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STANDARD HOMOMORPHISMS AND CONVERGENT
SEQUENCES IN WEIGHTED CONVOLUTION ALGEBRAS

BY

F. GHAHRAMANI AND S. GRABINER2

1. Introduction

In this paper we continue the study, from our joint paper [11] with J.P.
McClure, of the relation between homomorphisms, semigroups, types of
convergence, and closed ideals in weighted convolution algebras on the
half-line R+= [0, ). In particular, we are interested in the question of which
continuous homomorphisms preserve dense principal ideals, which we showed
to be equivalent [13], [14] to the question of which convolution semigroups
are strongly continuous.
We will call a positive Borel function o(x) on R/ a weight if both w and

1/o are bounded on all finite intervals [0, a]. The weight w(x) is an algebra
weight if, in addition, w(x) is right continuous, o(0)= 1, and o(x + y)<
w(x)o(y) for all x and y in R/. For a weight o, we let Ll(og) be the Banach
space of those (equivalence classes of) locally integrable functions f on R/

for which fo belongs to LI(R+), with the inherited norm Ilfll- Ilfll-
flf(t)[w(t) dr. The other weighted spaces we consider are defined analo-
gously. Thus M(o) is the space of locally finite complex Borel measures on
R+ for which the norm I1 fR+o(t)dllx I(t) is finite; L(1/o) is the space
of f for which f/o is in L(R+), with the inherited norm Ilfll
ess sup If(t)l/o(t); and C0(1/o) is the closed subspace of L(1/o) com-
prised of continuous functions with lim f(t)/o(t) 0. Occasionally we
will consider Ll(o) and M(o) when o(x) is just a bounded non-negative
Borel function.
When o(x) is an algebra weight, Ll(o) is a Banach algebra under the

convolution product f g(x) ff(x t)g(t) dr. Under the analogous con-
volution of measures on R/, the space M(o) is also a Banach algebra which,
under the usual identification of f with f(t)dt, contains Ll(o) as a closed
ideal. Moreover [9, Th. 1.4], [13, Th. 2.2, p. 592], for our algebra weights we
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can identify M(to) as the multiplier algebra of Ll(to) and also as the dual
space of C0(1/to) under the natural duality

(tx,h) fi+h(t) dlx(t).

With these identifications M(to) has not only its usual norm topology but also
a strong operator topology and a weak* topology. The subalgebra Ll(to) has
in addition the weak topology given by La(to)*= L(1/to). Just as in our
earlier paper [11], many of our arguments involve the comparison of conver-
gence in these and other topologies. There is actually no loss of generality in
assuming that the weight to is an algebra weight, for whenever Ll(to) is an
algebra under convolution we can always normalize so that to is an algebra
weight [13, Th. 2.1, p. 591]. Therefore, except in those few cases in which we
explicitly allow otherwise, we will assume implicitly that La(to) is an algebra
with to an algebra weight.

In the next section, we will give a precise description of the basic questions
which we will study about ideals, homomorphisms, semigroups, and conver-
gence in the La(to) algebras. We will also discuss the relation between the
questions and prove some preliminary results which answer some of the
questions in special cases. In Sections 3 and 4 we will compare various types
of convergence of sequences An f where {An} is a bounded sequence in
M(to). Our main interest is the special case of determining when a semigroup
{t} in M(to) is strongly continuous that is when lim __,0 t * f f for all f
in Ll(to), but presumably these more general results will have independent
interest. In Section 5, we consider the classical case of LI(R+) that is
to(x) 1 for which more can be said than for general weights. In the final
section, we study the structure of the set of continuous homomorphisms
between convolution algebras.
We have been fortunate to benefit from valuable discussions about conver-

gence in convolution algebras from many colleagues. We wish to particularly
thank Graham Allan, Donald Bently, Garth Dales, Peter McClure and Allan
Sinclair.

2. Basic questions and preliminary results

Probably the most important question about ideal theory in the Ll(to)
algebra is determining when the principal ideal Ll(to). f is dense. Clearly a
necessary condition is that a(f) (the infimum of the support of f) must be 0.
Also, unless Ll(to) is radical, that is unless lim to(t)1/t 0, the maximal
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ideals will contain some La(to), f with a(f) 0, so the key question seems
to be [14, p. 357]:

Question 1. If f belongs to the radical algebra Ll(to) and if a(f) 0,
must the ideal Ll(to) f be dense?

In [11] we consider the following related question:

Question 2. If t." Ll(tol ) -’ Ll(to2) is a continuous non-zero homomor-
phism, does Ll(tol). f dense in Ll(tol)imply that Ll(to2). t(f)is dense in
Ll(to2)?

Since Ll(tol)* f dense always implies that a(ch(f))= 0 [13, Lemma 4.5,
p. 605], a negative answer to Question 2 for some radical to2 will give a
negative answer to Question 1, and we hope that positive answers to
Question 2 will help obtain positive answers to Question 1. We say that a
homomorphism which satisfies the conditions of Question 2 is a standard
homomorphism. In [11, Th. (2.2)] we give a number of natural conditions on
$ each equivalent to $ being standard. These characterizations make it
possible to give sufficient conditions on $ (for instance if th has dense range
[11, Th. (2.2)(c)]) for standardness and sufficient conditions on to2 for all 4 to
be standard [11, Th. (3.4)].
Most of the proofs showing that some 4) is standard involve showing that a

related semigroup is strongly continuous. Specifically, one can extend th in a
unique way [13, Th. 3.4, p. 596] to a homomorphism, which we also designate
by b, from M(to 1) to M(to2). Let {6t} be the semigroup of point masses in
M(to 1) (recall

