BETTI NUMBERS, CHARACTERISTIC CLASSES AND SUB-RIEMANNIAN GEOMETRY

BY
Zhong Ge

Introduction

In this paper we will develop generalized characteristic classes and (a part of) the Hodge theory in the context of degenerate metrics (called subRiemannian metrics). As an application, we study topological obstructions to putting a connection on a fiber bundle over a Riemmanian manifold with prescribed curvature. The novelty in the application is that we make no assumption on the geometry of the fiber.

Roughly speaking, a sub-Riemannian metric on a manifold M is a fiberwise metric on a subbundle $H \subset T M$ satisfying Hörmander's condition. Associated with this metric is the distance between any two points, called Carnot-Carathéodory distance, defined to be the minimum of the length functional over the space of absolutely continuous curves tangent almost everywhere to H and connecting the two points. This metric and the corresponding distance have appeared in a number of different contexts (cf. [2], [3], [7], [8], [9], [11], [13], [18], [20], [21], [22], [25], [27], [29]).

In §1 we first study the geometry of sub-Riemannian metrics. In particular, we generalize the Gauss-Bonnet-Chern type formulas to sub-Riemannian metrics, showing that certain global invariants of the underlying distribution (certain "horizontal cohomology classes") can be given by the data of the sub-Riemannian metrics, in a slightly less canonical way in general. This construction is canonical if H is contact.

One of the difficulties in the study of sub-Riemannian geometry is that so far no intrinsic connection has been defined (cf. [27]) in general. However, if we choose a complementary subbundle to H, we can develop an analogue of the Levi-Civita connection, which enables us to parallel translate horizontal tangent vectors along horizontal paths. This connection was encountered in the study of collapsing of Riemannian metrics to sub-Riemannian metrics [9]. Similar connections in the context of principal bundles have been introduced by Kamber and Tondeur (cf. [15], p. 14). However, unlike in the Riemannian case, the curvature is not a tensor in the ordinary sense. In this paper we

[^0]show that the curvature, modulo a differential ideal, is a tensor, and gives rise, via the Chern-Weil homomorphism, to global characteristic classes which are horizontal cohomology classes.

The global invariants of H here will be cohomology classes of a differential complex associated with H. This differential complex is constructed as follows. If $H \subset T M$, say, is locally defined by $k 1$-forms $\omega_{1}=\cdots=\omega_{k}=0$, then the differential ideal $\Lambda_{N}(M) \subset \Lambda(M)$ is locally generated by k 1-forms $\omega_{1}=\cdots=\omega_{k}=0$, then the differential ideal $\Lambda_{N}(M) \subset \Lambda(M)$ is locally generated by $\omega_{1}, \ldots, \omega_{k}, d \omega_{1}, \ldots, d \omega_{k}$. Then the complex is the quotient $\Lambda_{H}(M)=\Lambda(M) / \Lambda_{N}(M)$, with the induced exterior differentiation d_{H}, and the cohomology groups (to be called horizontal cohomology) is that of the differential complex $\Lambda_{H}(M)$. Though this cohomology group is easy to define, until recently it has not been used much in geometry (see Rumin [25]). Recently Ginzburg observed that if H is a contact distribution, then the lower dimensional cohomology groups of $\Lambda_{H}(M)$ are isomorphic to the de Rham cohomology groups (interestingly enough, a similar result on the homology level was in Thom [28]). In §1.2. we generalize his result to certain 2-step generating distributions (i.e., $H+[H, H]=T M$).

Having developed the geometry of sub-Riemannian metrics, in §2 we will develop a part of the Hodge theorem for sub-Riemannian metrics. To do this, we assume that a volume form $d v$ on M is given, in addition to the sub-Riemannian metric. If H is contact, we can choose a canonical volume form. Our main result in $\S 2$ is the proof of the hypoellipticity of $\Delta_{H}^{1}=d_{H} \delta_{H}$ $+\delta_{H} d_{H}$ acting on $\Lambda_{H}^{1}(M)$ under certain explicit condition on the tangent cone. Here some identities obtained in $\S 1$ play a fundamental role. Our results are inspired by a result of Rumin [25] for the case where M is pseudo-hermitian. Also recall that if H is integrable, then there is a harmonic integration theory due to Kamber-Tondeur [16], [17], Reinhart [23], and Kacimi-Hector [14]. So the results in this paper can be considered as generalizations of a part of their results.

The generalization of the Hodge theorem to degenerate metrics seems particularly suitable for the study of the problem of putting a connection on a fiber bundle M over an Riemannian manifold with a prescribed curvature, since the sub-Laplacian Δ_{H}^{1} has a relatively simple form in this case. As an application of Theorem 2.1, in $\S 3$ we study the case where M is the total space of a fiber bundle over a Lie group

$$
W \rightarrow M \rightarrow G
$$

with a given connection which has an "almost left invariant" curvature, showing that if the curvature satisfies certain complicated but explicit inequalities, then the first Betti number of M must be zero (cf. Theorem 3.2 and the remarks following).

