EXTREME POSITIVE OPERATORS ON *l^p*

BY

Ryszard Grząślewicz

1. Introduction

The problem of the characterization of the extreme operators was first investigated by A. Ionescu Tulcea and C. Ionescu Tulcea [13]. They considered extreme positive contractions on the space of continuous functions. Next many authors extended this result, and now we have a quite good knowledge about extreme operators on C(K) (see for example [4], [5]). Thus it is natural to consider the possible extension of this problem to other classical Banach spaces. Using the results for C(K) we can get characterizations of extreme l^{∞} -operators and l^1 -operators (see [18], [14]). Note that for a Hilbert space case the set of extreme contractions coincides with the set of all isometries and coisometries (see [15], [8]). The other cases of l^p -spaces are more complicated. Some partial results on extreme l^p -contractions for $1 , <math>p \neq 2$, are given in [6], [7], [16], [17], [12].

The purpose of this paper is to characterize the extreme points of the positive part of the unit ball of the space of operators acting on infinite dimensional l^p -spaces $1 . This result extends an earlier one for the finite dimensional case [9]. Generally speaking the structure of extreme positive contractions is similar to the structure of extreme infinite doubly stochastic matrices with respect to arbitrary positive sequences (not necessarily elements of <math>l^1$). This description turns out to be more complicated compared with the finite dimensional case.

Let 1 and <math>q = p/(p - 1). As usual we denote by l^p the Banach lattice of all *p*-summable real sequences with the norm

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{1/p}, \ \mathbf{x} = (x_{1}) \in l^{p}$$

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 19, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46B20; Secondary 52A05, 47B55.

and standard order $(\mathbf{x} \le \mathbf{y}$ if and only if $x_i \le y_i$ for all $i \in \mathbf{N}$). We put $\mathbf{e}_{i_0} = (\delta_{ii_0})$ $(\delta_{ij}$ denotes the Kronecker's delta). Obviously $\{\mathbf{e}_i\}$ forms the canonical basis of l^p . The adjoint space (l^p) is identified with the space l^q . For $0 \le \mathbf{x} = (x_i) \in l^p$ we let $\mathbf{x}^{p-1} = (x_i^{p-1}) \in l^q$. Note that \mathbf{x}^{p-1} as a functional attains its norm at \mathbf{x} and is the unique functional with this property. Moreover we have $\|\mathbf{x}^{p-1}\|_q^q = \|\mathbf{x}\|_p^p$.

We denote by $\mathcal{L}(l^p)$ the Banach space of all linear bounded operators from l^p into l^p . An operator T is said to be positive $T \ge 0$ if $T\mathbf{x} \ge 0$ whenever $\mathbf{x} \ge 0$. The positive part of the unit ball of $\mathcal{L}(l^p)$ (the set of positive contraction on l^p) is denoted by \mathcal{P} .

To every operator $T \in \mathscr{L}(l^p)$ corresponds a unique matrix (t_{ji}) with real entries, such that $(T\mathbf{x})_j = \sum_{i=1}^{\infty} t_{ji} x_i$. We have $T \ge 0$ if and only if $t_{ji} \ge 0$ for all $i, j \in \mathbb{N}$. The operators on l^p will be identified with their corresponding matrices. Thus for instance $(\delta_{ji_0} \delta_{ii_0})$ denotes the one dimensional operator in $\mathscr{L}(l^p)$ which maps \mathbf{e}_{i_0} onto \mathbf{e}_{j_0} . Clearly the adjoint operator $T^* \in \mathscr{L}(l^q)$ is determined in the same manner by the transposed matrix.

Let $0 \le T \in \mathscr{P}$. We say that entries of $T = (t_{ii})$ are maximal if

$$\left\|\left(t_{ji}+\gamma\delta_{jj_0}\delta_{ii_0}\right)\right\|>1$$

for every $\gamma > 0$ and all $i_0, j_0 \in \mathbb{N}$ such that $t_{j_0 i_0} > 0$. Obviously, if some entry of the operator T is maximal then ||T|| = 1 and if T is an extreme positive contraction then all entries of T are maximal. Note that there exists $T \in \mathscr{P}$ such that ||T|| = 1 and the entries of T are not maximal (a suitable example is given in the paper).

We define the support of an operator $T = (t_{ii}) \in \mathscr{L}(l^p)$ by

supp
$$T = \{i: \text{ there exists } j_0 \text{ such that } t_{j_0 i} \neq 0\}.$$

For a positive operator $T = (t_{ji}) \in \mathscr{L}(l^p)$ we denote by $\mathscr{M}(T)$ the set of all non-negative sequences (x_i) such that

(1)
$$0 \leq \sum_{k=1}^{\infty} t_{jk} x_k = y_j < \infty,$$

(2)
$$\sum_{k=1}^{\infty} t_{ki} y_k^{p-1} = x_i^{p-1}$$

for all $i, j \in \mathbb{N}$, and

(3) $x_i > 0$ if and only if $i \in \text{supp } T$. That is

$$\mathscr{M}(T) = \left\{ (x_i) \ge 0 : \operatorname{supp}(x_i) = \operatorname{supp} T \text{ and for every } i \in \mathbb{N} \right\}$$

$$\sum_{j=1}^{\infty} t_{ji} \left(\sum_{k=1}^{\infty} t_{jk} x_k \right)^{p-1} = x_i^{p-1} \right\}.$$

Let $\mathbf{a} = (a_i)$, $\mathbf{b} = (b_j)$ be non-negative sequences. A matrix $P = (p_{ji})$, $i, j \in \mathbf{N}$, is said to be doubly stochastic with respect to $((a_i), (b_j))$ if $p_{ji} \ge 0$, $\sum_{j=1}^{\infty} p_{ji} = a_i$, $\sum_{i=1}^{\infty} p_{ji} = b_j$. The set of all doubly stochastic matrices with respect to \mathbf{a}, \mathbf{b} will be denoted by $\mathcal{D}(\mathbf{a}, \mathbf{b})$.

To complete a characterization of extreme positive l^p -contractions we need a description of extreme points of $\mathcal{D}(\mathbf{a}, \mathbf{b})$ for arbitrary non-negative sequences \mathbf{a}, \mathbf{b} . This problem was investigated under various assumption on \mathbf{a}, \mathbf{b} by many authors (see [20], [21], [3]). Note that the first result of this kind was given by G.D. Birkhoff [1] (see also [22], I, §5). The characterization of ext $\mathcal{D}(\mathbf{a}, \mathbf{b})$ for arbitrary non-negative sequences \mathbf{a}, \mathbf{b} is given in [10].

The main aim of this paper is to prove the following characterization of extreme positive l^{p} -contraction.

THEOREM. Let $1 , and let <math>0 \neq T = (t_{ji}) \in \mathscr{P}$. Then T is an extreme positive contraction if and only if the following conditions hold:

- (i) the entries of T are maximal;
- (ii) the matrix $P = (t_{ji}x_iy_j^{p-1})$ is extreme in $\mathcal{D}((x_i^p), (y_j^p))$, where $(x_i) \in \mathcal{M}(T)$ and $y_j = \sum_{i=1}^{\infty} t_{ji}x_i$.

2. Proof of the theorem

We will use the following fact, which is a generalized version of the Schur's test [23] (see [11], §5,Th. 5.2.).

PROPOSITION 1. For a positive operator $T = (t_{ji}) \in \mathscr{L}(l^p)$ let there exist positive sequences $(x_i), (y_j)$ such that

$$y_j = \sum_{i=1}^{\infty} t_{ji} x_i$$

and

$$\sum_{j=1}^{\infty} t_{ji} y_j^{p-1} \le x_i^{p-1}$$

for all $i, j \in \mathbb{N}$. Then $||T|| \leq 1$.

Proof. Using the convexity of $f(t) = t^p$ for an arbitrary non-negative vector $\mathbf{u} = (u_i) \in l^p$ we have

$$\|T\mathbf{u}\|_{p}^{p} = \sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} t_{ji}u_{i}\right)^{p}$$
$$= \sum_{j=1}^{\infty} y_{j}^{p} \left(\sum_{i=1}^{\infty} \frac{t_{ji}x_{i}}{y_{j}} \frac{u_{i}}{x_{i}}\right)^{p}$$
$$\leq \sum_{j=1}^{\infty} y_{j}^{p} \sum_{i=1}^{\infty} \frac{t_{ji}x_{i}}{y_{i}} \frac{u_{i}^{p}}{x_{i}^{p}}$$
$$= \sum_{i=1}^{\infty} \frac{u_{i}^{p}}{x_{i}^{p-1}} \sum_{j=1}^{\infty} t_{ji}y_{j}^{p-1}$$
$$\leq \sum_{i=1}^{\infty} u_{i}^{p} = \|\mathbf{u}\|_{p}^{p}.$$

COROLLARY 1. If for a positive operator $T \in \mathcal{L}(l^p)$ the set $\mathcal{M}(T)$ is non-empty then $||T|| \leq 1$.