0, x <t,
6t* f(x) f(x- t), x > t,

so (3t) can be identified with the right translation semigroup on Ll(tol)). Now
if/-t th(t), then it turns out [11, Th. (2.2)] that th is standard if and only if
{/t} is strongly continuous on Ll(to2). Many of the arguments about t f in
[11], [14] do not use the fact that {/} is a semigroup. If we let g
where f is standard and a(f) 0, then a(g) 0 [13, Lemma 4.5, p. 605]
and lim 0+/t * g lim 0 th(6t * f) th(f) g, so the natural transla-
tion of the question of determining whether a semigroup strongly converges
for sequences seems to be:

Question 3. If {An} is a bounded sequence in M(to) and limn_oo An * g
h g for some g in Ll(to) with a(g) 0, does lim An * f h f for all f
in Ll(to)?
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From the above discussion it is clear that if the answer to Question 3 is yes
for all {,i n} in M(o), then the analogous question for tx 4(3t) is also yes. It
is not clear that a negative answer to Question 3 implies a negative answer to
Question 2, but it does imply a negative answer to Question 1. For if {,i n} is a
bounded sequence in Ll(to) and we define the convergence ideal of {,in} by

/({’in} ) I (f zl((.o) ,i * f converges in norm in zl(to)},

then I is clearly an ideal. Also since the collection of operators f ,in f
(n 1,2,...) is a uniformly bounded set, and since f I if and only if
{,i f} is Cauchy, the convergence ideal is a closed subspace; so we have:

LEMMA (2.1). The convergence ideal of a bounded sequence in L(oo) is a
closed ideal in Ll(oo).

In our definition of the convergence ideal, we do not specify what the limit
of ’i * f is, as we do in Question 3. But it follows easily from Lemma (2.2)
below that if ’i * g ,i g for some g 4: 0, then ,i f ,i f for all f in
the convergence ideal of {,in}, for the same measure ,i. Thus Question 3 asks
if the convergence ideal of {,in}, which is a closed ideal containing Ll(o). g,
is all of L(oo). Hence a negative answer to Question 3 does provide a
negative answer to Question 1.
Although we do not have definitive answers for all Ll(w) about norm

convergence of ,i f, the situation for weak* convergence is much simpler
for all weights and will allow us to answer Question 3 (and hence Question 2)
for norm convergence for some weights. The basic facts on weak* conver-
gence are in the following lemma which slightly extends [13, Lemma (3.2),
p. 595].

LEMMA (2.2). /f {’in} is a bounded sequence in M(to), then the following are
equivalent"

(a) There is a u 4 0 in M(to) for which ,i v converges weak* in M(to)
Co(1/o)*.

(b) There is a measure ,i .for which ,i converges weak* to ,i ]’or all
z is M(o). I particular ,i ,in * 3o conuerges eak* to ,i.

Proof We need only prove that (a) implies (b), and, by [13, Lemma 3.2,
p. 595], it will be enough to show that {,in} converges in the weak* topology.
Since closed balls in M(o) are weak*-compact every subsequence of {,in} has
a weak*-convergent subsequence. Therefore we just need to show that weak*
convergent subsequences all have the same limit. So let {Xn} and {X’n} be two
subsequences of {,in} with weak* limits X and X’, respectively. Then by the
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weak* continuity of convolution [9, Lemma 2.1], we have

A’*v= lim Xn,v= lim X,,v=X’,v.
n n

Since M(to) is an integral domain (by the Titchmarsh convolution theorem),
we have X X’ as required. This completes the proof.

It follows from Lemma (2.2) that if the convergence ideal of a bounded
sequence {An} is not {0}, then {An} converges weak*. For semigroups the
converse is also true. Suppose (]’t)t>0 is a weak*-continuous semigroup
(equivalently lim _.0+/z u u for some u 4: 0), then [13, Th. (2.1) and
Cor. (2.11), pp. 160 and 165] there is a g 4:0 in Ll(to) with a(g) 0 for
which lim 0+/z g g. Thus Question 3 for semigroups is equivalent to
whether every weak* convergent semigroup is strongly continuous. It is also
equivalent to Question 2 [13, Th. (2.9), p. 164]; that is every weak* continu-
ous semigroup in M(to) is strongly continuous on Ll(to) if and only if every
continuous homomorphism from some Ll(to) to Ll(to) is standard. It is thus
natural to ask the following weak* version of Question 3.

Question 4. Suppose that to is an algebra weight and g belongs to Ll(to).
If {An} converges weak* to ,t in M(to); does A g converge to A, g in
norm?

Following Bade and Dales [3, Def. 1.3, p. 81], we say that the weight to is
regulated at a > 0 provided limx_o to(x + t)/to(x) 0 for all > a. With
this terminology we can now give a complete answer to Question 4.

THEOREM (2.3). Suppose that to is an algebra weight and that a >_ O.
(a) If to is regulated at a, then whenever {An} is a sequence in M(to) and the

function g in L(to) has a(g) > a we have that h --, h (weak*) implies that
An, g h, g in norm.

(b) If to is not regulated at a, then there is a sequence {An} in M(to) with
h, --, 0 weak*, but h, g diverges in norm for all g in Ll(to) with a(g) < a.

Proof Since a weak*-convergent sequence is bounded, part (a) is just [11,
Th. (3.2)].
Suppose therefore that to is not regulated at a. Then there is a sequence

Sn O0 and a o > a, for which to(S "]" to)/to(Sn) is bounded away from 0.
Consider the sequence of measures t Sn/to(Sn). For each h in C0(1/to),

(An,h) f+h(t) dAn(t ) h(sn)/to(Sn) --) 0 asn

since h belongs to C0(1/to). Thus A "--) 0 weak*.
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Suppose g belongs to L(w) and a(g)< a. We complete the proof by
assuming that [[hn* gl[--* 0 and contradicting o9(s + to)/o9(s) being
bounded below (this part of the proof adapts arguments from [3, pp. 82 and
86]). We have

o(s + t)
09( Sn)

tit-- IlA,*gll-0.