It is our pleasure to thank Prof. Philippe Tondeur for suggesting improvements in this paper.

1. Geometry of sub-Riemannian metrics and generalized characteristics

1.1. Geometry of sub-Riemannian metrics

In this subsection we will recall some basic properties of sub-Riremannian metrics and introduce a local invariant of the underlying distribution.

Let M be a connected, compact manifold, and $H \subset T M$ a smooth subbundle of TM. A sub-Riemannian metric on M is a symmetric positive bilinear form (\cdot, \cdot) on $H,(\cdot, \cdot): H \times H \rightarrow R$. If H satisfies Hörmander's condition, there is a Carnot-Carathéodory distance between $x, y \in M$, defined to be

$$
d(x, y)=\min _{\gamma \in \Omega_{H} M(x, y)}\left(\int(\dot{\gamma}(t), \dot{\gamma}(t)) d t\right)^{1 / 2}
$$

Here $\Omega_{H}(x, y)$ is the space of horizontal paths connecting x, y.
An important class of sub-Riemannian metrics are constructed as follows: suppose that M is the total space of a fiber bundle $W \rightarrow M \rightarrow B$ over a Riemannian manifold, and H comes from a given connection, i.e., $T M=$ $H \oplus K$ where K is tangent to the fibers. Then define a sub-Riemannian metric on M by horizontally lifting the Riemannian metric on B to H.

Now we introduce a local invariant of H which will play a most important role in later developments. We will use a construction which is very similar to the construction of a tangent cone (cf. [8], [9], [19], [24]). Let $H_{1}=H+[H, H$] be the subbundle of $T M$ consisting of such elements c which locally can be written as $c=b_{0}+\left[b_{1}, b_{2}\right], b_{0}, b_{1}, b_{2} \in C^{\infty}(H)$. Then there is an antisymmetric bilinear map $\mu(\cdot, \cdot)_{x}: H \times H \rightarrow H_{1} / H$ defined by

$$
\begin{equation*}
\mu(a, b)_{x}=[a, b] \bmod (H) . \tag{1.1}
\end{equation*}
$$

It is easy to verify that (1.1) is well defined.
Note that if M is the total space of a principle fiber bundle and H comes from a connection, then μ is just the curvature of the connection.

Suppose that the vector bundle H_{1} / H is of rank k_{1}, then $\mu(,)_{x}$ is a $R^{k_{1}}$-valued 2-form on H_{x}, thus determines k_{1} elements of $\wedge^{2}\left(H_{x}\right)$, which we will denote by $\theta^{1}, \ldots, \theta^{k_{1}}$. Thus we can write $\mu_{x}=\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)$ in a noncanonical way. Let $I_{x}\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)$ be the exterior algebraic ideal in $\Lambda\left(H_{x}\right)$ generated by $\theta^{1}, \ldots, \theta^{k_{1}}$. Sometimes we will write $I_{x}\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)$ simply as I_{x}.

We say that H is of non-degeneracy r if τ is the biggest number such that for ($r-1$)-forms $a_{1}, \ldots, a_{k_{1}}$ on H_{x},

$$
a_{1} \wedge \theta^{1}+\cdots+a_{k_{1}} \wedge \theta^{k_{1}} \neq 0
$$

unless $a_{1}=\cdots=a_{k_{1}}=0$. Note that if H has non-degeneracy $r>0$, then the distribution H must be two-step bracket generating, i.e., $H_{1}=H+$ $[H, H]=T M$.

We will prove that H has non-degeneracy $r>0$ if H is strongly bracket generating (cf. [27]), i.e. for any $v_{1} \in H_{x}, v_{1} \neq 0$, the induced map $H_{x} \rightarrow$ $T M_{x} / H_{x}, v_{2} \rightarrow \mu\left(v_{1}, v_{2}\right)$ is a submersion. If M is the total space of a fiber bundle and H comes from a connection, then H is strongly bracket generating iff M is a fat bundle (Weinstein [30]).

Lemma 1.1. If M is strongly bracket generating and (M, H) is not a 3-dimensional contact manifold, then H has non-degeneracy $r>0$.

Proof. Assume otherwise, i.e., there are 1 -forms $a_{1}, \ldots, a_{k_{1}}$, which are not all zero, such that

$$
\begin{equation*}
a_{1} \wedge \theta^{1}+\cdots+a_{k_{1}} \wedge \theta^{k_{1}}=0 \tag{1.2}
\end{equation*}
$$

Without loss of generality we assume that a_{1}, \ldots, a_{k} are linearly independent at $x \in M$. Choose a coordinate system $\left\{x_{i}\right\}$ such that $a_{1}=d x_{1}, \ldots, a_{k_{1}}=d x_{k_{1}}$ at x. Write

$$
\theta^{i}=\sum_{l k} \theta_{l k}^{i} d x_{l} \wedge d x_{k}
$$

then from (1.2) at x we have

$$
\sum_{l \geq k_{1}+1, k \geq k_{1}+a} \theta_{l k}^{i} d x_{l} \wedge d x_{k}=0
$$

which is in contradiction with the fact that H is strongly bracket generating.
Remark. There are subbundles H which have non-degeneracy >0 and yet are not strongly bracket generating. For example, take (M, H) where $M=R^{2 n+2}, H$ is defined by two 1 -forms

$$
d z_{1}-x_{1} d y_{1}-\cdots-x_{n_{1}} d y_{n 1}=d z_{2}-x_{n_{1}+1} d y_{n_{1}+1}-\cdots-x_{n} d y_{n}=0
$$

Here $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z_{1}, z_{2}\right)$ is a coordinate system on $R^{2 n+2}, 2 \leq n_{1} \leq$ $n-2$. Then it is easy to see that H is not strongly bracket generating but yet has non-degeneracy >0.