For every matrix (t_{ji}) define a graph $G((t_{ji}))$ by the following formula. To the *j*-th row there corresponds a (row) node *j*, $j \in \mathbb{N}$, and to *i*-th column there corresponds a (column) node *i*, $i \in \mathbb{N}$. There is an edge joining a node *i* and a node *j* if and only if $t_{ii} \neq 0$. There are no other edges.

We say that an operator $T \in \mathscr{L}(l^p)$ is elementary provided there are no non-zero operators $T = T_1 + T_2$ and

$$\operatorname{supp} T_1 \cap \operatorname{supp} T_2 = \operatorname{supp} T_1^* \cap \operatorname{supp} T_2^* = \emptyset.$$

Note that T is elementary if and only if the graph G(T) is connected. Each operator $T \in \mathscr{L}(l^p)$ can be represented as a countable sum of elementary operators T_k , $T = \Sigma T_k$ with supp T_k disjoint and supp T_k^* disjoint. Then $||T|| = \sup_k ||T_k||$ and $T \ge 0$ if and only if $T_k \ge 0$ for all k. Therefore T is an extreme positive contraction if and only if the T_k 's are extreme positive contractions. The above decomposition shows us that for our purpose it is enough to consider elementary operators. Therefore without any loss of

generality all operators in $\mathcal{L}(l^p)$ considered in the remainder of the paper will be assumed to be elementary operators.

PROPOSITION 2. Let $T \in \text{ext } \mathcal{P}$. Then the graph G(T) has no cycle.

Proof. Suppose, to get a contradiction, that the graph G(T) has a simple cycle C. Let $F_n \in \mathcal{L}(l^p)$ denote the projection defined by

$$F_n \mathbf{e}_i = \begin{cases} \mathbf{e}_i & \text{if } i \le n \\ 0 & \text{otherwise} \end{cases}$$

For *n* sufficiently large the graph of $T_n = TF_n$ contains the cycle *C*. Note that the T_n 's are finite dimensional operators and they are not extreme. Recall here that the finite dimensional case if the graph of a positive contraction has the cycle then it is not extreme (see [9, Th.3]), so for each T_n there exists $R_n = (r_{ji}^{(n)}) \neq 0$ such that $||T_n \pm R_n|| \leq ||T_n|| \leq 1$ and $T_n \pm R_n \geq 0$, the graph $G(R_n) = C$ and $t_{j_0i_0} = |r_{j_0i_0}^{(n)}|$ for some $(i_0, j_0) \in C$ (not necessarily the same for all *n*). Choose a subsequence n_k of N such that $\lim_{k \to \infty} r_{ji}^{(n_k)} = r'_{ji}$ exists for all (i, j). Note that $r'_{ji} \neq 0$ for some (i, j), i.e., $R' = (r'_{ji}) \neq 0$. Obviously $T \pm R \geq 0$ and $||T \pm R|| \leq 1$. This contradiction ends the proof.

LEMMA 1. Let the graph G(T) of $T \in \mathscr{P}$ be a tree. If all entries of T are maximal then $\mathscr{M}(T)$ is non-empty.

LEMMA 2. Let all the entries of $T \in \mathscr{P}$ be maximal. Let $(x_i) \in \mathscr{M}(T)$ and $j_1 \in \text{supp } T^*$. Then for every $\varepsilon > 0$ there exists N_0 such that for all $N > N_0$ there exists $\mathbf{u}^{(N)} \in l^p$ such that

$$\|\mathbf{u}^{(N)}\|^p - \|T\mathbf{u}^{(N)}\|^p < \varepsilon,$$

and

$$u_i^{(N)} = x_i \quad \text{for } i \in \{k \le N : t_{j_1 k} \ne 0\},\$$
$$u_i^{(N)} = 0 \quad \text{for } i \in \{k > N : t_{j_1 k} \ne 0\}.$$

The proofs of Lemmas 1 and 2 will be presented in Section 4.

Let the graph G(T) of $T \in \mathcal{L}(l^p)$ be a tree (i.e., G(T) has no cycles). Let $i_1 \in \text{supp } T$. Note that G(T) is a connected tree since T is elementary. We define inductively two families $\{I_n\}$ and $\{J_n\}$ of disjoint subsets of N and a family $\{E_n\}$ of disjoint subsets of N × N. Put

$$I_1 = \{i_1\}, \quad J_1 = \{j: t_{j_1i} \neq 0\}$$

and

$$I_{n+1} = \{i \notin I_n : t_{ji} \neq 0 \text{ for some } j \in J_n\}$$

$$J_{n+1} = \{j \notin J_n : t_{ji} \neq 0 \text{ for some } i \in I_{n+1}\}$$

$$E_{2n-1} = \{(i, j) : i \in I_n, j \in J_n\}$$

$$E_{2n} = \{(i, j) : i \in I_{n+1}, j \in J_n\}, n \in \mathbb{N}.$$

LEMMA 3. Let all the entries of $T \in \mathscr{P}$ be maximal. Let $(x_i) \in \mathscr{M}(T)$ and $y_i = \sum_{i=1}^{\infty} t_{ii} x_i$. If $T \pm R \in \mathscr{P}$ for some $R = (r_{ii})$ then

$$\sum_{j=1}^{\infty} r_{ji} x_i = 0 \quad and \quad \sum_{j=1}^{\infty} r_{ji} y_j^{p-1}.$$

Proof. The graph G(R) is included in the graph G(T) and $|r_{ji}| \le t_{ji}$, since $T \pm R \ge 0$. Fix $j_1 \in \text{supp } T^*$. Because in the construction of the sets I_1, J_1, I_2, \ldots the index i_1 is arbitrary we may and do assume that $j_1 \in J_1$.

Fix $\varepsilon > 0$. We need to show that there exists N_0 such that

$$\left|\sum_{i=1}^N r_{j_1i} x_i\right| < \varepsilon \quad \text{for all } N > N_0.$$

By Lemma 2 we can find $N_0 \in \mathbb{N}$ such that for every $N > N_0$ there exists $\mathbf{u}^{(N)} \in l^p$ such that

$$\|\mathbf{u}^{(N)}\| - \|T\mathbf{u}^{(N)}\| < \varepsilon$$

and

$$(R\mathbf{u}^{(N)})_{j_1} = \sum_{i=1}^N r_{j_1} x_i.$$

First consider the case when $p \ge 2$. Using the Clarkson inequality [2] (see also [19], Corollary 2.1) we have

$$2\|R\mathbf{u}^{(N)}\|_{p}^{p} + 2\|T\mathbf{u}^{(N)}\|_{p}^{p} \le \|(T+R)\mathbf{u}^{(N)}\|_{p}^{p} + \|(T-R)\mathbf{u}^{(N)}\|_{p}^{p} \le 2\|\mathbf{u}^{(N)}\|_{p}^{p}$$

Hence we have

$$\left|\sum_{i=1}^{N} r_{j_{1}i} x_{i}\right| = \left| (R \mathbf{u}^{(N)})_{j_{1}} \right| \le \|R \mathbf{u}^{(N)}\|_{p} \ne \left(\|\mathbf{u}^{(N)}\|_{p}^{p} - \|T \mathbf{u}^{(N)}\|_{p}^{p} \right)^{1/p} < \varepsilon^{1/p}.$$

Therefore $\sum_{i=1}^{\infty} r_{ji} x_i = 0$ for all $j \in \mathbb{N}$ and $p \ge 2$.

Now assume that 1 . As an immediate consequence of differentialcalculus we obtain

$$(t+\tau)^{p} + (t-\tau)^{p} \ge 2t^{p} + p(p-1)\tau^{2}t^{p-1} \ge 2t^{p} + p(p-1)\tau^{2}$$

where $|\tau| < t < 1$. By this, putting $T \mathbf{u}^{(N)} = (f_i)$ and $R \mathbf{u}^{(N)} = (g_i)$ we obtain

$$2\sum_{j=1}^{\infty} |f_j|^p + p(p-1)g_{j_1}^2 \le \sum_{j=1}^{\infty} |f_j + g_j|^p + \sum_{j=1}^{\infty} |f_j - g_j|^p$$

= $\|(T+R)\mathbf{u}^{(N)}\|_p^p + \|(T-R)\mathbf{u}^{(N)}\|_p^p$
 $\le 2\|\mathbf{u}^{(N)}\|_p^p.$

Hence

$$p(p-1)g_{j_1}^2 \leq 2(\|\mathbf{u}^{(N)}\|_p^p - \|T\mathbf{u}^{(N)}\|_p^p) < 2\varepsilon.$$

Thus we prove that $\sum_{i=1}^{\infty} r_{ji} x_i = 0$ for all $p \in (1, \infty)$. To prove that $\sum_{j=1}^{\infty} r_{ji} y_j^{p-1} = 0$ we apply the same arguments for the adjoint operators T^* and R^* .