Hence there is a subsequence {s’n} of {sn} for which

o9(s’ + t)
limg(t) o9(,)

=0
n S

for almost every > a >_ a(g). Hence there is a with a < < to, g(t1)
0, and

o9(Srn + tl)
lira g(t) O.
n O9(S)

Then

o9(s’ + to) o9(S’ + tl)
_<og(to-t1) 0 asn .

This contradicts the fact that O9(S -]- to)/o9(sn) is bounded below and hence
completes the proof.
Another answer to Question 4 is given by the following corollary.

COROLLARY (2.4). Suppose that o9 is an algebra weight.
(a) If o9 is regulated at O, then if the sequence {An} in M(o9) converges to ,

in the weak*-topology on M(o9)= C0(1/o9)*, we also have ’n in the
strong operator topology of M(og) acting on L1(og).

(b) If o9 is not regulated at any a > O, then there is a sequence {An} in M(og)
for which ,,, g 0 weak* for all g La(og), but {A g} diverges in norm

for all g 4= 0 in La(og).

We can also use Theorem (2.3) to give a positive answer to Question 3 for
regulated weights. We omit the proof which is essentially the same as in the
special case when {An} is a semigroup [11, Th. (3.4)], [14, Th. (2.8), p. 164].
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THEOREM (2.5). Suppose that {An} is a bounded sequence in M(to) and that
limn--,oo A, * g A * g for some g in zl(to) with a(g) O. If to is regulated at
any a >_ O, then lim An * f A * ffor all f in Ll(to).

Suppose that {An is a bounded sequence in M(to). In the next section,
Section 3, we examine the consequences of weak* convergence of {An}. Then
in Section 4 we determine sufficient conditions for A * f to converge to h f
in norm for some, or all, f in Ll(to). Though the gap between our necessary
consequences of weak* convergence and our sufficient conditions for norm
convergences may appear small, we know from Corollary 2.4(b) that the gap
is unbridgable for arbitrary sequences when to is not regulated. The hope is
that in the specific case of semigroups, where we have so much more
structure [14], these conditions will help us determine when we can prove
strong continuity. We will not normally bother to restate our general conver-
gence results for the special case of semigroup convergence, but we will
occasionally mention the specific applications to determining which homo-
morphisms are standard. Technically, since the index set for a semigroup is
R+ and not the positive integers, we should be talking not about sequences,
but about nets {Ai} where index sets have a cofinite sequence. However the
extension of our results from sequences to such nets always follows from a
routine passage to a subsequence, so the awkwardness is statements and
proofs of convergence theorems for nets compared to sequences is not
justified. After the two sections on convergence of sequences, we will return
to the question of which homomorphisms are standard. In Section 5 we
examine the special case LI(R+), and in Section 6 we look at the structure of
the set of all standard homomorphisms.

3. Consequences of weak* convergence

The following two theorems give the basic consequences of weak* conver-
gence for pointwise convergence and for convergence in a weaker norm,
respectively. The rest of the section will then be devoted to consequences of
these first two theorems.

THEOREM (3.1). Suppose that the sequence {An} converges weak* to A in
the algebra M(to) Co(1/to)*.

(a) Iff is a continuous function on R+ with f(O) O, then

lim An* f(x) A. f(x) forallx > O.
n

(b) If g is a locally integrable function on R+, then there is a subsequence
{A’n} for which X g converges to A g almost everywhere on R/.
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THEOREM (3.2). Suppose that {An} converges weak* to h in M(to) and that
> 0 belongs to LI(R+) q L=(R+). Then for all g in Ll(to) we have

[/n* g(t) A * g(t)lto(t)?(t ) dt O.

When g is in Ll(to) ( L(to), we only need 1 to be in LI(R+).

The convergence of the integral in Theorem (3.2) just says that /n * g
converges to . g in norm in Ll(tor/). Notice that we do not require that
Ll(to’r/) be an algebra, or even that mr/ and 1/tot/ be locally bounded. We
prove Theorems (3.1) and (3.2) together, since we will use (3.1)(a) to prove
(3.2), and need (3.2) to prove (3.1)(b).

Proofs of Theorems (3.1) and (3.2). We start with (3.1)(a). We need to
show that for b > 0, limn_= i * f(b) , f(b). For each b, we define the
function bb(t) on R/ by bb(t) f(b t) for 0 < < b and b(t) 0 for
t > b. Since f(0) 0, we have b(b) 0, so that b is a continuous function
with compact support. Thus th belongs to C0(1/to). Since /n ---> / weak* in
Co(l/to)*,

t,)
f(b t) dan(t) fi +b(* f(b) fro t) dAn(t ) (tn, )b) -’-> (l, (b)

as n . This proves (3.1)(a).
We now prove (3.2) for r/ in L(R+) ( L=(R+). First suppose that f is a

continuous function in L(to) with f(0) 0. Since to is an algebra weight, the
analog for measures of formula 2.5 of [12] shows that

which is bounded since {/n} is a weak -convergent, and therefore a norm-
bounded, sequence in M(to). By (3.1)(a)we also have

lim 1n* f(t)to(t) A * f(t)to(t)
n

pointwise on R+. Since r/ belongs to LI(R/), it follows from the dominated
convergence theorem that An f(t)to(t)?(t) approaches A f(t)to(t)l(t) in
LI(R+) for those f in L(to)which are continuous and have f(0) 0.

Since r/ belongs to L(R+), we have Ll(to)
___

Ll(tor/) with the imbedding
continuous. Thus if we define Tn: Ll(to) Ll(tor/) by Tnf 1 t, then the
sequence {Tn} of continuous linear operators is bounded. We already know
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that Tnf A f --. h f in Ll(tor/) on a dense subspace of Ll(to). Hence
Tng--, h. g in Ll(to’r/)for all g in Ll(to). This proves (3.2)for r/ in
LI(R+) (3 L(R+).
We now prove (3.1)(b). Fix some r/ >_ 0 in LI(R/) q L(R+) with r/ and

l/r/both locally bounded; for instance, r/(t) e -t. Then Lebesgue measure
and the measure o(t)q(t)dt are mutually absolutely continuous. If g be-
longs to LX(w), we have from Theorem (3.2) that A g converges to h g in
norm in Ll(ogr/). Hence there is a subsequence {Xn} for which X g
converges to h g almost everywhere with respect to the measure oo(t)q(t) dt,
and hence with respect to Lebesgue measure. This completes the proof of
Theorem (3.1).

