \cdots \mathscr{T}_{m-1} \mathscr{G}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right)
$$

by Lemma $7(\mathrm{~d})$, all the entries of $\mathscr{E}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right)$ are maximal, so

$$
\left\|\mathscr{E}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right)\right\|=1
$$

Since $0 \leq \mathscr{R}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right) \leq \mathscr{T}_{m}\left(\left(\alpha_{j i} t_{j i}\right) \leq \mathscr{G}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right)\right.$ we have $\left\|\mathscr{R}_{m}\left(\left(\alpha_{j i} t_{j i}\right)\right)\right\| \leq$ 1 for all m. Hence $\left\|\left(\alpha_{j i} t_{j i}\right)\right\| \leq 1$. But this shows us that the entries of the matrix $\left(t_{j i}\right)$ are not maximal. This contradiction proves our claim.

By Lemma 6 and Remark 1 there exist $\left(x_{i}^{(m)}\right) \in \mathscr{M}\left(\left(u_{j i}^{(m)}\right)\right)$ for all m. We assume that $x_{i_{1}}^{(m)}=1$ for all m. We have $x_{i}^{(m)}=0$ for $i \notin \bigcup_{n=1}^{m} I_{n}$. From Remark 1(c), if $m<m_{1}<m_{2}$ then

$$
x_{i}^{\left(m_{1}\right)}=x_{i}^{\left(m_{2}\right)} \neq 0 \quad \text { for } i \in I_{m} .
$$

We put $x_{i}=x_{i}^{(m+1)}$ for $i \in I_{m}$. Now it is easy to see that $\left(x_{i}\right) \in \mathscr{M}(T)$.
Remark 2. Let all the entries of T be maximal. Then if $\left(x_{i}\right) \in \mathscr{M}(T)$, $\left(x_{i}^{(m)}\right) \in \mathscr{M}\left(\mathscr{G}_{m}(T)\right)$ and $x_{i_{1}}^{(m)}=x_{i_{1}}=1$ then $x_{i}=x_{i}^{(m)}$ for $i \in \bigcup_{n=1}^{m} I_{n}$. Moreover,

$$
\left(\mathscr{G}_{m}(T)\right)_{j_{0} i_{0}}=t_{j_{0} i_{0}}^{1 / p}\left(y_{j_{0}} / x_{i_{0}}\right)^{1 / q}
$$

for $\left(i_{0}, j_{0}\right) \in E_{2 m-1},\left(\left(y_{j}\right)\right.$ is a sequence corresponding to $\left.\left(x_{i}\right) \in \mathscr{M}(T)\right)$. Indeed, fix $\left(i_{0}, j_{0}\right) \in E_{2 m-1}$. Let $H=\left\{\left(i, j\right.\right.$: the path joining the node i_{0} and the edge i, j include the edge $\left.i_{0}, j_{0}\right\}$. Note that $(i, j) \in H$. Put $A=\{i$: $(i, j) \in H\}$. We define a matrix T^{\prime} by

$$
t_{j i}^{\prime}= \begin{cases}t_{j i} & \text { if }(i, j) \in H \\ \left(\mathscr{G}_{m}(T)\right)_{j i} & \text { otherwise }\end{cases}
$$

We have $\mathscr{\mathscr { G }}_{m}(T)=\mathscr{G}_{m}\left(T^{\prime}\right)$. Let $\left(x_{i}\right) \in \mathscr{M}(T)$ and $\left(x_{i}^{(m)}\right) \in \mathscr{M}\left(\mathscr{G}_{m}(T)\right)$. Put

$$
x_{i}^{\prime}= \begin{cases}x_{i} & \text { if } i \in A \cup \bigcup_{n=1}^{m} I_{n} \\ 0 & \text { otherwise }\end{cases}
$$

and $y_{j}^{\prime}=\sum_{i} t_{j i}^{\prime} x_{i}^{\prime}$. It is easy to see that $\left(x_{i}^{\prime}\right) \in \mathscr{M}\left(T^{\prime}\right)$. Let $j_{1} \in J_{m-1}$ be such that $t_{j_{1} i_{0}} \neq 0$. For $j \in J_{m}$ we denote a unique $i_{j} \in I_{m}$ such that $t_{j i_{j}} \neq 0$. We have $y_{j}^{(m)}=\left(\mathscr{G}_{m}(T)\right)_{i i_{j}} x_{i_{j}}$ for $j \in J_{m}\left(x_{i_{j}}=x_{i_{j}}^{(m)}\right)$. We have

$$
\begin{aligned}
x_{i_{0}}^{p-1} & =t_{j_{1} i_{0}} y_{j_{1}}^{p-1}+\sum_{j \in J_{m}}\left(\mathscr{\mathscr { G }}_{m}(T)\right)_{j i_{0}} y_{j}^{p-1} \\
& =t_{j_{1} i_{0}} y_{j_{1}}^{p-1}+\sum_{j \in J_{m}}\left(\mathscr{\mathscr { G }}_{m}(T)\right)_{j i_{0}}^{p} x_{i_{0}}^{p-1} .
\end{aligned}
$$