Proof of the theorem. Suppose that $T \in \text{ext } \mathcal{P}$. Then obviously the condi-

tion (i) holds. From Lemma 1 there exists $(x_i) \in \mathscr{M}(T)$. Put $y_j = \sum_{i=1}^{\infty} t_{ji} x_i$. Suppose that $P = (t_{ji} x_i y_j^{p-1}) \notin ext \mathscr{D}((x_i^p), (y_j^p))$. Then there exist $P' = (p'_{ji})$ and $P'' = (p''_{ji})$ in $\mathscr{D}((x_i^p), (y_j^p))$ such that $P' \neq P''$ and P = (P' + P'')/2. In view of Proposition 1, $T' = (t'_{ji})$ and $T'' = (t''_{ji})$ are positive contractions, where $t'_{ji} = p'_{ji}/x_i y_j^{p-1}$ and $t''_{ji} = p''_{ji}/x_i y_j^{p-1}$ (we admit 0/0 = 0). We have (T' + T'')/2 = T, so T is not extreme. Thus the condition (ii) also holds.

Now suppose that the conditions (i) and (ii) hold. Let $R = (r_{ii})$ be such that $T \pm \overline{R} \in \mathscr{P}$. Obviously the graph G(R) is a subgraph of G(T). By Lemma 3, $\sum_{i=1}^{\infty} r_{ji} x_i = 0$ and $\sum_{j=1}^{\infty} r_{ji} y_j^{p-1} = 0$. Thus

$$(t_{ji}x_iy_j^{p-1}) \pm (r_{ji}x_iy_j^{p-1}) \in \mathscr{D}((x_i^p), (y_j^p)).$$

Because $(t_{ii}x_iy_i^{p-1}) \in \text{ext } \mathscr{D}((x_i^p), (y_i^p))$ we get $r_{ii}x_iy_i^{p-1} = 0$. Hence $r_{ii} = 0$, i.e., $T \in \text{ext } \mathcal{P}$.

3. Operators with a graph of finite height

Let the graph of $T \in \mathscr{L}(l^p)$ be a tree. The family I_n is a partition of supp T and the family J_n is a partition of supp T^* . Moreover

œ

$$\bigcup_{n=1} E_n = \{(i,j) \colon t_{ji} \neq 0\}.$$

If in the sequence E_1, E_2, E_3, \ldots some E_{n_0} is empty then the subsequent sets $E_n, n > n_0$, are also empty. The number h(T) of the non-empty sets in the sequence $\{E_n\}$ will be called the height of the graph G(T). We say that the matrix T has the FHG (Finite Height Graph) property if h(T) is finite.

LEMMA 4. Let $0 \le T \in \mathcal{L}(l^p)$ have the FHG property, and let $(x_i) \in \mathcal{M}(T)$, $y_j = \sum_i t_{ji} x_i$. Then for each $\varepsilon > 0$ there exists a finite subset I of N such that

$$\|T^{*}(T\mathbf{u})^{p-1}\|_{q}^{q} > \|\mathbf{u}\|_{q}^{q} - \varepsilon,$$

$$\{i_{i}\} = I_{1} \subset I, \quad \left(T^{*}((T\mathbf{u})^{p-1})\right)_{i_{1}} > x_{i_{1}}^{p-1}/2,$$

and for fixed $j_1 \in J_1$ we have $(T\mathbf{u})_{j_1} > y_{j_1}/2$ where

$$u_i = \begin{cases} x_i & \text{if } i \in I \\ 0 & \text{if } i \notin I. \end{cases}$$

Proof. Let $(x_i) \in \mathscr{M}(T)$. Let $y_i = \sum_i t_{ji} x_i$. Fix $\varepsilon > 0$ and $i_1 \in \text{supp } T$. Fix $j_1 \in J_1$. Let $\varepsilon_i > 0$ be such that

$$\left(x_i^{p-1}-2\varepsilon_i\right)^q > x_i^p - \varepsilon/2^i$$

and

$$\varepsilon_{i_1} < x_{i_1}^{p-1}/4.$$

Let $I'_1 = I_1 = \{i_1\}$. We choose a finite subset J'_1 of J_1 such that $j_1 \in J'_1$ and

$$\sum_{j \in J_1'} t_{ji_1} y_j^{p-1} > x_{i_1}^{p-1} - \varepsilon_{i_1}.$$

We find $\delta_j > 0$ $(j \in J'_1)$ such that $\delta_{j_1} < y_{j_1}/2$ and

$$\sum_{j \in J'_1} t_{ji_1} (y_j - \delta_j)^{p-1} > x_{i_1}^{p-1} - 2\varepsilon_{i_1}.$$

We choose a finite subset I'_2 of I_2 such that

$$\sum_{i \in I_1' \cup I_2'} t_{ji} x_i > y_j - \delta_j$$

for $j \in J'_1$. We choose a finite subset J'_2 of J_2 such that

$$\sum_{j \in J_1' \cup J_2'} t_{ji} y_j^{p-1} > x_i^{p-1} - \varepsilon_i$$

for $i \in I'_2$. We find $\delta_j > 0$ $(j \in J'_2)$ such that

$$\sum_{j \in J_1' \cup J_2'} t_{ji} (y_j - \delta_j)^{p-1} > x_i^{p-1} - 2\varepsilon_i$$

 $i \in I'_2$. We continue the above process to get (after h(T) steps) a finite sequence $I'_1, J'_1, I'_2, \ldots, J'_{n_0}$. Let $I = \bigcup_{n=1}^{n_0} I'_n$ and $J = \bigcup_{n=1}^{n_0} J'_n$. We define

$$u_i = \begin{cases} x_i & \text{if } i \in I \\ 0 & \text{if } i \notin I \end{cases}$$

Put $\mathbf{v} = (v_j) = T\mathbf{u}$. For $j \in J$ we have

$$v_j = \sum_{i=1}^{\infty} t_{ji} u_i = \sum_{i \in I} t_{ji} x_i > y_j - \delta_j.$$

Hence

$$\sum_{j=1}^{\infty} t_{ji} v_j^{p-1} > \sum_{j \in J} t_{ji} (y_j - \delta_j)^{p-1} > x_i^{p-1} - 2\varepsilon_i \quad \text{for } i \in I.$$

Therefore we obtain

$$\|T^*(T\mathbf{u})^{p-1}\|_q^q = \|T^*\mathbf{v}^{p-1}\|_q^q \ge \sum_{i\in I} \left[\sum_{j\in J} t_{ji} v_j^{p-1}\right]^q$$
$$\ge \sum_{i\in I} \left(x_i^{p-1} - 2\varepsilon_i\right)^q$$
$$\ge \sum_{i\in I} \left(x_i^p - \frac{\varepsilon}{2^i}\right)$$
$$\ge \|\mathbf{u}\|_p^p - \varepsilon.$$

Moreover we have

$$\left(T^*((T\mathbf{u})^{p-1})\right)_{i_1} \ge \sum_{j \in J'_1} y_{i_1}(y_j - \delta_j)^{p-1} > x_{i_1}^{p-1} - \varepsilon \ge x_{i_1}^{p-1}/2$$

and

$$(T\mathbf{u})_{j_1} \geq \sum_{i \in I'_1 \cup I'_2} t_{j_1 i} x_i > y_{j_1} - \delta_{j_1} > y_{j_1}/2.$$

LEMMA 5. Let $0 \le T \in \mathcal{L}(l^p)$ have the FHG property and let $\mathcal{M}(T)$ be non-empty. Then ||T|| = 1 and all the entries of T are maximal.

Proof. By Corollary 1 we have $||T|| \leq 1$. Let $T = (t_{ji})$ have the FHG property and let $(x_i) \in \mathscr{M}(T)$. Suppose, to get a contradiction, that there exists an entry of T which is not maximal. Since the construction of the sequences $I_1, J_1, J_2...$ can start from every positive entry, we may and do assume that t_{ji} $(i_1 \in I_1 = I'_1, j_1 \in J_1)$ is not maximal. Let $\gamma > 0$ be such that $||S|| \leq 1$, where $S = (s_{ji}) = (t_{ji} + \gamma \delta_{ii_1} \delta_{jj_1})$. Let

$$\beta = \frac{y_{j_1}^{p-1}}{2^{p-1}} \left[\left(1 + \gamma \frac{x_{i_1}}{y_{j_1}} \right)^{p-1} - 1 \right] > 0$$

and

$$\varepsilon = t_{j_1 i_1} \beta q x_{i_1} / 2^q > 0.$$

In view of Lemma 1 there exists $\mathbf{u} = (u_i) \in l^p$ such that if $\mathbf{v} = (v_j) = T\mathbf{u}$, $\mathbf{z} = (z_i) = T^*(\mathbf{v}^{p-1})$ then $\|\mathbf{z}\|_q^q > \|\mathbf{u}\|_p^p - \varepsilon$, and $u_{i_1} = x_{i_1}, z_{i_1} > x_{i_1}^{p-1}, v_{j_1} > y_{j_1}/2$. We have

$$\left[\left(v_{j_1}+\gamma x_{i_1}\right)^{p-1}-v_{j_1}^{p-1}\right]\geq v_{j_1}^{p-1}\left[\left(1+\gamma \frac{x_{i_1}}{y_{j_1}}\right)^{p-1}-1\right]\geq 1.$$