Finally suppose that g belongs to Ll(to) 3 L(o) and that r/ >_ 0 belongs
to LI(R+). It will be enough to show that whenever A - h weak*, then
some subsequence {Xn} has X g --* h g in norm in Ll(or/). By (3.1)(b), we
can choose a subsequence so that X g - h g almost everywhere in R+.
Just as with our proof for continuous functions in L(o), we have
{[IX g(t)w(t)[[o3 bounded. It then follows from the dominated convergence
theorem that

lim fo IXn* g(t) A g(t)loo(t)rl(t ) dt O.
n---oo

This completes the proof of Theorems (3.1) and (3.2).

The following is an easy consequence of Theorem (3.2).

COROLLARY (3.3). Suppose that {/n} converges to h weak* in the algebra
M(w) and that f is a locally integrable function on R+. Then for all b >_ 0, we
have

[an* f( t) h * f( t) dt O.

Proof Fix b and define g in L(w) by g(t) f(t) for < b and g(t) 0
for > b. Also choose r/ > 0 in L(R+) 3 L(R+) with r/(t) 1/o(t) on
[0, b]. Then we have

[An* f(t) * f(t)[dt flAn * g(t) h * g(t)lrt(t)oo(t ) at

-- fo ’lln* g(t) h * g(t)loo(t)7(t ) at.

The last integral converges to 0 by Theorem (3.2). This completes the proof.
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The following result generalizes Corollary 3.16 in [13, p. 602] where we
showed that there was some zl(to3) Ll(to2) with b" Ll(tol) zl(to3)
standard.

COlOIIA,V (3.4). Suppose that c" L(toa) --, Ll(to2) is a continuous non-
zero homomorphism. If the algebra Ll(to3)_ Ll(to2) has 0o3/o02 integrable,
then as a map from La(toa) to La(to3) the homomorphism dp is standard.

Proof We extend b in the usual way to the corresponding measure
algebras. The statement Ll(to3) Ll(to2) says precisely that to3/to2 belongs
to L=(R/). Thus we can apply Theorem (3.2)with r/ to2/tol. Let {3t} be the
semigroup of point masses in M(to 1) and let [J’t t(t) in M(to2). We know
[13, Th. (3.6) (A), p. 599] that /x 60 weak* in M(to2). Hence it follows
from Theorem (3.2) that for all g in Ll(to2) we have lim t_,0 IIt * g gll,o3

0. Thus by [11, Th. (2.2)(b)], b: Ll(tol) zl(to3) is a standard homomor-
phism, as required.

The next result is essentially a re-statement of Theorem (3.2).

THEOREI (3.5). Suppose that g belongs to the algebra Ll(to). If "r >_ 0
belongs to LI(R/) N L=(R/), then contolution by g is a compact operator from
M(w) to L(toq).

Proof Suppose that {/n} is a bounded sequence in M(to). We need to
show that {A g} has a norm convergent subsequence in Ll(tor/). Since {An}
is a bounded sequence in a dual space, it has a subsequence {Xn} which
converges weak* to some A in M(to). It then follows from Theorem (3.2) that
X g converges to , g in the norm of Ll(tor/). This completes the proof.

For a bounded sequence {An} of finite positive Borel measures on R/, the
Helley-Bray theorem [7, Prop. (7.19), p. 217], [5, Th. 11.1.2, p. 304] says
A weak* in M(R+) if and only if /n[0, X] ---) A[0, X] at each point of
continuity of )t[0, x]. The following result is a rough analogue for complex
measures in M(to).

TI-IEOREM (3.6). For a bounded sequence {/n} in the algebra M(to), the
following are equivalent.

(a) 1 -"-) i weak* in M(to).
(b) Every subsequence {Xn} has a subsequence {X’n} with X’n[0, x] A[0, x]

almost everywhere.

Proof Let {X’n} be the indicated subsequence in (b). Folland’s proof [7,
Prop. (7.19) (a), p. 217] shows that X, A weak * in M(to). Thus every
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subsequence of {An} has a subsequence converging weak* to A and hence
{An} converges weak* to A.

Conversely suppose that {An} converges weak* to A and let {Xn} be an
arbitrary subsequence. Applying Theorem (3.1)(b) to the function u(x) 1
on R/ shows that {Xn} has a subsequence {X’n} with X’ u(x)= X,[0, x]
converging almost everywhere to A u(x) A[0, x]. This completes the proof
of the theorem.

Remark 3.7. Suppose that {An} converges weak* to h in some M(oo).
Since a continuous function is a sum of a continuous function vanishing at 0
with a multiple of u(x) 1, it follows from Theorem (3.1)(a) and (3.6) that
there is a single subsequence {Xn} and a single set E of measure 0 for which
lim X g(x) h g(x) for all continuous g(x) and all x E.

4. Conditions for norm convergence

In this section we find conditions on a bounded sequence {An} in M(o)
sufficient for {A f} to converge in norm for some or all f in La(w), and we
use these conditions to prove that certain homomorphisms are standard. All
of our conditions will be strong enough to imply that {A converges weak*,
so we will be able to apply the results of previous sections. We start with two
basic results that show that in our context weak convergence and a certain
type of convergence, which is intermediate between weak and weak* conver-
gence, each imply norm convergence.

TI-mOREM (4.1). Suppose that {An} is a bounded sequence in the algebra
M(oo) and that f belongs to Ll(m). If A f converges to A f weakly in Ll(m),
then lim A f A f in norm in Ll(w).