We recall the definition of partial connections, which is a generalization of the Levi Civita connection to sub-Riemannian metrics (cf. [8], [9]). To define such a partial connection, we need to choose a subbundle K in $T M$ complementary to $H, T M=H \oplus K$, and denote $\pi: T M \rightarrow H$ the projection. Then a bilinear map

$$
(a, b) \in H_{x} \times C^{\infty}(H) \rightarrow D_{a} b \in H_{x}
$$

depending smoothly on x, is a partial connection if
(1) $D_{a}(f b)=<d f, a>b+f D_{a} b, \quad a, b \in C^{\infty}(H), f \in C^{\infty}(M)$
where $\langle, \quad\rangle$ is the dual bracket between $T^{*} M$ and $T M$.

$$
\begin{align*}
D_{a} b-D_{b} a & =\pi[a, b], \quad a, b \in C^{\infty}(H) \tag{2}\\
a(b, c) & =\left(D_{a} b, c\right)+\left(b, D_{a} c\right) \tag{3}
\end{align*}
$$

As an example, suppose that M is the total space of a fiber bundle $W \rightarrow M \rightarrow B$ over a Riemannian manifold and H comes from a connection on the fiber bundle, then horizontally lifting the Levi-Civita connection on B to H, we obtain a partial connection.

In [9] it is proved that for given H, K, and (\cdot, \cdot) on H, there exists a unique partial connection.

An orthonormal frame e_{i} for H is normal at a given point $x_{0} \in M$ if $D_{e_{j}} e_{i}\left(x_{0}\right)=0$. In [9] it is proved that such a normal frame always exists. Note that if e_{i} is normal at $x_{0}, \pi\left[e_{i}, e_{j}\right]\left(x_{0}\right)=0$.

The partial curvature of the partial connection is a trilinear map

$$
R: C^{\infty}(H) \times C^{\infty}(H) \times C^{\infty}(H) \rightarrow C^{\infty}(H)
$$

defined by

$$
R(a, b) c=D_{a} D_{b} c-D_{b} D_{a} c-D_{\pi[a, b]} c
$$

As the following result shows, unlike the curvature of the Levi-Civita connection, $R(a, b)$ is not a tensor in the "usual" sense.

Lemma 1.2. Let a, b, c be smooth horizontal vector fields on M and $f a$ smooth function. Then

$$
R(f a, b) c=f R(a, b) c, \quad R(a, b) f c=(\mu(a, b) f) c+f R(a, b) c
$$

For a proof see [8].
In general there is no partial connection and volume form canonically associated with the sub-Riemannian metric. However, if H is a contact
distribution, then there is a natural volume form $d v$ and a complementary bundle K to H defined as follows: let α be the 1 -form such that $\alpha=0$ defines H and

$$
\begin{equation*}
(x, y)=d \alpha(x, J y), x, y \in H \tag{1.3}
\end{equation*}
$$

where J is an endmorphism of H such that $\operatorname{det} J=1$. It is easy to see that such a 1 -form exists uniquely. Having determined α, then we define

$$
\begin{equation*}
K=\{x, d \alpha(x, \cdot)=0\} \tag{1.4}
\end{equation*}
$$

and $d v=\alpha \wedge(d \alpha)^{n}$. In this case the induced partial connection D will be called the canonical partial connection of the sub-Riemannian metric.

1.2. Horizontal cohomology

In this subsection we will define global invariants of H, the cohomology groups of H (also called horizontal cohomology groups), and study their properties.

Let $\Lambda(M)=\oplus \Lambda^{k}(M)$ be the sheaf of smooth differential forms on M, and $\Lambda_{N}(M)$ be the subsheaf consisting of ω such that if H is locally defined by $k 1$-forms $\omega_{1}=\cdots=\omega_{k}=0$, then

$$
\omega=\sum\left(f_{i} \wedge \omega_{i}+g_{i} \wedge d \omega_{i}\right)
$$

where f_{i}, g_{i} are smooth differential forms.
There is a natural filtration $\Lambda_{N}(M)=\oplus \Lambda_{N}^{k}(M)$, and $d\left(\Lambda_{N}^{k}(M)\right) \subset$ $\Lambda_{N}^{k+1}(M) . \Lambda_{N}(M)$ is both an algebraic and a differential ideal of $\Lambda(M)$. The k-th vertical cohomology is defined by

$$
H_{N}^{k}(M)=\frac{\operatorname{ker} d_{N}^{k}}{\operatorname{Im} d_{N}^{k-1}}
$$

where $d_{N}^{k}: \Lambda_{N}^{k}(M) \rightarrow \bigwedge_{N}^{k+1}(M)$ is the restriction of the exterior differentiation.