Using the mean value theorem we get

$$\left[z_{i_1} + t_{j_1 i_1} \beta\right]^q - z_{i_1}^q \ge t_{j_1 i_1} \beta q z_{i_1}^{q-1} > 2\varepsilon.$$

Therefore we obtain

$$\|S^{*}(S\mathbf{u})^{p-1}\|_{q}^{q} \ge \|T^{*}[(T + \gamma \delta_{ii_{1}}\delta_{jj_{1}})\mathbf{u}]^{p-1}\|_{q}^{q}$$

= $\|T^{*}(T\mathbf{u}) + T^{*}[((v_{j_{1}} + \gamma x_{i_{1}})^{p-1} - v_{j_{1}}^{p-1})\mathbf{e}_{j_{1}}]\|_{q}^{q}$
 $\ge \|\mathbf{z} + t_{j_{1}i_{1}}\beta\mathbf{e}_{i_{1}}\|_{q}^{q}$
= $\|\mathbf{z}\|_{q}^{q} + (z_{i_{1}} + t_{j_{1}i_{1}}\beta)^{q} - z_{i_{1}}^{q}$
 $\ge \|\mathbf{u}\|_{p}^{p} - \varepsilon + 2\varepsilon \ge \|\mathbf{u}\|_{p}^{p}.$

This contradicts the fact that for arbitrary $R \in \mathscr{P}$ we have

$$\|R^*(R\mathbf{u})^{p-1}\|_q^q \le \|(R\mathbf{u})^{p-1}\|_q^q = \|R\mathbf{u}\|_p^p \le \|\mathbf{u}\|_p^p.$$

This shows us that all the entries of T are maximal. Moreover, since ||S|| > 1 for each $\gamma > 0$ we have ||T|| = 1.

Let $m \in \mathbb{N}$. We define the following maps from the set of all positive contractions which the graph is a tree into the set of matrices having the FHG property by

$$\mathscr{I}_{m}((t_{ji})) = \begin{cases} t_{ji} & \text{if } (i,j) \in \bigcup_{n=1}^{2m-1} E_{n} \\ t_{ji} \left[1 - \sum_{k \in J_{m+1}} t_{ki}^{p} \right]^{-1/p} & \text{if } (i,j) \in E_{2m} \\ 0 & \text{otherwise,} \end{cases}$$
$$\mathscr{I}_{m}((t_{ji})) = \begin{cases} t_{ji} & \text{if } (i,j) \in \bigcup_{n=1}^{2m-2} E_{n} \\ t_{ji} \left[1 - \sum_{k \in I_{m+1}} t_{jk}^{q} \right]^{-1/q} & \text{if } (i,j) \in E_{2m-1} \\ 0 & \text{otherwise,} \end{cases}$$

$$\mathcal{T}_m(T) = \mathscr{I}'_m \mathscr{I}_m(T),$$

$$\mathscr{R}_{m}((t_{ji})) = \begin{cases} t_{ji} & \text{if } (i,j) \in \bigcup_{n=1}^{2m-1} E_{n} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $h(\mathscr{S}_m(T) \le 2m, h(\mathscr{S}_m'(T)) \le 2m - 1, h(\mathscr{T}_m(T)) \le 2m - 1$ and $h(\mathscr{R}_m(T)) \le 2m - 1$. And $\mathscr{R}_m(T) \le \mathscr{T}_m(T)$.

LEMMA 6. Let $T \in \mathscr{P}$ have the FHG property, and let all the entries of T be maximal. Then there exists unique (up to a multiplicative constant) sequence $(x_i) \in \mathscr{M}(T)$.

Moreover, if $h(T) \le 2m + 1$ then all the entries of $\mathscr{I}_m(T)$ are maximal, and if $h(T) \le 2m$ then all the entries of $\mathscr{I}'_m T$ are maximal.

Proof. Let T satisfy the assumption of the lemma. Our proof is inductive with respect to h(T). First let h(T) = 1 i.e., $Te_{i_1} \neq 0$ and $Te_i = 0$ for $i \neq i_i$. Since ||T|| = 1 we have $||Te_{i_1}|| = 1$. It is easy to see that (δ_{ii_1}) is a unique (up to a multiplicative constant) element of $\mathcal{M}(T)$.

Assume that the thesis of the lemma is true for all T with $h(T) \le N$. Assume that h(T) = N + 1. We need to prove that the lemma holds for T. First consider the case when N = 2m is even. Put $(u_{ji}) = \mathscr{S}_m(T)$. For $(i, j) \in E_{2m}$. We define

$$\eta_{ji} = \frac{1}{\sqrt[p]{1 - \sum_{k \neq j} t_{ki}^p}}$$

Note that $1 - \sum_{k \neq j} t_{ki}^p = 1 - ||Te_i||^p + t_{ji}^p > 0$ since $T \in \mathscr{P}$. We have $h((u_{ji})) = 2N$.

We claim that all the entries of (u_{ji}) are maximal. Indeed, suppose first, to get a contradiction, that the entries of (u_{ji}) are not maximal. We find $\alpha_{ji} \ge 1$ such that all the entries of the matrix $(\alpha_{ji}u_{ji})$ are maximal. Put $\alpha_{ji} = 1$ for $(i, j) \in E_{2m+1}$. By the inductive assumption there exists $(x') \in \mathscr{M}((\alpha_{ji}u_{ji}))$. For every $i \in I_{m+1}$ we denote by j_i the unique element of J_m such that $t_{i,i} \ne 0$. Now let

$$x'' = \begin{cases} x'_i \eta_{j_i i} & \text{if } i \in I_{m+1} \\ x'_i & \text{otherwise.} \end{cases}$$

It is easy to check that

$$(x_i'') \in \mathscr{M}((\alpha_{ji}t_{ji}))$$

By Lemma 5, $\|(\alpha_{ji}t_{ji})\| = 1$. Since $t_{ji} \le \alpha_{ji}t_{ji}$ and all entries of (t_{ji}) are maximal we obtain $\alpha_{ji} = 1$. Now suppose that $\|(u_{ji})\| > 1$. We find $\alpha_{ji} \le 1$, $(i, j) \in \bigcup_{n=1}^{2n} E_n$, such that all the entries of $(\alpha_{ji}u_{ji})$ are maximal. By inductive assumption there exists $(x') \in \mathscr{M}((\alpha_{ji}u_{ji}))$. Put $\alpha_{ji} = 1$ for $(i, j) \in E_{2m+1}$. It is easy to check that $(x''_i) \in \mathscr{M}((\alpha_{ji}t_{ji}))$, where x''_i is defined as above. By Lemma 5 the entries of $(\alpha_{ji}t_{ji})$ are maximal, hence all $\alpha_{ji} = 1$. This ends the proof of our claim. Therefore if $h(T) \le 2m + 1$ then all the entries of $\mathscr{I}_m(T)$ are maximal.

Using inductive assumption we find (unique) $(x'_i) \in \mathscr{M}((u_{ii}))$. Put

$$x_i = \begin{cases} x'_i \eta_{j_i i} & \text{if } i \in I_{m+1} \\ x'_i & \text{otherwise.} \end{cases}$$

One can easily verify that $(x_i) \in \mathcal{M}((t_{ii}))$.

Now suppose that N = 2m - 1 is odd. Let $(u_{ji}) = \mathscr{I}'_m(T)$. For $(i, j) \in E_{2m-1}$ we let

$$\eta_{ji} = \frac{1}{\sqrt[q]{1 - \sum_{k \neq i} t_{jk}^q}}$$

By the same argument as in the even case, all the entries of the matrix (u_{ji}) are maximal. Using the inductive assumption we find $(x'_i) \in \mathscr{M}((u_{ji}))$. It is not difficult to check that $(x_i) \in \mathscr{M}((t_{ji}))$, where

$$x_{i} = \begin{cases} \left(t_{j_{1}i}\right)^{q/p} \eta_{j_{1}i_{1}}^{q} t_{j_{1}i_{1}} x_{i_{1}}' & \text{if } i \in I_{m+1}, \, j_{1} \in \{j \in J_{m} : t_{j_{1}} \neq 0\}, \\ & i_{1} \in \{k \in I_{m} : t_{j_{1}k} \neq 0\} \\ x_{i}' & \text{otherwise} \end{cases}$$

Analogously, if $h(T) \le 2m$ then all the entries of T are maximal.