But when we consider the matrix T^{\prime} we have

$$
x_{i_{0}}^{p-1}=t_{j_{1} i_{0}} y_{j_{1}}^{p-1}+\sum_{\substack{j \in J_{m} \\ j \neq j_{0}}}\left(\mathscr{G}_{m}(T)\right)_{j i_{0}}^{p} x_{i_{0}}^{p-1}+t_{j_{0} i_{0}} y_{j_{0}}^{p-1}
$$

Hence

$$
\left(\mathscr{G}_{m}(T)\right)_{j_{0} i_{0}}^{p} x_{0}^{p-1}=t_{j_{0} i_{0}} y_{0}^{p-1}
$$

which ends the proof.
Proof of Lemma 2. We define matrices $U^{2, k}=\mathscr{T}_{2} \mathscr{T}_{3} \cdots \mathscr{T}_{k+1}(T)$, $\left(u_{j i}^{(2)}\right)=\mathscr{\mathscr { G }}_{2}(T)$ and $S^{(k)}$ by

$$
s_{j i}^{(k)}= \begin{cases}t_{j i} \frac{u_{j i}^{(2)}}{u_{j i}^{2, k}} & \text { if }(i, j) \in E_{3} \\ t_{j i} & \text { if }(i, j) \in \bigcup_{\substack{n=1 \\ n \neq 3}}^{2 k+3} E_{n} \\ 0 & \text { otherwise, } \quad k \in \mathbf{N}\end{cases}
$$

We have

$$
\mathscr{G}_{2}(T)=\mathscr{T}_{2} \mathscr{T}_{3} \cdots \mathscr{T}_{k+1}\left(S^{(k)}\right)
$$

By Lemma 7(d) and the claim in the proof of Lemma 1, all the entries of $S^{(k)}$ are maximal. Let $\left(x_{i}\right) \in \mathscr{M}(T),\left(x_{i}^{0}\right) \in \mathscr{M}\left(\mathscr{G}_{2}(T)\right),\left(x_{i}^{(k)}\right) \in \mathscr{M}\left(S^{(k)}\right)$ be such that $x_{i_{1}}=x_{i_{1}}^{0}=x_{i_{1}}^{(k)}=1$. $\mathrm{By}\left(y_{j}\right),\left(y_{j}^{0}\right),\left(y_{j}^{(k)}\right)$ we denote the corresponding sequences.

Fix $\varepsilon>0$. Let $\varepsilon_{i}>0$ be such that

$$
\left(x_{i}^{p-1}-2 \varepsilon_{i}\right)^{q}>x_{i}^{p}-\varepsilon 2^{-i-1}, \quad i \in I_{1} \cup I_{2} .
$$

Put $I_{1}^{\prime}=I_{1}=\left\{i_{1}\right\}$. Choose J_{1}^{\prime} a finite subset of J_{1} such that

$$
\sum_{j \in J_{1}^{\prime}} t_{j i_{1}} y_{j}^{p-1}>x_{i_{1}}^{p-1}-\varepsilon_{i_{1}} .
$$

Find $\delta_{j}>0\left(j \in J_{1}^{\prime}\right)$ such that

$$
\sum_{j \in J_{1}} t_{i_{1}}\left(y_{j}-\delta_{j}\right)^{p-1}>x_{i_{1}}^{p-1}-2 \varepsilon_{i_{1}}
$$

Choose $I_{2}^{\prime \prime}$ a finite subset of I_{2} such that

$$
\sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime \prime}} t_{j i} x_{i}>y_{j}-\delta_{j} \quad \text { for } j \in J_{1}^{\prime}
$$