Let $\Lambda_{H}(M)$ be the quotient sheaf $\Lambda(M) / \Lambda_{N}(M)$, defined by the exact sequence

$$
\begin{equation*}
0 \rightarrow \wedge_{N}(M) \rightarrow \wedge(M) \rightarrow \wedge_{H}(M) \rightarrow 0 \tag{1.5}
\end{equation*}
$$

$\Lambda_{H}(M)$ has a natural filtration $\Lambda_{H}(M)=\oplus \Lambda_{H}^{k}(M)$, and a natural operator

$$
d_{H}=d_{H}^{k}: \wedge_{H}^{k}(M) \rightarrow \wedge_{H}^{k+1}(M)
$$

defined in the following way: if $p_{H}: \wedge(M) \rightarrow \Lambda_{H}(M)$ is the projection,

$$
d_{H} p_{H}(\omega)=p_{H}(d \omega)
$$

Definition 1.1. The k-th cohomology of H is

$$
H^{k}(H)=\frac{\operatorname{ker} d_{H}^{k}}{\operatorname{Im} d_{H}^{k-1}}
$$

Later on we will need the following technical condition: we say that $\Lambda_{H}^{k}(M)$ satisfies condition (L) if $\omega \in \Lambda_{H}^{k}(M)$ satisfies $\omega(x)=0$ for every $x \in M$ (as a cross-section of $\wedge^{k}(T M)$) then $\omega=0$.

Lemma 1.3. Suppose that H satisfies the following condition: there are 1 -forms $\omega_{1}, \ldots, \omega_{k}$, such that H is defined by $\omega_{1}=\cdots=\omega_{k}=0$ locally, and $d \omega_{k_{1}+1}, \ldots, d \omega_{k}$ can be uniquely written as

$$
d \omega_{k_{1}+i}=\sum_{j=1}^{k} f_{j}^{i} \wedge \omega_{j}+\sum_{j=1}^{k_{1}} g_{j}^{i} d \omega_{j}, \quad i=1, \ldots, k-k_{1}
$$

where f_{j}^{i}, g_{j}^{i} are smooth forms, then $\Lambda_{H}^{2}(M)$ satisfies condition (L).
Corollary 1.4. If H is two-step generating, then $\wedge_{H}^{2}(M)$ satisfies condition (L).

Next we will determine the stalk of $\wedge_{H}^{k}(M)$ over $x \in M, \wedge_{H}^{k} T_{x} M$ explicitly. Obviously if $k=1$ then $\Lambda_{H}^{1} T_{x} M=H_{x}$. However, for $k \geq 2, \Lambda_{H}^{k} T_{x} M$ is not freely generated by H_{x}.

Lemma 1.5. Suppose that the vector bundle H_{1} / H is of rank $k_{1}, \mu_{x}=$ $\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)$. Then the stalk of $\Lambda_{H}^{2}(M)$ over $x \in M$ is

$$
\Lambda_{H}^{2} T_{x}(M)=\Lambda^{2}\left(H_{x}\right) / \operatorname{span}\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)
$$

Proof. Select a subbundle V_{1} in $T M$ which is complementary to H. Suppose that H_{x} is spanned by $e_{1}, \ldots, e_{m}, V_{1}$ spanned by b_{1}, \ldots, b_{k}, and

$$
\left[e_{i}, e_{j}\right](x)=\sum c_{i j}^{l}(x) b_{l}(x) \quad \bmod \left(e_{1}, \ldots, e_{m}\right), \quad c_{i j}^{l}=-c_{j i}^{l}
$$

Then one can choose a local coordinate neighborhood $\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right\}$
such that H is defined by $\omega_{1}=\cdots=\omega_{k}=0$, where

$$
\omega_{l}= \begin{cases}d y_{l}-\sum c_{i j}^{l} x_{i} d x_{j}+O\left(y^{2}+x^{2}\right), & 1=1, \ldots, k_{1} \\ O\left(y^{2}+x^{2}\right), & 1=k_{1}+1, \ldots, k\end{cases}
$$

Here $O\left(x^{2}+y^{2}\right)$ denotes a 1 -form $\sum f_{i} d x_{i}+\sum g_{j} d y_{j}$, where $f_{i}=O\left(x^{2}+y^{2}\right)$, $f_{j}=O\left(x^{2}+y^{2}\right)$. So

$$
d \omega_{l}= \begin{cases}-\sum c_{i j}^{l} d x_{i} \wedge d x_{j}+O(|y|+|x|), & 1=1, \ldots, k_{1} \\ O(|y|+|x|), & 1=k_{1}+1, \ldots, k\end{cases}
$$

then it is easy to see that the lemma follows.
The above result can be easily generalized to $k>2$,
Lemma 1.6. The stalk of $\wedge_{H}(M)$ over $x \in M$ is

$$
\wedge_{H} T_{x}(M)=\wedge\left(H_{x}\right) / I_{x}\left(\theta^{1}, \ldots, \theta^{k_{1}}\right)
$$

i.e., we have the exact sequence

$$
0 \rightarrow I_{x} \rightarrow \wedge\left(H_{x}\right) \rightarrow \wedge_{H} T_{x} M \rightarrow 0
$$