Proof. We choose e > 0 and show that

lim sup IIA * f- A fll < e.

By hypothesis, the set {A f- A f: n 1, 2,... U {0} is weakly sequen-
tially compact and hence weakly compact in La(oo). Hence consequences of
the Dunford-Pettis theorem (see [6, Cor. IV, 8.10 p. 292] and [6, Cor. IV.8.11,
p. 294]) show that there is a b > 0 for which

Also A

fb IAn* f(t) A * f(t)lo(t ) dt < e for all n. (1)

f converges to A f weak* in M(o), so A weak* (by Lemma
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(2.2)). It thus follows from Corollary (3.3) that

lim fblAn * f(t) f * f(t)loo(t ) dt O.
n"0

Combining this with formula (1) yields

lim sup IIA f- A fllo < e,

as required.
From the above theorem together with Theorem (2.3), we see that weak

convergence of A f in Ll(w) is enough to guarantee norm convergence in
Ll(o), but weak* convergence in M(o) is not enough.

Perhaps the most natural space between the space C0(1/w), which deter-
mines weak* convergence, and the space L(1/w), which determines weak
convergence, is the space UC(1/w) of uniformly continuous functions in
L(1/w) defined by

UC(1/o) f L=( 1/o) f is continuous and

Ilrxf- fl[o,l/o - 0 as x 0+},
where rxf(y)=f(x + y). It is easy to show that UC(1/oo) is a closed
subspace of L(1/o).
To study types of convergence intermediate in strength between weak and

weak* convergence we will need to consider a product * which makes
L(1/o) an Ll(o) Banach module; for f in Ll(o) and g in L(1/o) let

f * g(x) f0 g(x + r)f(y)

Thus, UC(1/oo) is also an Ll(o) Banach module, since it is closed. To give an
alternative description of UC(1/oo) useful for our purposes, we first need the
following lemmas.

LEMMA 4.2. The sequence e --nX[o, 1/n] (n 1,2,... ) is a bounded ap-
proximate identity for the Banach module UC(1/oo).

Proof
1

lien * f fll sup
o(x)x

1
sup

w(x)x

For f in UC(1/o) we have

f( x + Y)en(y) dy f(x)

fo fon /nf(x +y) dy-n /nf(x) dr

nfl/n If(x + Y) f(x)l
SUPx "0 co(x)

dy

supnfl/nlryf(x) -f(x)l
(2)
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Now given e > 0, choose 6 > 0 such that Ilryf-flloo,1/o < e, for every
0 < y < 8. Then for every n with n > 1/6 from (2)we have lie f fll < e,
and the lemma is proved.

LEMMA 4.3. The space UC(1/to) factors as L1(6o) * Z(1/w).

Proof. For f in L(1/to)and g in Ll(w)we have

rx(f g) f g sup
1

1
sup
y ,o(y)

:[f(x + y + t)g(t) dt

f:f(y + t)g(t)] at

fff(y + t)d(6x, gl(t)

f:f(y + t)g(t) dt

"lf(Y + t)l
SUpy to(y + t) to(t)dl((x* g) g)(t)l

-< Ilfll o, 1/o x * g g

0 asx-0+. (3)

Hence L1(6o) $ Z(1/6o) c UC(1/to). On the other hand since Ll(to) has a
bounded approximate identity for L(1/to) (Lemma 4.2) we have
Ll(w) L(1/to) closed [15, Thm. 32.22, p. 268]. Also from Lemma 4.2 and by
the module version of Cohen’s factorization theorem every element of
UC(1/to) factors as a product of an element in Ll(to) and another element of
L(1/to). Therefore

LI(to) ;, L(1/to) UC(1/to).

THEOREM (4.4). Suppose that {/n} is a bounded sequence in the algebra
M(to).

(a) If (h,h) (h,h) for all h in UC(1/to), then {} converges to in
the strong operator topology on L(to).

(b) Let fbelong to L(to). If (, f,h) - ( f,h) for all h in UC(1/to),
then limn * f * f in the norm of L(to).

Proof. By Theorem (4.1) and Lemma 4.3 to prove (a) it suffices to show
that for g in La(to) and q in L=(1/to) we have

lim(A g, gt) (A g,
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But a Fubini type argument shows that (An* g, q)= (An, g ;, q), and
(An, g q) converges to (A, g q) (A g, q), by our hypothesis.
To prove (b) we apply (a) to the sequence A f. We thus have A f g

--. A f g in norm for all g in Ll(to). In other words, the convergence ideal
of {An} contains Ll(to). f, and hence el(Ll(to), f) (see Lemma (2.1)). But
Ll(to) has a bounded approximate identity, so f belongs to the closure of
La(to). f. Thus A f A f in norm, so the proof is complete.

Bade and Dales [3, Th. 1.5, p. 71] show that the weight to(x) is regulated at
0 if and only if Ll(to) L=(1/to)

_
C0(1/to). Since C0(1/to) UC(1/to), from

Lemma 4.3 it follows that to is regulated at 0 if and only if La(to);, L=(1/to)
C0(1/to). In fact Bade and Dales prove that to(x) is regulated at a if and

only if f L=(1/to) C0(1/to) for all f in La(to) with a(f) > a. This fact
can be used to give a different proof of Theorem (2.3)(a).
We now develop some more specialized sufficient conditions for strong-

operator-topology convergence. While we continue to consider arbitrary A as
a limit, the most important case is A 60. This is the case we apply to
prove that a homomorphism is standard, and this is also the classical
"summability kernel" case.

THEOREM (4.5). Suppose that {An} converges weak* to A in M(to). If
lim sup IIAn[I < IIA II, then {An} converges to A in the strong operator topology
of M(to) acting on Ll(to).

Notice that the fact that A A weak* implies that

lim inf IIA nIl IIA II;

so the hypothesis in the theorem just says limnoo IIAnll IIAII. Before
proving the theorem we give an application to homomorphisms.