Let $N_{0}=\max \left\{i \in I_{1}^{\prime} \cup I_{2}^{\prime \prime}: t_{j_{1} i}>0\right\}$. Fix $N \geq N_{0}$. Note that

$$
\sum_{i=1}^{N} t_{j_{1} i} x_{i}=\sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime}} t_{j_{1} i} x_{i}
$$

where $I_{2}^{\prime}=I_{2}^{\prime \prime} \cup\left\{i \in I_{2}: t_{j_{1} i}>0, i \leq N\right\}$.
Choose J_{2}^{\prime} a finite subset of J_{2} such that

$$
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i} y_{j}^{p-1}>x_{i}^{p-1}-\varepsilon_{i}, \quad i \in I_{2}^{\prime}
$$

and find $\delta_{j}>0\left(j \in J_{2}^{\prime}\right)$ such that

$$
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i}\left(y_{j}-\sqrt[p-1]{\frac{u_{j i}^{(2)}}{t_{j i}}} \delta_{j}\right)^{p-1}>x_{i}^{p-1}-2 \varepsilon_{i}, \quad i \in I_{2}^{\prime}
$$

Let I^{\prime} be a finite subset of $I_{2}^{\prime} \cup\left\{i \in I_{3}: t_{j i} \neq 0\right.$ for some $\left.j \in J_{2}^{\prime}\right\}$. Since for all k,

$$
\sum_{j \in J_{2}^{\prime}} s_{j i}^{(k)}\left(\sum_{n \in I_{2} \cup I_{3}} s_{j n}^{(k)} x_{n}^{(k)}\right)^{p-1}<x_{i}^{p-1} \quad\left(i \in I_{2}^{\prime}\right)
$$

there exists $M>0$ such that

$$
\left(S^{k}(\mathbf{z})\right)_{j}<M \quad\left(j \in J_{2}^{\prime}\right)
$$

where

$$
z_{i}= \begin{cases}x_{i} & \text { for } i \in I^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\sum_{i \in I^{\prime}} t_{j i} x_{i}^{(k)}<M$ for $j \in J_{2}^{\prime}$. Since $\left(S^{(k)}(\mathbf{z})\right)_{j}$ and $(T \mathbf{z})_{j}$ differ only for $j \in J_{2}^{\prime}$ we have

$$
\begin{aligned}
\left\|S^{(k)} \mathbf{z}\right\|^{p}-\|T \mathbf{z}\|^{p} & =\sum_{j \in J_{2}^{\prime}}\left|\left(S^{(k)} \mathbf{z}\right)_{j}\right|^{p}-\left|(T \mathbf{z})_{j}\right|^{p} \\
& =\sum_{j \in J_{2}^{\prime}}\left[\left(\sum_{i \in I^{\prime}} s_{j i}^{(k)} x_{i}^{(k)}\right)^{p}-\left(\sum_{i \in I^{\prime}} t_{j i} x_{i}^{(k)}\right)^{p}\right] .
\end{aligned}
$$

For $j \in J_{2}^{\prime}$ we denote a unique $i_{j} \in I_{2}^{\prime}$ such that $t_{i i_{j}} \neq 0$. Hence

$$
\begin{aligned}
&\left\|S^{k} \mathbf{z}\right\|^{p}-\|T \mathbf{z}\|^{p} \\
& \leq \sum_{j \in J_{2}^{\prime}}\left\{\left[\left(s_{j i_{1}}^{(k)}-t_{j i_{1}}\right) x_{i_{j}}+\sum_{i \in I^{\prime}} t_{j i} x_{i}^{(k)}\right]^{p}-\left(\sum_{i \in I^{\prime}} t_{j i} x^{(k)}\right)^{p}\right\} \\
& \leq \sum_{j \in J_{2}^{\prime}} p M^{p-1}\left(s_{j i_{j}}^{(k)}-t_{j i_{j}}\right) x_{i_{j}}
\end{aligned}
$$

Since $s_{j i}^{(k)} \Rightarrow t_{j i}$, there exists k such that

$$
\left\|S^{(k)} \mathbf{z}\right\|^{p}-\|T \mathbf{z}\|^{p}<\varepsilon / 2
$$

By Remarks 1(c) and 2 we have $x_{i}=x_{i}^{0}=x_{i}^{(k)}$ for $i \in I_{2}$. Now consider $U^{(2)}$ and $T_{a}^{(k)}=\mathscr{T}_{3} \mathscr{T}_{4} \cdots \mathscr{T}_{k+1}\left(S^{(k)}\right)$. Let $\left(x_{i}^{(a)}\right) \in \mathscr{M}\left(T_{a}^{(k)}\right)$. Since $U^{(2)}=$ $\mathscr{T}_{2}\left(T_{a}^{(k)}\right)$, by Remark 2,