Following an idea of Ginzburg, consider the short exact sequence (1.5), from which follows the long exact sequence

$$
\begin{align*}
0 \rightarrow H_{N}^{1}(M) \rightarrow H^{1}(M) & \rightarrow H_{H}^{1}(M) \\
& \rightarrow H_{n}^{2}(M) \rightarrow H^{2}(M) \rightarrow H_{H}^{2}(M) \rightarrow \cdots \tag{1.6}
\end{align*}
$$

Ginzburg observed in certain important cases that $H_{N}^{i}(M)=0$, e.g., (M, H) is a contact manifold of dimension $2 r+1$; then $H_{H}^{k}(M)$ is isomorphic to $H^{k}(M)$ for $k=1, \ldots, r-1$ (see also Rumin [25]). We will generalize his result to certain 2-step generating subbundle H (cf. [27]). We first begin with:

Lemma 1.7. If every $x \in M$ admits a neighborhood U such that $H_{N}^{k}(U)=0$, $i=0,1, \ldots, r+1<n$, then $H^{k}(M)$ is isomorphic to $H_{H}^{k}(M), i=1, \ldots, r .7$

Proof. We have the commutative exact sequence

so

and by a standard argument (see Bott et al. [1]) we can prove the lemma.
Lemma 1.8. If at every $x \in M, H_{x}$ has non-degeneracy r, then $H_{N}^{1}(M)=$ $\cdots=H_{N}^{r}(M)=0$.

Proof. Fix a point $p \in M$, then there is a coordinate system $\left(x_{i}, y_{j}\right)$ and k 1 -forms $\omega_{1}, \ldots, \omega_{k}$ such that H is defined by $\omega_{1}=\cdots=\omega_{k}=0$, where

$$
\omega_{j}=d y_{j}-\sum a_{i l}^{j} x_{i} d x_{l}+O\left(|x|^{2}+|y|^{2}\right), \quad j=1, \ldots, k
$$

and

$$
d \omega_{j}=\theta^{j}+O\left(|x|^{1}+|y|^{1}\right), \quad j=1, \ldots, k
$$

Now let α_{s} be a closed s-form $(s \leq r)$ of the form $\sum f_{i} \wedge \omega_{i}+\sum g_{i} \wedge d \omega_{i}$. Then

$$
d \alpha_{r}=\sum d f_{i} \wedge \omega_{i}+\sum\left((-1)^{s-1} f_{i}+d g_{i}\right) \wedge d \omega
$$

hence by the assumption we have $(-1)^{s-1} f_{i}+d g_{i}=0 \bmod \{\omega\}$, where $\{\omega\}$ is the algebraic ideal generated by $\omega_{1}, \ldots, \omega_{k}$. Now we need only to prove that for an s-form $\alpha=\sum_{i_{1}<\cdots<i_{k}} f_{J} \wedge \omega_{i_{1}} \wedge \cdots \wedge \omega_{i k}, d \alpha=0$ iff $\alpha=0$. Here $J=\left(i_{1}, \ldots, i_{k}\right), f_{J}$ is an $(s-k)$-form $f_{J}=\sum h_{\left(j_{1}, j_{2}, \ldots, j_{s-k}\right)} d x_{j_{1}} \wedge d x_{j_{2}}$ $\wedge \cdots \wedge d x_{j_{s-k}}$. Now

$$
\begin{aligned}
d \alpha= & \sum d f_{J} \wedge \omega^{J}+\sum(-1)^{s-i} f_{I} \wedge d \omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{k}} \\
& +\cdots+\sum(-1)^{s-u-1} f_{I} \wedge \omega_{i_{1}} \wedge \cdots \wedge d \omega_{i_{u}} \wedge \omega_{i_{u+1}} \wedge \cdots \omega_{i_{s-k}}
\end{aligned}
$$

from which follows $\sum_{j \geq k} f_{(1,2, \ldots, k-1, j)} \wedge d \omega_{j}=0$. Again by the assumption that H has non-degeneracy $r \geq s$, we have $f_{(1,2, \ldots, k-1, j)}=0$. Similarly $f_{J}=0$ for any J. So the lemma is proved.

Corollary 1.9. Under the same condition as in Lemma 1.8, $H_{H}^{i}(M)=$ $H^{i}(M), i=1, \ldots, r-1$.

Before concluding this subsection, we look at the geometric meaning of the cohomology of H.