COROLLARY (4.6). If the homomorphism d" Ll(tol) ---) Ll(to2) has norm 1,
then rh is a standard homomorphism.

Proof The extension of b to the corresponding measure algebras also
has norm 1 [13, Th. 3.4, p. 596]. So if t ch(6t), then [[/tl[ < [lStll toa(t).
But {/x t} is a weak*-continuous semigroup [11, Th. 3.4 (8), p. 596], and

limsup IItll lim tol(t) 1.
tO t-*O

Thus it follows from Theorem (4.5) that {t} is a strongly continuous
semigroup, and hence b is a standard homomorphism [11, Th. (2.2)].
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Proof of Theorem (4.5). By Theorem (4.4), it will be enough to show that
limn_+=(hn, h) (h,h) for all h in UC(1/w). This is a standard result for
probability measures and is a known result [7, Prob. 7.26, p. 219] for weak*
convergent complex measures in unweighted La-spaces. Since it is not clear
how to obtain the weighted result directly from the unweighted result, we
sketch a proof that lim fR+h dA fR+h dh. For convenience we take IIh _< 1
in UC(1/w). Given e > 0, we will show that

h dan fR+hdA < 2e, (4)

for n sufficiently large.
Choose a continuous function q with compact support K and with norm

II q II 1 in C0(1/w) (so that q(t)l < w(t)) which satisfies

< a, ) f+q, da > Ila II e/2.

Now choose n large enough so that

fq,/a, > Ilall- e/2 and IIAn[I < Ilall + e/2.

Then we have

Ilall- el2 < fR+ dA f? dA fgwdlAn[ [[Anl[ < I111 + e/2.

So if we let U R+\ K, we then have

IlAnll fwdlAnl < e,

for sufficiently large n. In a similar way we obtain ftwdlA[ < e.
Now choose g" R+ [0, 1] continuous with compact support, with g 1

on K. Since A A weak* in M(w) C0(1/w)* we have

limfR ghdAn=fR ghda.
n

But

gh dan fR+h dan fu(1 g)hdAn < fuwdlAnl < e
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for sufficiently large n. Similarly fR+gh dA fR+h dAI < e. Combining these
last two estimates gives formula (4) and proves the theorem.

5. Standard homomorphisms and convergence in LI(R+)

In this section we study standardness of endomorphisms and strong-oper-
ator-topology convergence of semigroups and sequences in LI(R/). In LI(R/)
we can combine our earlier results, particularly from [11], with properties of
the Laplace and Fourier transforms. We let II be the open half-plane,

H={z=x+iy’x>O},

and H the corresponding closed half-plane. Then for /x in M(R+), the
Laplace transform is defined by

ft(Z) +e -zt dtx( t) for z in H.

When f is in LI(R+), we extend its Laplace transform continuously to
t {} by letting f(c) 0. As is well known (see for instance [4, Th. 4.4,

p. 189]), the Laplace transform identifies H with the character space of
LI(R+) and {} with the zero homomorphism. To some extent our restriction
to LI(R+) is a normalization. All our results have obvious translations to the
spaces Ll(ekt) for k real. Some of our results hold for arbitrary semisimple
Ll(to), but we will occasionally use Nyman’s theorem or the Wiener Taube-
rian theorem, which hold only for special weights.
For the form of Nyman’s theorem we need, recall that a function f in

Ll(to) with a(f) d is standard in La(to) if

cl(Ll(to) * f) {g Ll(to) o(g) > d} Ll(to)d.

Thus if a(f) 0, then f is standard if and only if Ll(to), f is dense in
Ll(to), as in Question 1 in Section 2. For semi-simple Ll(to), it is clear that f
cannot be standard if fi(z) is ever 0 on the maximal ideal space of Ll(to). The
version of Nyman’s theorem we need is the following converse for LI(R+).

LEMMA (5.1) (Nyman’s theorem). If f is a non-zero function in LI(R+),
then f is standard in LI(R+) if and only iffi(z) is never 0 on I.

Proof Let a a(f) and f (a * g" Then g(z) eaZf(z) is also never 0
on II. Since a(g) 0, it follows from the usual form of Nyman’s theorem [4,
Cor. 6.4, p. 201] that LI(R+), g is dense in LI(R+). The lemma now follows
from the fact that convolution with t is an isometry from LI(R+) onto its
standard ideal LI(R+)a.
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The next two results give sufficient conditions for weak* and strong-oper-
ator-topology convergence in M(R+) in terms of the Laplace transforms.
Notice that it follows from the definition of the Laplace transform that if

An A weak* in M(R+), then n(Z) (Z)pointwise for z in II. Similarly
if fn f weakly in Lt(R+), then fn(Z) f(z) pointwise on .
LEMMA (5.2). Suppose {/n} is a bounded sequence in LI(R+). If {,n(Z)}

converges pointwise on some set of uniqueness A c_ II of the Laplace transform,
then {An} converges weak* in M(R/).

Proof It follows from weak*-compactness that every subsequence of {A n}
has a weak*-convergent subsequence. Therefore we need only show that if
two subsequences {Xn} and {X,} have weak* limits h’ and X’ respectively,
then A’ X’. But A’(z)= limn_oo n(Z)= "(Z)for all z in A. Since A is a
uniqueness set this proves the lemma.

THEOREM (5.3). Suppose that {An} is a bounded sequence in M(R+). If
there is an f in LI(R+) with f(z) never 0 on the imaginary axis and for which
limn__,oo 1 * f i * f in norm in LI(R+), then An g h g for all g in
LI(R+).