$$
u_{j i}^{(2)}=\sqrt[p]{s_{j i}^{(k)}} \sqrt[q]{y_{j}^{(k)} / x_{i}}
$$

for $(i, j) \in E_{3}$. Since $y_{j}^{0}=u_{j i}^{(2)} x_{i}$ we get $u_{j i}^{(2)}\left(y_{j}^{0}\right)^{p-1}=s_{j i}^{(k)}\left(y_{j}^{(k)}\right)^{p-1}$. And, since $\mathscr{G}_{2}(T)=\mathscr{T}_{2} \mathscr{T}_{3}(T)$ we get $u_{j i}^{(2)}\left(y_{j}^{0}\right)^{p-1}=t_{j i} y_{j}^{p-1}$.

Now we consider the matrix $\left(s_{j i}^{(k)}\right)$. We have

$$
\begin{gathered}
\sum_{j \in J_{1}^{\prime}} s_{j_{1}}^{(k)}\left(y_{j}^{(k)}\right)^{p-1}>\left(x_{i_{1}}^{(k)}\right)^{p-1}-\varepsilon_{i_{1}}, \\
\sum_{j \in J_{1}^{\prime}} s_{j i}^{(k)}\left(y_{j}^{(k)}-\delta_{j}\right)^{p-1}>\left(x_{i_{1}}^{(k)}\right)^{p-1}-2 \varepsilon_{i_{1}}, \\
\sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime}} s_{j i}^{(k)} x_{i}^{(k)} \geq y_{j}^{(k)}-\delta_{j}, \quad j \in J_{1}^{\prime}, \\
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} s_{j i}^{(k)}\left(y_{j}^{(k)}\right)^{p-1}=\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i} y_{j}^{p-1}>\left(x_{i}^{(k)}\right)^{p-1}-\varepsilon_{i}, \quad i \in I_{2}^{\prime}, \\
\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} s_{j i}^{(k)}\left(y_{j}^{(k)}-\delta_{j}\right)^{p-1}=\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} s_{j i}^{(k)}\left(\sqrt[p]{\left.\frac{p-1}{s_{j i}^{(k)}} y_{j}-\delta_{j}\right)^{p-1}}\right. \\
=\sum_{j \in J_{1}^{\prime} \cup J_{2}^{\prime}} t_{j i}\left(y_{j}-\sqrt[p-1]{\frac{s_{j i}^{(k)}}{t_{j i}}} \delta_{j}\right)^{p-1} \\
>\left(x_{i}^{(k)}\right)^{p-1}-2 \varepsilon_{i}, \quad i \in I_{2}^{\prime},
\end{gathered}
$$

Now choose I_{3}^{\prime} a finite subset of I_{3} such that

$$
\sum_{i \in I_{1}^{\prime} \cup I_{2}^{\prime}} s_{j i}^{(k)} x_{i}^{(k)}>y_{j}^{(k)}-\delta_{j}, \quad j \in J_{2}^{\prime}
$$

Let $\varepsilon_{i}>0, i \in I_{1} \cup I_{2}$, be such that

$$
\left(\left(x_{i}^{(k)}\right)^{p-1}-2 \varepsilon_{i}\right)^{q}>\left(x_{i}^{(k)}\right)^{p}-\varepsilon_{2}^{-i-1}
$$

Note that the above inequality holds also for $i \in I_{1}^{\prime} \cup I_{2}^{\prime}$. Choose J_{3}^{\prime} a finite subset of J_{3} such that

$$
\sum_{j \in J_{2}^{\prime} \cup J_{3}^{\prime}} s_{j i}^{(k)}\left(y_{j}^{(k)}\right)^{p-1}>\left(x_{i}^{(k)}\right)^{p-1}-\varepsilon_{i}, \quad i \in I_{3}^{\prime} .
$$

Find $\delta_{j}>0\left(j \in J_{3}^{\prime}\right)$ such that

$$
\sum_{j \in J_{2}^{\prime} \cup J_{3}^{\prime}} s_{j i}^{(k)}\left(y_{j}^{(k)}-\delta_{j}\right)^{p-1}>\left(x_{i}^{(k)}\right)^{p-1}-2 \varepsilon_{i}, \quad i \in I_{3}^{\prime}
$$

Choose I_{4}^{\prime} a finite subset of I_{4} such that

$$
\sum_{i \in I_{3}^{\prime} \cup I_{4}^{\prime}} s_{j i}^{(k)} x_{i}^{(k)}>y_{j}^{(k)}-\delta_{j}, \quad j \in J_{3}^{\prime}
$$