We say that a differentiable map $f: N \rightarrow M$ is horizontal if the pull back of H^{*} by $f, f^{*}\left(H^{*}\right)$ is zero. Such maps have appeared in various contexts, such as variations of Hodge structures (cf. Carlson and Toledo [3], Griffiths [10]).

Denote $I^{q}=[0,1] \times \cdots \times[0,1]$. Let $C_{q}(M)$ be the free abelian group generated by the q-singular cubes $f: I^{q} \rightarrow M$, and $C_{q, H}(M)$ be the subgroup generated by horizontal ones, and

$$
C(M)=\oplus C_{q}(M), \quad C_{H}(M)=\oplus C_{q, H}(M) .
$$

Define the k-th horizontal singular homology group by

$$
H_{q, H}(M)=\frac{\operatorname{ker} \delta^{q}}{\operatorname{Im} \delta^{q-1}}
$$

Here δ is the restriction of the boundary operators to $C_{H}(M)$. There is a well defined pairing between $H_{H}^{q}(M)$ and $H_{q, H}(M)$. Suppose that f represents a k-th horizontal singular homology, and ω represents a k-th horizontal cohomology, then define

$$
\begin{equation*}
\langle[f],[\omega]\rangle=\int_{f} \omega . \tag{1.7}
\end{equation*}
$$

Lemma 1.10. The pairing (1.7) is well defined.
Proof. Let ω^{\prime} (resp. f^{\prime}) represents the same element as ω (resp. f). So there is a horizontal k such that $f^{\prime}=f+\delta k$. Without loss of generality we assume that H is defined by $k 1$-forms $e_{1}=\cdots=e_{k}=0$ within the image of f, f^{\prime}, k. Then $\omega_{r}^{\prime}=\omega+\sum h_{i} \wedge e_{i}+g_{i} \wedge d e_{i}$,

$$
\begin{equation*}
\int_{f^{\prime}} \omega^{\prime}=\int_{f^{\prime}}\left(\omega^{\prime}-\omega\right)+\int_{f^{\prime}} \omega=\int_{f^{\prime}}\left(\omega^{\prime}-\omega\right)+\int_{k} d \omega+\int_{f} \omega . \tag{1.8}
\end{equation*}
$$

Now the first term above is

$$
\int_{f^{\prime}} h_{i} \wedge e_{i}+g_{i} \wedge d e_{i}=\int_{f^{\prime}} g_{i} \wedge d e_{i}=(-1)^{\operatorname{deg}\left(g_{i}\right)} \int_{f^{\prime}} d g_{i} \wedge e_{i}=0
$$

As for the second term in (1.8), note that by definition $d \omega$ can be written as $d \omega=\Sigma h_{i}^{\prime} \wedge e_{i}+g_{i}^{\prime} \wedge d e_{i}$, so

$$
\int_{k} d \omega=\int_{k} g_{i}^{\prime} \wedge d e_{i}=\int_{k} d g_{i}^{\prime} \wedge e_{i}-\left(\int_{f^{\prime}}-\int_{f}\right) g_{i}^{\prime} \wedge e_{i}=0
$$

Hence $\int_{i} \omega=\int_{f^{\prime}} \omega^{\prime}$.

Now by the result of Thom [28]: if (M, H) is a contact $(2 r+1)$-manifold, $H_{q, H}(M)$ is isomorphic to $H_{q}(M), r=0,1, \ldots, r-1$, we know that the pairing (1.7) is nondegenerate modulo torsion elements.

1.3. Characteristic classes for horizontal connections

Let V be a vector bundle over M, and $H^{*} \subset T^{*} M$ the subbundle dual to H. In this subsection we will study the geometric properties of a "horizontal connection" in which the connection is only defined for horizontal vector fields. In particular, partial connections associated with sub-Riemannian metrics are examples of horizontal connections. Our main goal here is to generalize the classical theory of connections (cf. Chern [4]) to horizontal connections.

Definition 1.2. A horizontal connection is a linear smooth map

$$
D: C^{\infty}(V) \rightarrow C^{\infty}\left(H^{*} \otimes V\right)
$$

which satisfies

$$
D(f s)=d_{H} f \otimes s+f D s, \quad f \in C^{\infty}(M), s \in C^{\infty}(H)
$$

Example 1. Let $T M=H \oplus K$ be a splitting, where K is a vector bundle over M, and let $p_{K}: T M \rightarrow K$ be the projection onto K. Define $D: C^{\infty}(V) \rightarrow$ $C^{\infty}\left(H^{*} \otimes V\right)$ by

$$
D s=\sum_{i} p_{K}\left[s, e_{i}\right] \otimes e^{i}, \quad s \in C^{\infty}(K)
$$

where e_{i} is a local frame for K. It is easy to see that D is a horizontal connection.

Example 2. If M is the total space of a fiber bundle $W \rightarrow M \rightarrow B$ and $\frac{H}{D}$ comes from a connection, and D_{B} is the Levi-Civita connection on B, and \bar{D} the horizontal lift of D_{B}, then define

$$
D s=\sum\left(\bar{D}_{e_{i}} s\right) \otimes e^{i}, s \in C^{\infty}(H)
$$

where e_{i} is an orthonormal frame for H. It is easy to verify that D is a horizontal connection.