Remark 1. (a) From the construction presented in the proof of Lemma 6 it follows that if $\mathscr{M}(\mathscr{S}_m(T)) \neq \emptyset$ ($\mathscr{M}(\mathscr{S}'_m(T)) \neq \emptyset$) then $\mathscr{M}(T) \neq 0$. Therefore, if $\mathscr{M}(\mathscr{T}_m(T)) \neq \emptyset$ then $\mathscr{M}(T) \neq \emptyset$.

(b) We get also that if $||T|| \le 1$ then $||\mathscr{S}_m(T)|| \le 1$ and $||\mathscr{S}_m'(T)|| \le 1$, hence $||\mathscr{T}_m(T)|| \le 1$, too.

(c) Let $h(T) \le 2m + 1$ and let the entries of T are maximal.

If $(x'_i) \in \mathscr{M}(T)$, $x''_i \in \mathscr{M}(\mathscr{T}_m(T))$ and $x'_{i_1} = x''_{i_1} = 1$ then $x'_i = x''_i$ for $i \in \bigcup_{n=1}^m I_n$.

Although \mathcal{T}_m is not a linear map, it has other useful properties.

LEMMA 7. Let $T \in \mathscr{P}$, $m \in \mathbb{N}$. (a) $\mathscr{T}_m(T) \ge 0$, (b) $\|\mathscr{T}_m(T)\| \le 1$, (c) $(\mathscr{T}_m(T))_{ji} \ge t_{ji}$ for $(i, j) \in E_{2m-1}$. Moreover if $h(T) \le 2m + 1$ then: (d) All the entries of T are maximal if

(d) All the entries of T are maximal if and only if all the entries of $\mathcal{T}_m(T)$ are maximal.

Proof. (a) and (c) are obvious. (b) follows from Remark 1. For (d), let $h(T) \leq 2m + 1$. Suppose that all the entries of $\mathcal{T}_m(T)$ are maximal. Then in view of Lemma 6, $\mathscr{M}(\mathcal{T}_m(T)) \neq \emptyset$. By Remark 1, $\mathscr{M}(T) \neq \emptyset$. From Lemma 5 all the entries of T are maximal. The reserve implication follows directly from Lemma 6.

220

4. Proofs of the main lemmas

Let $T \in \mathscr{P}$. We define a family of matrices U^{mk} $(m, k \in \mathscr{N})$ by letting

$$U^{mk} = \mathscr{T}_m \mathscr{T}_{m+1} \mathscr{T}_{m+2} \cdots \mathscr{T}_{m+k-1} (T).$$

By Lemma 7 (b), (c) we obtain $||U^{mk}|| \le 1$ and $1 \ge u_{ji}^{m} {}^{k+1} \ge u_{ji}^{mk} \ge 0$, respectively. Let

$$u_{ji}^{(m)}=\lim_{k\to\infty}u_{ji}^{mk}.$$

We define a map \mathscr{G}_m by

$$\mathscr{G}_m(T) = (u_{ji}^m).$$

We have $\|\mathscr{G}_m(T)\| \leq 1$, since $\|U^{mk}\| \leq 1$. By definition, $U^{mk} = \mathscr{T}_m(U_m^{m+1,k-1})$. Since the function

$$u_{ji}^{mk} = t_{ji} \left[1 - \sum_{a \in I_{m+1}} \left[t_{ja} \left(1 - \sum_{b \in J_{m+1}} \left(u_{ba}^{m+1,k-1} \right)^p \right)^{-1/p} \right]^q \right]^{-1/q}$$

is continuous and increasing in $u_{ba}^{m+1, k-1}$ and

$$\sum_{k \in J_{m+1}} u_{ba}^{(m+1)} < 1, \sum_{a \in I_{m+1}} \cdots < 1 \quad (\|\mathscr{G}(T)\| \le 1)$$

by passing to the limit as $k \to \infty$ we obtain

$$\mathscr{G}_m(T) = \mathscr{T}_m \mathscr{G}_{m+1}(T).$$

Proof of Lemma 1. Let all the entries of $T \in \mathscr{P}$ be maximal. We claim that all the entries of $\mathscr{G}_m(t)$ are maximal. Indeed we only need to show all the entries of $\mathscr{G}_1(T)$ are maximal, because of Lemma 7 (d) and the fact that

$$\mathscr{G}_1(T) = \mathscr{T}_1 \mathscr{T}_2 \cdots \mathscr{T}_{m-1} \mathscr{G}_m(T).$$

Suppose, to get a contradiction, that the entries of $(u_{ji}^{(1)}) = \mathscr{G}_m(T)$ are not maximal. Let $\alpha_{ji} \ge 1$ $((i, j) \in E_1)$ be such that all the entries of $(\alpha_{ji}u_{ji}^{(1)})$ are maximal. Put $\alpha_{ji} = 1$ for $(i, j) \notin E_1$. Since

$$(\alpha_{ji}u_{ji}^1) = \mathscr{T}_1\mathscr{T}_2 \cdots \mathscr{T}_{m-1}\mathscr{G}_m((\alpha_{ji}t_{ji})),$$

by Lemma 7 (d), all the entries of $\mathscr{G}_m((\alpha_{ij}t_{ji}))$ are maximal, so

$$\left\|\mathscr{G}_{m}((\alpha_{ji}t_{ji}))\right\|=1.$$

Since $0 \leq \mathscr{R}_m((\alpha_{ji}t_{ji})) \leq \mathscr{T}_m((\alpha_{ji}t_{ji}) \leq \mathscr{G}_m((\alpha_{ji}t_{ji}))$ we have $||\mathscr{R}_m((\alpha_{ji}t_{ji}))|| \leq 1$ for all *m*. Hence $||(\alpha_{ji}t_{ji})|| \leq 1$. But this shows us that the entries of the matrix (t_{ji}) are not maximal. This contradiction proves our claim.

By Lemma 6 and Remark 1 there exist $(x_i^{(m)}) \in \mathscr{M}((u_{ji}^{(m)}))$ for all m. We assume that $x_{i_1}^{(m)} = 1$ for all m. We have $x_i^{(m)} = 0$ for $i \notin \bigcup_{n=1}^m I_n$. From Remark 1(c), if $m < m_1 < m_2$ then

$$x_i^{(m_1)} = x_i^{(m_2)} \neq 0 \quad \text{for } i \in I_m$$

We put $x_i = x_i^{(m+1)}$ for $i \in I_m$. Now it is easy to see that $(x_i) \in \mathcal{M}(T)$.

Remark 2. Let all the entries of T be maximal. Then if $(x_i) \in \mathscr{M}(T)$, $(x_i^{(m)}) \in \mathscr{M}(\mathscr{G}_m(T))$ and $x_{i_1}^{(m)} = x_{i_1} = 1$ then $x_i = x_i^{(m)}$ for $i \in \bigcup_{n=1}^m I_n$. Moreover,

$$(\mathscr{G}_m(T))_{j_0 i_0} = t_{j_0 i_0}^{1/p} (y_{j_0}/x_{i_0})^{1/q}$$

for $(i_0, j_0) \in E_{2m-1}$, $((y_j)$ is a sequence corresponding to $(x_i) \in \mathcal{M}(T)$). Indeed, fix $(i_0, j_0) \in E_{2m-1}$. Let $H = \{(i, j: \text{ the path joining the node } i_0 \text{ and the edge } i, j \text{ include the edge } i_0, j_0\}$. Note that $(i, j) \in H$. Put $A = \{i: (i, j) \in H\}$. We define a matrix T' by

$$t'_{ji} = \begin{cases} t_{ji} & \text{if } (i,j) \in H \\ (\mathscr{G}_m(T))_{ji} & \text{otherwise.} \end{cases}$$

We have $\mathscr{G}_m(T) = \mathscr{G}_m(T')$. Let $(x_i) \in \mathscr{M}(T)$ and $(x_i^{(m)}) \in \mathscr{M}(\mathscr{G}_m(T))$. Put

$$x'_{i} = \begin{cases} x_{i} & \text{if } i \in A \cup \bigcup_{n=1}^{m} I_{n} \\ 0 & \text{otherwise.} \end{cases}$$

and $y'_j = \sum_i t'_{ji} x'_i$. It is easy to see that $(x'_i) \in \mathscr{M}(T')$. Let $j_1 \in J_{m-1}$ be such that $t_{j_1 i_0} \neq 0$. For $j \in J_m$ we denote a unique $i_j \in I_m$ such that $t_{ji_j} \neq 0$. We have $y_j^{(m)} = (\mathscr{G}_m(T))_{ji_i} x_{i_j}$ for $j \in J_m(x_{i_j} = x_{i_j}^{(m)})$. We have

$$\begin{aligned} x_{i_0}^{p-1} &= t_{j_1 i_0} y_{j_1}^{p-1} + \sum_{j \in J_m} (\mathscr{G}_m(T))_{j i_0} y_j^{p-1} \\ &= t_{j_1 i_0} y_{j_1}^{p-1} + \sum_{j \in J_m} (\mathscr{G}_m(T))_{j i_0}^p x_{i_0}^{p-1}. \end{aligned}$$

222

But when we consider the matrix T' we have

$$x_{i_0}^{p-1} = t_{j_1 i_0} y_{j_1}^{p-1} + \sum_{\substack{j \in J_m \\ j \neq j_0}} (\mathscr{G}_m(T))_{j i_0}^p x_{i_0}^{p-1} + t_{j_0 i_0} y_{j_0}^{p-1}$$

Hence

$$(\mathscr{G}_m(T))_{j_0i_0}^p x_0^{p-1} = t_{j_0i_0} y_0^{p-1},$$

which ends the proof.