We continue the above process for the matrix $S^{(k)}$ to get a finite sequence $I_{1}^{\prime}, J_{1}^{\prime}, I_{2}^{\prime}, \ldots, J_{2 k+2}^{\prime}$. Let

$$
I=\bigcup_{n=1}^{2 k+2} I_{n}^{\prime} \quad \text { and } \quad J=\bigcup_{n=1}^{2 k+2} J_{n}^{\prime}
$$

And let $\mathbf{u}^{(N)} \in l^{p}$ be defined by

$$
u_{i}^{(N)}= \begin{cases}x_{i}^{(k)} & \text { if } i \in I \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathbf{v}=\left(v_{j}\right)=S^{(k)} \mathbf{u}^{(N)}$. For $j \in J$ we have

$$
v_{j}=\sum_{i=1}^{\infty} s_{j i}^{(k)} u_{i}^{(N)} \geq \sum_{i \in I} s_{j i}^{(k)} x_{i}^{(k)}>y_{j}^{(k)}-\delta_{j}
$$

Thus

$$
\sum_{j=1}^{\infty} s_{j i}^{(k)} v_{j}^{p-1} \geq \sum_{j \in J} s_{j i}^{(k)}\left(y_{j}^{(k)}-\delta_{j}\right)^{p-1}>\left(x_{i}^{(k)}\right)^{p-1}-2 \varepsilon_{i}
$$

for $i \in I$. Therefore we obtain

$$
\begin{aligned}
\left\|\left(S^{(k)}\right)^{*}\left(S^{(k)} \mathbf{u}^{(N)}\right)^{p-1}\right\|_{q}^{q} & =\left\|\left(S^{(k)}\right)^{*} \mathbf{v}^{p-1}\right\|_{q}^{q} \\
& \geq \sum_{i \in I}\left[\sum_{j \in J} s_{j i}^{(k)} v_{j}^{p-1}\right]^{q} \\
& >\sum_{i \in I}\left[\left(x_{i}^{(k)}\right)^{p-1}-2 \varepsilon_{i}\right]^{q} \\
& >\sum_{i \in I}\left[\left(x_{i}^{(k)}\right)^{p}-\frac{\varepsilon}{2^{i+1}}\right]=\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}-\frac{\varepsilon}{2}
\end{aligned}
$$

Therefore

$$
\left\|S^{(k)} \mathbf{u}^{(N)}\right\|_{p}^{p}>\left\|\mathbf{u}^{(N)}\right\|_{p}^{p}-\frac{\varepsilon}{2}
$$

We have

$$
\left\|S^{(k)} \mathbf{u}^{(N)}\right\|_{p}^{p}-\left\|T \mathbf{u}^{(N)}\right\|_{p}^{p}=\left\|S^{(k)} \mathbf{z}\right\|_{p}^{p}-\|T \mathbf{z}\|_{p}^{p}<\frac{\varepsilon}{2}
$$

Thus

$$
\left\|T u^{(N)}\right\|_{p}^{p}>\left\|u^{(N)}\right\|_{p}^{p}-\varepsilon
$$

5. Additional remarks on extreme positive l^{p}-contractions

Lemma 8. Let $T \in \mathscr{P}$ and let the graph $G(T)$ be a tree. If all the entries of T are maximal then $\left(x_{i}\right) \in \mathscr{M}(T)$ is unique up to a multiplicative constant.

Proof. Suppose, to get a contraction, that there exist two different sequences $\left(x_{i}^{\prime}\right),\left(x_{i}^{\prime \prime}\right) \in \mathscr{M}(T)$ such that $x_{i_{1}}^{\prime}=x_{i_{1}}=1$. Then the corresponding sequences (y_{j}^{\prime}) and ($y_{j}^{\prime \prime}$) differ for some j_{1}. We may and do assume that $j_{1} \in J_{1}$. Suppose $y_{j_{1}}^{\prime \prime}<y_{j_{1}}^{\prime}$. Let $\varepsilon>0$ be such that

$$
\left(\frac{t_{j_{1} i_{1}}}{t_{j_{1} i_{1}}+\varepsilon}\right)^{p}=t_{j_{1_{1}} i_{1}} y_{j_{1}}^{\prime \prime p-1}+\sum_{\substack{j \in J_{1} \\ j \neq j_{1}}} t_{j i_{1}} y_{j}^{\prime p-1}
$$