Proof We consider LI(R/) and M(R/) as closed subalgebras of LI(R)
and M(R) respectively, by extending the functions and measures to be zero
on the negative real axis. Let

J={h LI(R) lim A * h h h in LI(R)}.n

Just as in Lemma (2.1), J is a closed ideal in LI(R) and f belongs to J.
Translated to LI(R), the hypothesis on f says that the Fourier transform of f
never vanishes. It thus follows from the Wiener Tauberian theorem [16, Th.
6.4, p. 228], that J Lt(R). In particular, J

_
LI(R+), so the theorem is

proved.
The rest of the results in this section will use the added structure given by

semigroups and homomorphisms. We first look at the zeroes of the Laplace
transform of a semigroup.

THEOREM (5.4). Suppose that {/-/t} is a weak*-continuous semigroup in
M(R/) with lim 0+/z 60 in weak*-topology. Then"

(a) each zt(z), for t > O, has the same zeroes in II;
(b) no zt(z) can have a zero in II or at any point on the boundary of H at

which z t(z ) has an analytic continuation;
(c) {/x t} is a strongly continuous semigroup if and only if some fzt(z) has no

zero on the imaginary axis, and hence on II.
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Proof. That the t(Z) have the same zeroes follows from the semigroup
property fi.s+t(z)= fs(z)fzt(z). Now suppose that ;tt(zo) 0 and /2 is
analytic or has an analytic continuation at z0. Then for all positive integers
n, we have t(Zo) (fZt/n(Zo))n, so the zero at z0 is of infinite order, but this
forces/2 t, and hence/zt, to be 0, contradicting the assumption lim _,0//x
60 in weak*-topology.

Finally, if/2 has a zero at some point z0 in and f in L has f(Zo) : 0,
then limt_,0+ Id, : f(Zo) limt.0+ t(Zo)(Zo) 0 =/:: (Zo); SO ]A, * f can-
not converge to f as 0 /. Conversely, suppose zt(z) is never 0. Choose
some f in LI(R/) with f(z)never 0 on and let g =/x f. Then (z)is
not 0 on the boundary of rI and

lim /.L g lim ]J,1 +t * f g,
tO tO

since {/z t} is strongly continuous for > 0 [13, Th. 3.6 (B), p. 594], [14, Th.
(2.1), p. 160]. Hence {/x t} is strongly continuous by Theorem (5.3), and the
proof is complete.

We now derive and apply representation formulas for endomorphisms and
semigroups in LI(R+). Suppose w(z) is analytic on some open subset U of
the complex plane and that z0 belongs to the boundary of U in the extended
complex plane. We say that w(zo) oo if and only if lim z zo

e-tW(Z) 0 for
some (equivalently all) > 0. That is

w(zo) if and only if lim Re(w(z)) .
Z Zo
zU

Thus we can unambiguosuly say e 0.
With this convention, we can now state our representation theorem for

semigroups. We normalize to the case of bounded semigroups. If {/z t} is any
weak* continuous semigroup with limt Iltztl[ lit < ec, then A e-Cttzt is a
bounded weak* continuous semigroup. Moreover, {A t} is strongly continuous
if and only if {/x t} is.

weak -continuous semigroup not ofTHEOREM (5.5). If (/x t} is a bounded *
the form iz e-Cto, then there is an analytic function w" H H with a
continuous extension to a map from I to k) {o} for which zt(z) e -tw(z)

for all > 0 and all z in H. Moreover {/x t} is a strongly continuous semigroup if
and only if w( z) is finite on H.

Proofi First we fix some > 0. By Theorem (5.4)(b), zt(z) is never 0 on
the simply connected set H. Thus there is an analytic function w(z) on H
with zt(z) e -tw(z). Since {t} is a semigroup and, for each fixed z, zt(z) is
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a continuous function of t, the function w(z) is the same for all t. Since
I/2t(z)[ < II/ztll and {t}is bounded, we must have Re(w(z)) bounded
below; so that w(II)_ II. But w(z) is not constant since e -twz) is not a
multiple of g0(z)= 1. Hence w is an open map and w(1-I) I-I. Since
zt(z) e -twz) has a continuous extension to , w(z) also has a continuous
extension to a map from II to II t3 {}. By our convention zt(zo) 0 if and
only if W(Zo) , so it follows from Theorem (5.4)(c) that {/zt} is strongly
continuous if and only if w(z) is finite on II. This completes the proof.

If i ---e-Ctl-t is a bounded semigroup, then t(z)= e-Ctftt(Z), SO Theo-
rem (5.5) still holds except that w(z) maps II to the open half plane
{z x + iy" x > c}. We apply the representation theorem to describe the
limit of/2t(z) as --) 0 +.

THEOREM (5.6). Suppose that {/x t} is a weak*-continuous semigroup in
M(R+).

(a) limt__,0+ fzt(z) 1 uniformly on compact subsets of II.
(b) The semigroup {tx t} is strongly continuous if and only if lim 0+/2t(z)
1 for all z on the imaginary axis.

Proof Let fit(z) e -tw(z). Part (a) follows from the finiteness of w(z) on
II. When {/x t} is strongly continuous, then (txt * f)^(z)= fzt(z)f(z) ap-
proaches f(z)for all f in LI(R+) and all z in . Hence ft(z)--, 1
pointwise on II. Conversely, if fzt(z) e -tw(z) approaches 1, then w(z) 4: .
This completes the proof.

We now give the representation theorem for endomorphisms. Virtually all
of the following theorem is in [10], where it is used to prove that all
endomorphisms are one-one.

THEOREM (5.7). Suppose that ch is a continuous nonzero endomorphism of
LI(R+). Then there exists a continuous function w(z) from I to I u {} for
which d(f)(z) f(w(z)) for all z in I. Moreover"

(a) w(z) is a non-constant analytic function on II which maps II to itself;
(b) the extension of ch to M(R+) also satisfies (b(/x))^ (z) z(w(z)) for all

zin H;
(c) w()= .
Proof The character space of LI(R+) is with the character given by z

in just the map f f(z). Hence there is a continuous w: t3 {}
(essentially the restriction of the adjoint b* to the characters) for which
ch(f)^(z) =f(w(z))). The first author [10, p. 310] shows that w(z) is a
nonconstant analytic function on H and therefore w(II)

_
II. Part (b) follows

from the fact that for all/x in M(R+) and f in L(R+), b(/x f)^ (z) is equal
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to z(w(z))f(w(z)) and also to (ch(lz)^(z))(f(w(z)). For part (c)we choose
an f with f^(z) nonzero on . Then (bf) (oo) 0 f(w(oo)). Hence w(o0
0% and the proof is complete.