Proof of Lemma 2. We define matrices $U^{2,k} = \mathscr{T}_2 \mathscr{T}_3 \cdots \mathscr{T}_{k+1}(T)$, $(u_{ii}^{(2)}) = \mathscr{G}_2(T)$ and $S^{(k)}$ by

$$s_{ji}^{(k)} = \begin{cases} t_{ji} \frac{u_{ji}^{(2)}}{u_{ji}^{2,k}} & \text{if } (i,j) \in E_3 \\ t_{ji} & \text{if } (i,j) \in \bigcup_{\substack{n=1\\n \neq 3}}^{2k+3} E_n \\ 0 & \text{otherwise, } k \in \mathbf{N} \end{cases}$$

We have

$$\mathscr{G}_2(T) = \mathscr{T}_2 \mathscr{T}_3 \cdots \mathscr{T}_{k+1}(S^{(k)})$$

By Lemma 7(d) and the claim in the proof of Lemma 1, all the entries of $S^{(k)}$ are maximal. Let $(x_i) \in \mathscr{M}(T)$, $(x_i^0) \in \mathscr{M}(\mathscr{G}_2(T))$, $(x_i^{(k)}) \in \mathscr{M}(S^{(k)})$ be such that $x_{i_1} = x_{i_1}^0 = x_{i_1}^{(k)} = 1$. By $(y_j), (y_j^0), (y_j^{(k)})$ we denote the corresponding sequences.

Fix $\varepsilon > 0$. Let $\varepsilon_i > 0$ be such that

$$(x_i^{p-1}-2\varepsilon_i)^q > x_i^p - \varepsilon 2^{-i-1}, \quad i \in I_1 \cup I_2.$$

Put $I'_1 = I_1 = \{i_1\}$. Choose J'_1 a finite subset of J_1 such that

$$\sum_{j \in J_1'} t_{ji_1} y_j^{p-1} > x_{i_1}^{p-1} - \varepsilon_{i_1}.$$

Find $\delta_j > 0$ $(j \in J'_1)$ such that

$$\sum_{j \in J'_1} t_{ji_1} (y_j - \delta_j)^{p-1} > x_{i_1}^{p-1} - 2\varepsilon_{i_1}.$$

Choose I_2'' a finite subset of I_2 such that

$$\sum_{i \in I_1' \cup I_2''} t_{ji} x_i > y_j - \delta_j \quad \text{for } j \in J_1'.$$

Let $N_0 = \max\{i \in I'_1 \cup I''_2 : t_{j_1 i} > 0\}$. Fix $N \ge N_0$. Note that

$$\sum_{i=1}^{N} t_{j_{1}i} x_{i} = \sum_{i \in I_{1}' \cup I_{2}'} t_{j_{1}i} x_{i}$$

where $I'_2 = I''_2 \cup \{i \in I_2 : t_{j_1i} > 0, i \le N\}$. Choose J'_2 a finite subset of J_2 such that

$$\sum_{j\in J_1'\cup J_2'} t_{ji} y_j^{p-1} > x_i^{p-1} - \varepsilon_i, \quad i\in I_2',$$

and find $\delta_j > 0$ $(j \in J'_2)$ such that

$$\sum_{j\in J_1'\cup J_2'}t_{ji}\left(y_j-\sqrt{\frac{u_{ji}^{(2)}}{t_{ji}}}\,\delta_j\right)^{p-1}>x_i^{p-1}-2\varepsilon_i,\quad i\in I_2'.$$

Let I' be a finite subset of $I'_2 \cup \{i \in I_3: t_{ji} \neq 0 \text{ for some } j \in J'_2\}$. Since for all k,

$$\sum_{j \in J'_2} s_{ji}^{(k)} \left(\sum_{n \in I_2 \cup I_3} s_{jn}^{(k)} x_n^{(k)} \right)^{p-1} < x_i^{p-1} \quad (i \in I'_2),$$

there exists M > 0 such that

$$(S^k(\mathbf{z}))_j < M \quad (j \in J'_2),$$

where

$$z_i = \begin{cases} x_i & \text{for } i \in I' \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\sum_{i \in I'} t_{ji} x_i^{(k)} < M$ for $j \in J'_2$. Since $(S^{(k)}(\mathbf{z}))_j$ and $(T\mathbf{z})_j$ differ only for $j \in J'_2$ we have

$$\|S^{(k)}\mathbf{z}\|^{p} - \|T\mathbf{z}\|^{p} = \sum_{j \in J_{2}^{\prime}} \left| (S^{(k)}\mathbf{z})_{j} \right|^{p} - \left| (T\mathbf{z})_{j} \right|^{p}$$
$$= \sum_{j \in J_{2}^{\prime}} \left[\left(\sum_{i \in I^{\prime}} s_{ji}^{(k)} x_{i}^{(k)} \right)^{p} - \left(\sum_{i \in I^{\prime}} t_{ji} x_{i}^{(k)} \right)^{p} \right].$$

224

For $j \in J'_2$ we denote a unique $i_j \in I'_2$ such that $t_{ji_j} \neq 0$. Hence

$$\begin{split} \|S^{k}\mathbf{z}\|^{p} &- \|T\mathbf{z}\|^{p} \\ &\leq \sum_{j \in J'_{2}} \left\langle \left[\left(s_{ji_{1}}^{(k)} - t_{ji_{1}} \right) x_{i_{j}} + \sum_{i \in I'} t_{ji} x_{i}^{(k)} \right]^{p} - \left(\sum_{i \in I'} t_{ji} x^{(k)} \right)^{p} \right\rangle \\ &\leq \sum_{j \in J'_{2}} p M^{p-1} \left(s_{ji_{j}}^{(k)} - t_{ji_{j}} \right) x_{i_{j}}. \end{split}$$

Since $s_{ji}^{(k)} \Rightarrow t_{ji}$, there exists k such that

$$\|S^{(k)}\mathbf{z}\|^p - \|T\mathbf{z}\|^p < \varepsilon/2.$$

By Remarks 1(c) and 2 we have $x_i = x_i^0 = x_i^{(k)}$ for $i \in I_2$. Now consider $U^{(2)}$ and $T_a^{(k)} = \mathcal{T}_3 \mathcal{T}_4 \cdots \mathcal{T}_{k+1}(S^{(k)})$. Let $(x_i^{(a)}) \in \mathscr{M}(T_a^{(k)})$. Since $U^{(2)} = \mathcal{T}_2(T_a^{(k)})$, by Remark 2,

$$u_{ji}^{(2)} = \sqrt[p]{s_{ji}^{(k)}} \sqrt[q]{y_j^{(k)}/x_i}$$

for $(i, j) \in E_3$. Since $y_j^0 = u_{ji}^{(2)} x_i$ we get $u_{ji}^{(2)} (y_j^0)^{p-1} = s_{ji}^{(k)} (y_j^{(k)})^{p-1}$. And, since $\mathscr{G}_2(T) = \mathscr{T}_2 \mathscr{T}_3(T)$ we get $u_{ji}^{(2)} (y_j^0)^{p-1} = t_{ji} y_j^{p-1}$.