We define a new matrix $\left(t_{j i}^{\prime}\right)$ by

$$
t_{j i}= \begin{cases}t_{j i} \frac{t_{j_{1} i_{1}}+\varepsilon}{t_{j_{1} i_{1}}} & \text { if }(i, j) \in E_{1} \\ t_{j i} & \text { otherwise }\end{cases}
$$

We have $t_{j i}^{\prime} \geq t_{j i}$ and $t_{j_{1} i_{1}}^{\prime}>t_{j_{1} i_{1}}$. Put $A=\left\{k\right.$: the path joining nodes k and i_{1} includes edge $\left.i_{1} j_{1}\right\}$. It is easy to see that $\left(x_{i}\right) \in \mathscr{M}\left(\left(t_{j i}^{\prime}\right)\right)$ where

$$
x_{i}= \begin{cases}\frac{t_{j_{1} i_{1}}}{t_{j_{1} i_{1}}+\varepsilon} & \text { for } i=i_{1} \\ x_{i}^{\prime \prime} & \text { for } i \in A \\ x_{i}^{\prime} & \text { otherwise }\end{cases}
$$

Hence, by Corollary $1,\left\|\left(t_{j i}^{\prime}\right)\right\| \leq 1$. This contradicts the fact that all the entries of T are maximal. Therefore there are not two linearly independent elements of $\mathscr{M}(T)$.

Example 1. It should be pointed out that for some $T \in \mathscr{P}$ there are more that one linearly independent elements in $\mathscr{M}(T)$ (even if the graph $G(T)$ has no cycle). We define a sequence $\left(a_{n}\right)$ by

$$
\begin{gathered}
a_{1}=\left(2^{p+1}-2\right)^{1 /(p-1)}, \quad a_{2}=2 a_{1}-1 \\
a_{2 n+1}=\left(2 a_{2 n}^{p-1}-a_{2 n-1}^{p-1}\right)^{1 /(p-1)}, a_{2 n+2}=2 a_{2 n-1}-a_{2 n} \quad(n \in \mathbf{N})
\end{gathered}
$$

The sequence $\left(a_{n}\right)$ is increasing. Let $T=\left(t_{j i}\right)$ be defined as follows:

$$
\begin{gathered}
t_{11}=t_{21}=t_{31}=1 / 4 \\
t_{i, i+1}=t_{i+3, i+1}=1 / 2, \quad i \in \mathbf{N} \\
t_{j i}=0 \text { otherwise }
\end{gathered}
$$

Let

$$
x^{\prime}= \begin{cases}2 & \text { if } i=1 \\ a_{2 k} & \text { if } i=3 k+1, k \in \mathbf{N} \\ 1 & \text { otherwise }\end{cases}
$$

and

$$
x_{i}^{\prime \prime}= \begin{cases}2 & \text { if } i=1 \\ a_{2 k} & \text { if } i=3 k, k \in \mathbf{N} \\ 1 & \text { otherwise }\end{cases}
$$

Now it is easy to see that $x^{\prime}, x^{\prime \prime} \in \mathscr{M}(T)$.
Proposition 3. Let $T \in \mathscr{P}$ and let the graph $G(T)$ be a tree. Suppose that all entries of T are maximal. If $t_{j_{1} i_{1}}>0, t_{j_{2} i_{2}}>0$ and $\alpha \in\left(0, t_{j_{1} i_{1}}\right)$ then there exists $\beta>0$ such that $\left\|\left(t_{j i}^{\prime}\right)\right\|=1$ and all entries of the matrix ($t_{j i}^{\prime}$) are maximal, where $t_{j i}^{\prime}=t_{j i}-\alpha \delta_{j j_{1}} \delta_{i i_{1}}+\beta \delta_{j j_{2}} \delta_{i i_{2}}$.

Proof. Because the graph $G(T)$ is connected we may restrict our attention to the case when $t_{j_{1} i_{1}}$ and $t_{j_{2} i_{2}}$ belong to the same row or column. For instance assume that $j_{1}=j_{2}$. By Lemma 5 there exists $\left(x_{i}\right) \in \mathscr{M}(T)$. Fix $\alpha \in\left(0, t_{j_{1} i_{1}}\right)$. Choose $\beta>0$ such that

$$
x_{i_{1}} t_{j_{1} i_{1}}+x_{i_{2}} t_{j_{1} i_{2}}=\eta^{q} x_{i_{1}} t_{j_{1} i_{1}}+\xi^{q} x_{i_{2}} t_{j_{1} i_{2}}
$$

where

$$
\eta^{p-1}=\left(t_{j_{1} i_{1}}-\alpha\right) / t_{j_{1_{1}} i_{1}}, \quad \xi^{p-1}=\left(t_{j_{1} i_{2}}+\beta\right) / t_{j_{1} i_{2}}
$$