Notice that part (b) says that if/z is the semigroup b(3t), then t(z)
e -tw(z) just as in Theorem (5.6), the representation theorem for semigroups.
In this case, however, it follows from (5.7)(c), that lim fzt(z) e O.
Actually, the representation theorems for semigroups and endomorphisms
can be gotten from each other using the relations between semigroups and
homomorphisms given in [13] and [14], but the direct proofs we gave above
are simpler.
We now use the representation theorem together with our general result

[11, Th. (2.2)] for characterizing standard homomorphisms to characterize
standard endomorphisms of LI(R+). We do not repeat the various conditions
in [11, Th. (2.2)] which are equivalent to standardness for arbitrary Ll(w).

TI-IEOREM (5.8). Suppose that is a continuous non-zero endomorphism of
LI(R+) with representation (dpf)^(z) f(w(z)) for z in I. Then the following
are equivalent"

(a) ch is a standard homomorphism.
(b) Whenever f(z) is never 0 on I, then (df)^ (z) is never 0 on I.
(c) There is an f in LI(R+) with (chf) (z) never 0 on the imaginary axis.
(d) w(z) is finite on the imaginary axis.
(e) w(z ) is finite on II.

Proof It follows from the definition of standard homomorphism, given
after Question 2 in Section 2, that if b is standard then there are f with
b(f) standard and hence (b(f)) (z) never zero on . Hence (a) (c). On
the other hand if (b) holds, then there is an f in L(R/) for which b(f)^(z)
is nver 0 on II. By the form of Nyman’s theorem given in Lemma (5.1), this
implies that b(f) is standard on LI(R+). Hence (b) (a) by [11, Th. (2.2)
(c)].
We complete the proof by showing the equivalence of (b) through (e). It is

clear that (b) (c). Suppose (c) holds. Then

=/(w(z)) # o

whenever z belongs to the imaginary axis. But f(o) 0 for all f in LI(R+),
so (c) (d). We know from Theorem (5.7) that w(z) is always finite on II, so
(d) (e). Finally suppose w(z) is finite on and that f(z) never vanishes
on . Then, for all z in , we have (bf) (z) f(w(z)) 4: O. Thus (e) (b),
and the proof is complete.
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By combining part (c) of the above theorem with our version of Nyman’s
theorem we obtain the following Corollary. For general Ll(eo)we only know
the following result under the additional assumption that a(f) O.

COROIt,AR (5.9). Suppose that dp is a standard endomorphism of LI(R+).
Whenever f is standard in LI(R+), then oh(f) is also standard in L(R+).

It is possible to prove the implication (e) (a) in Theorem (5.8) by using
our characterization of strongly continuous semigroups in Theorem (5.5). If
we let/x b(tt), then lEt(z) e -twz). When w(z) is finite on , it follows
from Theorem (5.5) that {/x t} is strongly continuous. But this implies that b is
standard [11, Th. (2.2)].
With a bit more effort it is possible to weaken condition (c) in Theorem

(5.8) to only requiring some g in cl(b(Ll(R+))) or even, in the smallest closed
ideal containing b(LI(R/)), satisfy (z) is never 0 on the imaginary axis.
Such a g would belong to the convergence ideal of the semigroup {/x t} (see
[11, Th. (2.4)] or [14, p. 161]). But, by Theorem (5.3), this would imply that
{/x t} is strongly continuous.

6. The space of standard homomorphisms

In this section we prove a few closure properties of the collections of
standard homomorphisms. Results of this type have been very useful in
investigating other properties of homomorphisms between convolution alge-
bras.
Our basic result is the following:

TI-IEOREM (6.1). Suppose that oo’ and oo are algebra weights. Then the
collection of standard homomorphisms from Ll(w’) to Ll(oo) is closed in the
uniform operator topology and also is dense in the strong operator topology in
the set of all nonzero continuous homomorphisms.

Proof Suppose that b is the uniform limit of a sequence {(m} of standard
homomorphisms and that {An} is a bounded sequence in M(o’). The usual
"e/3-argument" shows that if for each m we have lim
then we also have limn_.o b(An) b(A). Applying this result to the semi-
group {6t} (or to an approximate identity in Ll(o’)) shows that b is also a
standard homomorphism [11, Th. (2.2)].
Now suppose that b: Ll(o’) Ll(o) is a nonzero homomorphism. For

each A > 0, we define the homomorphism b by

dpx(f)(t ) e-Xt(dp(f)(t))
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and the weight to(t) ehtto(t). Then 4 is a homomorphism from Ll(to’) to
Ll(to,x) c_ Ll(to). Since to/to e -At belongs to LI(R/) N L(R+), it follows
from Corollary (3.4) that each thh is standard. On the other hand for each g
in Ll(to), so in particular for each th(f) in the range of th, we have, by the
dominated convergence theorem, that

Ile-Xtg(t) g(t) [I, f0ll e-Xtllg(t)lw(t )dt

converges to 0 as h --* 0 +. Thus 4 is the strong-operator-topology limit at
{thh}; so the proof is complete.

We also have the following simple algebraic closure property.

THEOREM (6.2). Any composition of standard homomorphisms is a stan-
dard homomorphism.
The theorem is an easy consequence of most of the characterizations of

standard homomorphisms [11, Th. (2.2)]. It is immediate from the fact that a
homomorphism is standard if and only if it preserves dense principal ideals,
or if and only if it is continuous in the strong operator topology.
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