Now we consider the matrix $(s_{ji}^{(k)})$. We have

$$\begin{split} \sum_{j \in J_{1}'} s_{ji_{1}}^{(k)} \left(y_{j}^{(k)}\right)^{p-1} &> \left(x_{i_{1}}^{(k)}\right)^{p-1} - \varepsilon_{i_{1}}, \\ \sum_{j \in J_{1}'} s_{ji}^{(k)} \left(y_{j}^{(k)} - \delta_{j}\right)^{p-1} &> \left(x_{i_{1}}^{(k)}\right)^{p-1} - 2\varepsilon_{i_{1}}, \\ \sum_{i \in I_{1}' \cup I_{2}'} s_{ji}^{(k)} x_{i}^{(k)} &\geq y_{j}^{(k)} - \delta_{j}, \quad j \in J_{1}', \\ \sum_{j \in J_{1}' \cup J_{2}'} s_{ji}^{(k)} \left(y_{j}^{(k)}\right)^{p-1} &= \sum_{j \in J_{1}' \cup J_{2}'} t_{ji} y_{j}^{p-1} > \left(x_{i}^{(k)}\right)^{p-1} - \varepsilon_{i}, \quad i \in I_{2}', \\ \sum_{j \in J_{1}' \cup J_{2}'} s_{ji}^{(k)} \left(y_{j}^{(k)} - \delta_{j}\right)^{p-1} &= \sum_{j \in J_{1}' \cup J_{2}'} s_{ji}^{(k)} \left(\sum_{j \in J_{1}' \cup J_{2}'} t_{ji} \left(y_{j} - \sqrt{\frac{t_{ji}}{s_{ji}^{(k)}}} y_{j} - \delta_{j}\right)^{p-1} \\ &= \sum_{j \in J_{1}' \cup J_{2}'} t_{ji} \left(y_{j} - \sqrt{\frac{t_{ji}}{s_{ji}^{(k)}}} \delta_{j}\right)^{p-1} \\ &> \left(x_{i}^{(k)}\right)^{p-1} - 2\varepsilon_{i}, \quad i \in I_{2}', \end{split}$$

Now choose I'_3 a finite subset of I_3 such that

$$\sum_{i \in I'_1 \cup I'_2} s_{ji}^{(k)} x_i^{(k)} > y_j^{(k)} - \delta_j, \quad j \in J'_2.$$

Let $\varepsilon_i > 0$, $i \in I_1 \cup I_2$, be such that

$$\left(\left(x_{i}^{(k)}\right)^{p-1}-2\varepsilon_{i}\right)^{q}>\left(x_{i}^{(k)}\right)^{p}-\varepsilon_{2}^{-i-1}$$

Note that the above inequality holds also for $i \in I'_1 \cup I'_2$. Choose J'_3 a finite subset of J_3 such that

$$\sum_{j \in J'_{2} \cup J'_{3}} s_{ji}^{(k)} (y_{j}^{(k)})^{p-1} > (x_{i}^{(k)})^{p-1} - \varepsilon_{i}, \quad i \in I'_{3}.$$

Find $\delta_j > 0$ ($j \in J'_3$) such that

$$\sum_{j \in J'_2 \cup J'_3} s_{ji}^{(k)} (y_j^{(k)} - \delta_j)^{p-1} > (x_i^{(k)})^{p-1} - 2\varepsilon_i, \quad i \in I'_3.$$

Choose I'_4 a finite subset of I_4 such that

$$\sum_{i \in I'_3 \cup I'_4} s_{ji}^{(k)} x_i^{(k)} > y_j^{(k)} - \delta_j, \quad j \in J'_3.$$

We continue the above process for the matrix $S^{(k)}$ to get a finite sequence $I'_1, J'_1, I'_2, \ldots, J'_{2k+2}$. Let

$$I = \bigcup_{n=1}^{2k+2} I'_n$$
 and $J = \bigcup_{n=1}^{2k+2} J'_n$.

And let $\mathbf{u}^{(N)} \in l^p$ be defined by

$$u_i^{(N)} = \begin{cases} x_i^{(k)} & \text{if } i \in I \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathbf{v} = (v_j) = S^{(k)} \mathbf{u}^{(N)}$. For $j \in J$ we have

$$v_j = \sum_{i=1}^{\infty} s_{ji}^{(k)} u_i^{(N)} \ge \sum_{i \in I} s_{ji}^{(k)} x_i^{(k)} > y_j^{(k)} - \delta_j.$$

Thus

$$\sum_{j=1}^{\infty} s_{ji}^{(k)} v_j^{p-1} \ge \sum_{j \in J} s_{ji}^{(k)} (y_j^{(k)} - \delta_j)^{p-1} > (x_i^{(k)})^{p-1} - 2\varepsilon_i$$

for $i \in I$. Therefore we obtain

$$\| (S^{(k)})^* (S^{(k)} \mathbf{u}^{(N)})^{p-1} \|_q^q = \| (S^{(k)})^* \mathbf{v}^{p-1} \|_q^q$$

$$\geq \sum_{i \in I} \left[\sum_{j \in J} s_{ji}^{(k)} v_j^{p-1} \right]^q$$

$$> \sum_{i \in I} \left[(x_i^{(k)})^{p-1} - 2\varepsilon_i \right]^q$$

$$> \sum_{i \in I} \left[(x_i^{(k)})^p - \frac{\varepsilon}{2^{i+1}} \right] = \| \mathbf{u}^{(N)} \|_p^p - \frac{\varepsilon}{2}$$

Therefore

$$\|S^{(k)}\mathbf{u}^{(N)}\|_{p}^{p} > \|\mathbf{u}^{(N)}\|_{p}^{p} - \frac{\varepsilon}{2}$$

We have

$$\|S^{(k)}\mathbf{u}^{(N)}\|_{p}^{p} - \|T\mathbf{u}^{(N)}\|_{p}^{p} = \|S^{(k)}\mathbf{z}\|_{p}^{p} - \|T\mathbf{z}\|_{p}^{p} < \frac{\varepsilon}{2}.$$

Thus

$$||Tu^{(N)}||_p^p > ||u^{(N)}||_p^p - \varepsilon.$$

5. Additional remarks on extreme positive l^p-contractions

LEMMA 8. Let $T \in \mathscr{P}$ and let the graph G(T) be a tree. If all the entries of T are maximal then $(x_i) \in \mathscr{M}(T)$ is unique up to a multiplicative constant.

Proof. Suppose, to get a contraction, that there exist two different sequences $(x'_i), (x''_i) \in \mathscr{M}(T)$ such that $x'_{i_1} = x_{i_1} = 1$. Then the corresponding sequences (y'_j) and (y''_j) differ for some j_1 . We may and do assume that $j_1 \in J_1$. Suppose $y''_{j_1} < y'_{j_1}$. Let $\varepsilon > 0$ be such that

$$\left(\frac{t_{j_1 i_1}}{t_{j_1 i_1} + \varepsilon}\right)^p = t_{j_1 i_1} y_{j_1}^{\prime \prime p - 1} + \sum_{\substack{j \in J_1 \\ j \neq j_1}} t_{j_1} y_j^{\prime p - 1}$$

We define a new matrix (t'_{ji}) by

$$t_{ji} = \begin{cases} t_{ji} \frac{t_{j_1 i_1} + \varepsilon}{t_{j_1 i_1}} & \text{if } (i, j) \in E_1 \\ t_{ji} & \text{otherwise.} \end{cases}$$

We have $t'_{ji} \ge t_{ji}$ and $t'_{j_1i_1} > t_{j_1i_1}$. Put $A = \{k: \text{the path joining nodes } k \text{ and } i_1 \text{ includes edge } i_1j_1\}$. It is easy to see that $(x_i) \in \mathscr{M}((t'_{ji}))$ where

$$x_{i} = \begin{cases} \frac{t_{j_{1}i_{1}}}{t_{j_{1}i_{1}} + \varepsilon} & \text{for } i = i_{1} \\ x_{i}^{"} & \text{for } i \in A \\ x_{i}^{\prime} & \text{otherwise.} \end{cases}$$

Hence, by Corollary 1, $||(t'_{ji})|| \le 1$. This contradicts the fact that all the entries of T are maximal. Therefore there are not two linearly independent elements of $\mathscr{M}(T)$.

Example 1. It should be pointed out that for some $T \in \mathscr{P}$ there are more that one linearly independent elements in $\mathscr{M}(T)$ (even if the graph G(T) has no cycle). We define a sequence (a_n) by

$$a_{1} = (2^{p+1} - 2)^{1/(p-1)}, \quad a_{2} = 2a_{1} - 1,$$
$$a_{2n+1} = (2a_{2n}^{p-1} - a_{2n-1}^{p-1})^{1/(p-1)}, \quad a_{2n+2} = 2a_{2n-1} - a_{2n} \quad (n \in \mathbb{N})$$

The sequence (a_n) is increasing. Let $T = (t_{ji})$ be defined as follows:

$$t_{11} = t_{21} = t_{31} = 1/4,$$

$$t_{i,i+1} = t_{i+3,i+1} = 1/2, \quad i \in \mathbb{N},$$

$$t_{ji} = 0 \quad \text{otherwise.}$$

Let

$$x' = \begin{cases} 2 & \text{if } i = 1\\ a_{2k} & \text{if } i = 3k + 1, k \in \mathbb{N}\\ 1 & \text{otherwise} \end{cases}$$

228

and

$$x_i'' = \begin{cases} 2 & \text{if } i = 1\\ a_{2k} & \text{if } i = 3k, k \in \mathbb{N}\\ 1 & \text{otherwise.} \end{cases}$$

Now it is easy to see that $x', x'' \in \mathcal{M}(T)$.

PROPOSITION 3. Let $T \in \mathscr{P}$ and let the graph G(T) be a tree. Suppose that all entries of T are maximal. If $t_{j_1i_1} > 0$, $t_{j_2i_2} > 0$ and $\alpha \in (0, t_{j_1i_1})$ then there exists $\beta > 0$ such that $||(t'_{j_i})|| = 1$ and all entries of the matrix (t'_{j_i}) are maximal, where $t'_{j_i} = t_{j_i} - \alpha \delta_{j_{j_1}} \delta_{j_{i_1}} + \beta \delta_{j_{j_2}} \delta_{j_{i_2}}$.