Let

$$
A=\left\{k: \text { the path joining nodes } k \text { and } j_{1} \text { include the edge } i_{1} j_{1}\right\}
$$

and

$$
B=\left\{k: \text { the path joining nodes } k \text { and } j_{1} \text { include the edge } i_{2} j_{1}\right\}
$$

Note that $i_{1} \in A, i_{2} \in B$. It is easy to see that $\left(x_{i}^{\prime}\right) \in \mathscr{M}\left(\left(t_{j i}\right)\right)$, where

$$
x_{i}^{\prime}= \begin{cases}\eta x_{i} & \text { if } i \in A \\ \xi x_{i} & \text { if } i \in B \\ x_{i} & \text { otherwise }\end{cases}
$$

Thus $\left\|\left(t_{j i}^{\prime}\right)\right\| \leq 1$ (by Corollary 1). This construction shows us that if some entry of a matrix is not maximal then no entry is maximal. If some entry of $\left(t_{j i}^{\prime}\right)$ is not maximal then doing the reserve operation to that presented above we get that no entry of $\left(t_{j i}\right)$ is maximal. Hence the entries of $\left(t_{j i}^{\prime}\right)$ are maximal and $\left\|\left(t_{j i}^{\prime}\right)\right\|=1$.

As an immediate consequence we get the following interesting fact.

Corollary 2. For a positive contraction whose graph is a connected tree either all entries are maximal or no entry is maximal.

Example 2. For $c>0$ we define an operator T_{c} by

$$
T_{c}\left(u_{i}\right)=\left(c u_{1},\left(u_{1}+u_{2}\right) / 2,\left(u_{2}+u_{3}\right) / 2,\left(u_{3}+u_{4}\right) / 2, \ldots\right), \quad\left(u_{i}\right) \in l^{p}
$$

Consider sequences $\left(x_{i}\right),\left(y_{j}\right)$ such that

$$
\sum_{i=1}^{\infty} t_{i i} x_{i}=y_{j}, \sum_{j=1}^{\infty} t_{j i} y_{j}^{p-1}=x_{i}^{p-1} \quad \text { with } x_{1}=1
$$

We have $y_{1}=c, y_{2}=2\left(1-c^{p}\right)$,

$$
\begin{gathered}
x_{n+1}=2 y_{n+1}-x_{n} \quad(n \geq 1) \\
y_{n+1}^{p-1}=2 x_{n}^{p-1}-y_{n}^{p-1} \quad(n \geq 2)
\end{gathered}
$$

Let $a_{2 n-1}=y_{n}$ and $a_{2 n}=x_{n}(n \geq 1)$. We have

$$
a_{2 n+2}-a_{2 n+1}=a_{2 n+1}-a_{2 n} \quad(n \geq 1)
$$

and

$$
a_{2 n+1}^{p-1}-a_{2 n}^{p-1}=a_{2 n}^{p-1}-a_{2 n-1}^{p-1} \quad(n \geq 2)
$$

If $c=\sqrt[p]{1 / 2}$ then $a_{n}=1$ for $n \geq 2$. And if $c<\sqrt[p]{1 / 2}$ then $a_{3}-a_{2}>0$ and $a_{4}-a_{3}>0$, so $\left(a_{n}\right)$ is increasing. Therefore for $c \in(0, \sqrt[p]{1 / 2}]$ the set $\mathscr{M}\left(T_{c}\right)$ is non-empty and $\mathscr{M}\left(T_{c}\right)$ has exactly one sequence (up to a multiplicative constant). Obviously entries of T_{c} for $c \in(0, \sqrt[p]{1 / 2})$ are not maximal, so $T_{c} \notin$ ext \mathscr{P}. Thus we get an example of non-extreme operator such that an element of $\mathscr{M}(T)$ is unique. Note that the condition (ii) for the operator T_{c} $(c \in(0, \sqrt[p]{1 / 2}))$ holds.