Example 3. Let $D_{a} b, a \in H, b \in C^{\infty}(H)$, be a partial connection for the sub-Riemannian metric. Obviously the partial connection is an example of
horizontal connection. If an orthogonal frame e_{i} spans H, define a horizontal connection $D: C^{\infty}(H) \rightarrow C^{\infty}\left(H^{*} \otimes H\right)$ by

$$
\begin{equation*}
D s=\sum e^{i} \otimes D_{e_{i}}(s) \tag{1.9}
\end{equation*}
$$

where e^{i} are the dual frame of e_{i}. It is easy to check that (1.9) is well defined.
Now let D be a horizontal connection. Let $\left(s_{1}, \ldots, s_{k}\right)$ be a local frame for V. Write $s=\sum f_{i} s_{i}$, then

$$
D s=d_{H} f_{i} \otimes s_{i}+f_{i} \omega_{i j} \otimes s_{j}
$$

where $D s_{i}=\omega_{i j} \otimes s_{j}$, and $\omega_{i j} \in \Lambda_{H}^{1}(M)$. The connection 1-form relative to the local frame s_{i} is the matrix valued horizontal 1-form $\omega=\left(\omega_{i j}\right)$.

We choose another s^{\prime} frame for $V, s_{i}^{\prime}=h_{i j} s_{j}$. Let $h^{-1}=\left(h_{i j}\right)^{-1}$ represent the inverse matrix, then we compute:

$$
\omega^{\prime}=d_{H} h \cdot h^{-1}+h \omega h^{-1}
$$

We extend D to be a derivation mapping

$$
C^{\infty}\left(\wedge_{H}^{p}(M) \otimes V\right) \rightarrow C^{\infty}\left(\wedge_{H}^{p+1}(M) \otimes V\right)
$$

by

$$
D\left(\theta_{p} \otimes s\right)=d_{H} \theta \otimes s+(-1)^{p} \theta_{p} \wedge D s
$$

Then

$$
\begin{aligned}
D^{2}(f s) & =D\left(d_{H} f \otimes s+f D s\right) \\
& =d_{H}^{2} f \otimes s-d_{H} f \wedge D s+d_{H} f \wedge D s+f D^{2} s=f D^{2} s
\end{aligned}
$$

Let $D^{2}(s)\left(x_{0}\right)=\Omega\left(x_{0}\right) s\left(x_{0}\right) . \Omega$ will be called the curvature for the horizontal connection D. In terms of a local frame s_{i},

$$
\Omega=d_{H} \omega-\omega \wedge \omega
$$

If we change to another local frame, $s_{j}^{\prime}=h_{i j} s_{j}$, then $\Omega^{\prime}=h \Omega h^{-1}$.
We say $P: \operatorname{End}\left(C^{k}\right) \rightarrow C$ is an invariant polynomial mapping, if $P\left(h A h^{-1}\right)=P(A)$ for any $h \in G L\left(C^{k}\right)$. Define $P(D)=P(\Omega)$.

Theorem 1.11. Let P be an invariant polynomial mapping.
(a) $d_{H} P(D)=0$.
(b) Given two connection D_{0} and D_{1}, we can define a differential form $T P\left(D_{0}, D_{1}\right)$ so that

$$
P\left(D_{1}\right)-P\left(D_{0}\right)=d_{H}\left\{T P\left(D_{1}, D_{0}\right)\right\}
$$

Proof. Without loss of generality we assume that P is homogeneous of order k. Let $P\left(A_{1}, \ldots, A_{k}\right)$ denote the complete polarization of P, so $d P(A)=P(d A, A, \ldots, A)$. Note that this implies $d_{H} P(A)=$ $P\left(d_{H} A, A, \ldots, A\right)$.

Let $D_{i}^{\prime}: C^{\infty}(V) \rightarrow C^{\infty}\left(T^{*} M \times V\right), i=0,1$, be two connections such that $p_{H}\left(D_{i}^{\prime} s\right)=D_{i} s, i=0,1$, for $s \in C^{\infty}(V)$. Such connections exist at least locally. In fact, take a local frame s_{j} for $C^{\infty}(V)$, and let ω_{i} be the connection 1 -form for $D_{i}, i=0,1$. Now ω_{i} can also be considered as matrix-valued 1 -forms on M. Then let D_{i}^{\prime} be the connections whose connection 1-forms are ω_{i} respectively.

Now let Ω_{i}^{\prime} be the curvature of D_{i}^{\prime}. Then

$$
\begin{aligned}
p_{H}\left(\Omega_{i}^{\prime}\right) & =p_{H}\left(d \omega_{i}-\omega_{i} \wedge \omega_{i}\right) \\
& =d_{H} p_{H}\left(\omega_{i}\right)-p_{H}\left(\omega_{i}\right) \wedge p_{H}\left(\omega_{i}\right)=\Omega_{i}, \quad i=0,1
\end{aligned}
$$

Next let $D_{t}^{\prime}=t D_{1}^{\prime}+(1-t) D_{0}^{\prime}$ with the connection 1-form $\omega_{t}^{\prime}=\omega_{0}^{\prime}+t \theta^{\prime}$ where $\theta^{\prime}=\omega_{1}^{\prime}-\omega_{0}^{\prime}$.