Proof. Because the graph G(T) is connected we may restrict our attention to the case when $t_{j_1i_1}$ and $t_{j_2i_2}$ belong to the same row or column. For instance assume that $j_1 = j_2$. By Lemma 5 there exists $(x_i) \in \mathcal{M}(T)$. Fix $\alpha \in (0, t_{j_1j_1})$. Choose $\beta > 0$ such that

$$x_{i_1}t_{j_1i_1} + x_{i_2}t_{j_1i_2} = \eta^q x_{i_1}t_{j_1i_1} + \xi^q x_{i_2}t_{j_1i_2}$$

where

$$\eta^{p-1} = (t_{j_1i_1} - \alpha)/t_{j_1i_1}, \quad \xi^{p-1} = (t_{j_1i_2} + \beta)/t_{j_1i_2}.$$

Let

 $A = \{k: \text{ the path joining nodes } k \text{ and } j_1 \text{ include the edge } i_1 j_1\},\$

and

 $B = \{k: \text{ the path joining nodes } k \text{ and } j_1 \text{ include the edge } i_2 j_1\}.$

Note that $i_1 \in A$, $i_2 \in B$. It is easy to see that $(x'_i) \in \mathscr{M}((t_{ji}))$, where

$$x'_{i} = \begin{cases} \eta x_{i} & \text{if } i \in A \\ \xi x_{i} & \text{if } i \in B \\ x_{i} & \text{otherwise.} \end{cases}$$

Thus $||(t'_{ji})|| \le 1$ (by Corollary 1). This construction shows us that if some entry of a matrix is not maximal then no entry is maximal. If some entry of (t'_{ji}) is not maximal then doing the reserve operation to that presented above we get that no entry of (t_{ji}) is maximal. Hence the entries of (t'_{ji}) are maximal and $||(t'_{ji})|| = 1$.

As an immediate consequence we get the following interesting fact.

COROLLARY 2. For a positive contraction whose graph is a connected tree either all entries are maximal or no entry is maximal.

Example 2. For c > 0 we define an operator T_c by

$$T_c(u_i) = (cu_1, (u_1 + u_2)/2, (u_2 + u_3)/2, (u_3 + u_4)/2, \dots), \quad (u_i) \in l^p.$$

Consider sequences $(x_i), (y_i)$ such that

$$\sum_{i=1}^{\infty} t_{ji} x_i = y_j, \ \sum_{j=1}^{\infty} t_{ji} y_j^{p-1} = x_i^{p-1} \quad \text{with} \ x_1 = 1.$$

We have $y_1 = c$, $y_2 = 2(1 - c^p)$,

$$x_{n+1} = 2y_{n+1} - x_n \quad (n \ge 1),$$

$$y_{n+1}^{p-1} = 2x_n^{p-1} - y_n^{p-1} \quad (n \ge 2).$$

Let $a_{2n-1} = y_n$ and $a_{2n} = x_n$ $(n \ge 1)$. We have

$$a_{2n+2} - a_{2n+1} = a_{2n+1} - a_{2n} \quad (n \ge 1)$$

and

$$a_{2n+1}^{p-1} - a_{2n}^{p-1} = a_{2n}^{p-1} - a_{2n-1}^{p-1} \quad (n \ge 2).$$

If $c = \sqrt[p]{1/2}$ then $a_n = 1$ for $n \ge 2$. And if $c < \sqrt[p]{1/2}$ then $a_3 - a_2 > 0$ and $a_4 - a_3 > 0$, so (a_n) is increasing. Therefore for $c \in (0, \sqrt[p]{1/2}]$ the set $\mathscr{M}(T_c)$ is non-empty and $\mathscr{M}(T_c)$ has exactly one sequence (up to a multiplicative constant). Obviously entries of T_c for $c \in (0, \sqrt[p]{1/2})$ are not maximal, so $T_c \notin \text{ext } \mathscr{P}$. Thus we get an example of non-extreme operator such that an element of $\mathscr{M}(T)$ is unique. Note that the condition (ii) for the operator T_c $(c \in (0, \sqrt[p]{1/2}))$ holds.

Suppose that $||T_c|| \le 1$. Then

$$c^{p} + \sum_{k=1}^{n} \left(\frac{2k+1}{2n}\right)^{p} = ||T_{c}\mathbf{u}|| \le ||\mathbf{u}|| = \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{p}$$

where

$$\mathbf{u} = \left(1, \frac{n-1}{n}; \frac{n-2}{n}, \dots, \frac{1}{n}, 0, 0, 0, \dots\right).$$

Using the mean-value theorem we obtain

$$\left(k + \frac{1}{2}\right)^{p} - k^{p} = \frac{p}{2}\left(k + \frac{1}{2}\xi_{k}\right)^{p-1}$$
 where $0 < \xi < 1$.

Hence

$$c^{p} \leq \sum_{k=1}^{n} \frac{\left(k+1/2\right)^{p} - k^{p}}{n^{p}} = \frac{p}{2} \left[\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k+\xi_{k}/2}{n} \right)^{p-1} \right];$$

when *n* tends to infinity we obtain

$$c^{p} \leq \frac{p}{2} \int_{0}^{1} t^{p-1} dt = \frac{1}{2}$$

Therefore we have $||T_c|| > 1$ for $c > \sqrt[p]{1/2}$. Hence the entries of T for $c = \sqrt[p]{1/2}$ are maximal.

For $c > \sqrt[p]{1/2}$ we have $a_3 - a_2 < 0$, $a_4 - a_3 < 0$, so (a_n) is decreasing. Because of results presented before there exists n_0 such that $a_n < 0$ for all $n \ge n_0$.

REFERENCES

- 1. G.D. BIRKHOFF, Tres obsercaviones sobre el algebra lineal, Univ. Nac. Tucumán Rev. Ser. A, vol. 5 (1946), pp. 147–151.
- 2. J. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., vol. 40 (1936), 396-414.
- 3. J.L. DENNY, The support of discrete measures and subspace density, Michigan Math. J., vol. 11 (1980), pp. 59–64.
- 4. A.J. ELLIS, Extreme positive operators, Quart. J. Math. Oxford, 15 (1964), pp. 342-344.
- 5. A. GENDLER, Extreme operators in the unit ball of L(C(X), C(Y)) over the complex field, Proc. Amer. Math. Soc., vol. 57 (1976), pp. 85–88.
- R. GRZĄŚLEWICZ, Extreme operators on 2-dimensional l^p-spaces, Colloquium Math., vol. 44 (1981), pp. 309-315.
- 7. _____, A note on extreme contractions on l^p-spaces, Portugalia Math., vol. 40 (1981), pp. 413–419.
- 8. _____, Extreme contractions on real Hilbert space, Math. Ann., vol. 261 (1982), pp. 463-466.
- Extreme positive contractions on finite dimensional l^p-spaces, Canadian J. Math., vol. 37 (1985), pp. 682–699.
- 10. _____, On extreme infinite doubly stochastic matrices, Illinois J. Math., vol. 31 (1987), pp. 529-543.
- 11. P.R. HALMOS and V.S. SUNDER, Bounded integral operators on L^2 spaces, Springer-Verlag, New York, 1978.
- 12. J. HENNEFELD, Compact extremal operators, Illinois J. Math., vol. 21 (1977), pp. 61-65.
- 13. A. IONESCU TULCEA and C. IONESCU TULCEA, A note on extreme points, unpublished.
- 14. A. IWANIK, Extreme contractions on certain function spaces, Colloq. Math., vol. 40 (1978), pp. 147–153.
- 15. R.V. KADISON, Isometries of operator algebras, Ann. of Math., vol. 54 (1951), pp. 325-338.

- 16. CHARN-HUEN KAN, A class of extreme L_p contractions, $p \neq 1, 2, \infty$, and real 2×2 extreme matrices, Illinois J. Math., vol. 30 (1986), pp. 612–635.
- 17. _____, A family of 2×2 extreme contractions and a generalization of Clarkson's inequalities, Linear and Multilinear Algebra, vol. 21 (1987) pp. 191–198.
- 18. C.W. KIM, Extreme contraction operators on l_∞, Math. Zeitschr., vol. 151 (1976), pp. 101-110.
- 19. J. LAMPERTI, On the isometries of certain function spaces, Pacific J. Math., vol. 8 (1958), pp. 459-466.
- 20. G. LETAC, Representation des mesures de probabilite sur le produit de deux espaces denombrables, de marges donnees, Illinois J. Math., vol. 10 (1966), pp. 497–507.
- H.G. MUKERJEE, Supports of extremal measures with given marginals, Illinois J. Math., vol. 29 (1985), pp. 248-260.
- 22. H.H. SCHAEFER, *Banach lattices and positive operators*, Grundlehren Math. Wiss., no. 215, Springer-Verlag, New York, 1974.

Technical University of Wroclaw Wroclaw, Poland