Suppose that $\left\|T_{c}\right\| \leq 1$. Then

$$
c^{p}+\sum_{k=1}^{n}\left(\frac{2 k+1}{2 n}\right)^{p}=\left\|T_{c} \mathbf{u}\right\| \leq\|\mathbf{u}\|=\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{p}
$$

where

$$
\mathbf{u}=\left(1, \frac{n-1}{n} ; \frac{n-2}{n}, \ldots, \frac{1}{n}, 0,0,0, \ldots\right)
$$

Using the mean-value theorem we obtain

$$
\left(k+\frac{1}{2}\right)^{p}-k^{p}=\frac{p}{2}\left(k+\frac{1}{2} \xi_{k}\right)^{p-1} \quad \text { where } 0<\xi<1
$$

Hence

$$
c^{p} \leq \sum_{k=1}^{n} \frac{(k+1 / 2)^{p}-k^{p}}{n^{p}}=\frac{p}{2}\left[\frac{1}{n} \sum_{k=1}^{n}\left(\frac{k+\xi_{k} / 2}{n}\right)^{p-1}\right]
$$

when n tends to infinity we obtain

$$
c^{p} \leq \frac{p}{2} \int_{0}^{1} t^{p-1} d t=\frac{1}{2}
$$

Therefore we have $\left\|T_{c}\right\|>1$ for $c>\sqrt[p]{1 / 2}$. Hence the entries of T for $c=\sqrt[p]{1 / 2}$ are maximal.

For $c>\sqrt[p]{1 / 2}$ we have $a_{3}-a_{2}<0, a_{4}-a_{3}<0$, so $\left(a_{n}\right)$ is decreasing. Because of results presented before there exists n_{0} such that $a_{n}<0$ for all $n \geq n_{0}$.

References

1. G.D. Birkhoff, Tres obsercaviones sobre el algebra lineal, Univ. Nac. Tucumán Rev. Ser. A, vol. 5 (1946), pp. 147-151.
2. J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., vol. 40 (1936), 396-414.
3. J.L. Denny, The support of discrete measures and subspace density, Michigan Math. J., vol. 11 (1980), pp. 59-64.
4. A.J. Ellis, Extreme positive operators, Quart. J. Math. Oxford, 15 (1964), pp. 342-344.
5. A. Gendler, Extreme operators in the unit ball of $L(C(X), C(Y))$ over the complex field, Proc. Amer. Math. Soc., vol. 57 (1976), pp. 85-88.
6. R. Grzasślewicz, Extreme operators on 2-dimensional l^{p}-spaces, Colloquium Math., vol. 44 (1981), pp. 309-315.
7. __, A note on extreme contractions on l^{p}-spaces, Portugalia Math., vol. 40 (1981), pp. 413-419.
8. ___ Extreme contractions on real Hilbert space, Math. Ann., vol. 261 (1982), pp. 463-466.
9. _, Extreme positive contractions on finite dimensional l^{p}-spaces, Canadian J. Math., vol. 37 (1985), pp. 682-699.
10. __, On extreme infinite doubly stochastic matrices, Illinois J. Math., vol. 31 (1987), pp. 529-543.
11. P.R. Halmos and V.S. Sunder, Bounded integral operators on L^{2} spaces, Springer-Verlag, New York, 1978.
12. J. Hennefeld, Compact extremal operators, Illinois J. Math., vol. 21 (1977), pp. 61-65.
13. A. Ionescu Tulcea and C. Ionescu Tulcea, A note on extreme points, unpublished.
14. A. Iwanik, Extreme contractions on certain function spaces, Colloq. Math., vol. 40 (1978), pp. 147-153.
15. R.V. Kadison, Isometries of operator algebras, Ann. of Math., vol. 54 (1951), pp. 325-338.
16. Charn-Huen Kan, A class of extreme L_{p} contractions, $p \neq 1,2, \infty$, and real 2×2 extreme matrices, Illinois J. Math., vol. 30 (1986), pp. 612-635.
17. ___, A family of 2×2 extreme contractions and a generalization of Clarkson's inequalities, Linear and Multilinear Algebra, vol. 21 (1987) pp. 191-198.
18. C.W. Kim, Extreme contraction operators on l_{∞}, Math. Zeitschr., vol. 151 (1976), pp. 101-110.
19. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math., vol. 8 (1958), pp. 459-466.
20. G. Letac, Representation des mesures de probabilite sur le produit de deux espaces denombrables, de marges donnees, Illinois J. Math., vol. 10 (1966), pp. 497-507.
21. H.G. Mukerjee, Supports of extremal measures with given marginals, Illinois J. Math., vol. 29 (1985), pp. 248-260.
22. H.H. Schaefer, Banach lattices and positive operators, Grundlehren Math. Wiss., no. 215, Springer-Verlag, New York, 1974.

Technical University of Wroclaw
Wroclaw, Poland

[^0]: Received March 19, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 46B20; Secondary 52A05, 47B55.