Define $\operatorname{TP}\left(D_{1}^{\prime}, D_{0}^{\prime}\right)=k \int_{0}^{1} P\left(\theta^{\prime}, \Omega_{t}^{\prime}, \ldots, \Omega_{t}^{\prime}\right) d t$. Then, as is well known (cf. [4]),

$$
\begin{aligned}
d P\left(D_{i}^{\prime}\right) & =0, \quad i=0,1 \\
P\left(D_{1}^{\prime}\right)-P\left(D_{0}^{\prime}\right) & =d P\left(\theta^{\prime}, \Omega_{t}^{\prime}, \ldots, \Omega_{t}^{\prime}\right)
\end{aligned}
$$

Now

$$
d_{H} P\left(D_{i}\right)=p_{H}\left(d P\left(D_{i}^{\prime}\right)\right)=0
$$

and

$$
\begin{aligned}
P\left(D_{1}\right)-P\left(D_{0}\right) & =p_{H}\left(P\left(D_{1}^{\prime}\right)-P\left(D_{0}^{\prime}\right)\right)=p_{H}\left(d T P\left(D_{1}^{\prime}, D_{0}^{\prime}\right)\right) \\
& =d_{H}\left(p_{H}\left(\left\{T P\left(D_{1}^{\prime}, D_{0}^{\prime}\right)\right\}\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
p_{H}\left(T P\left(D_{1}^{\prime}, D_{0}^{\prime}\right)\right) & =p_{H}\left(\int_{0}^{1} P\left(\theta^{\prime}, \Omega_{t}^{\prime}, \ldots, \Omega_{t}^{\prime}\right) d t\right) \\
& =\int_{0}^{1} P\left(p_{H}\left(\theta^{\prime}\right), p_{H}\left(\Omega_{t}^{\prime}\right), \ldots, p_{H}\left(\Omega_{t}^{\prime}\right)\right) d t \\
& =\int_{0}^{1} P\left(\theta, \Omega_{t}, \ldots, \Omega_{t}\right) d t=T P\left(D_{1}, D_{0}\right)
\end{aligned}
$$

From the above proof we have:
Lemma 1.12. If $D^{\prime}: C^{\infty}(M) \rightarrow C^{\infty}\left(T^{*} M \otimes V\right)$ is a connection such that $p_{H}\left(D^{\prime} s\right)=D s, s \in C^{\infty}(V)$, and P is an invariant polynomial, then $p_{H}\left(P\left(D^{\prime}\right)\right)$ $=P(D)$.

If V is a complex vector bundle, then as in standard vector bundle theory [4], we define the total horizontal Chern class

$$
c(D)=\operatorname{det}\left(I+\frac{i}{2 \pi} \Omega\right)=c_{1}(D)+c_{2}(D)+\cdots
$$

where $c_{k}(D)$ is the $2 k$-form, called the k-th horizontal Chern class. Similarly, we define the total horizontal Chern character

$$
\operatorname{ch}(D)=\operatorname{Tr}(\exp (i \Omega / 2 \pi))
$$

If V is a real vector bundle with a fiberwise metric $\langle\cdot, \cdot\rangle_{V}$, then we say a horizontal connection D is sub-Riemannian if

$$
d\left\langle s_{1}, s_{2}\right\rangle_{V}=\left\langle D s_{1}, s_{2}\right\rangle_{V}+\left\langle s_{1}, D s_{2}\right\rangle_{V}, \quad s_{1}, s_{2} \in C^{\infty}(V)
$$

If D is a sub-Riemannian connection, we define the total horizontal Pontragin class as

$$
p(D)=\operatorname{det}\left(I+\frac{1}{2 \pi} \Omega\right)=p_{1}(D)+p_{2}(D)+\cdots
$$

where $p_{k}(D)$ is the $4 k$-form, called the k-th horizontal Pontragin class. Moreover, if the vector bundle V has even rank $2 r$, then one can define the Euler class $\left(\Omega=\left(\theta_{i j}\right)\right)$

$$
e(D)=\frac{(-1)^{r}}{2^{q} \pi^{r} r!} \sum \varepsilon_{i_{1 \ldots i 2 r}} \theta_{i_{1} i_{2}} \wedge \cdots \wedge \theta_{i_{2 r-1} i_{2 r}}
$$

Similarly one can define secondary invariants.
In the following we will let P be an invariant homogeneous polynomial of degree $4 k$.

Lemma 1.13. Let D_{τ} be a family of horizontal connections on V, let $\phi=\partial D_{\tau} / \partial \tau$ and

$$
V(\tau)=\int_{0}^{1} t^{k-1} P(\phi, \Omega(\tau), \Omega(\tau), \ldots, \Omega(\tau)) d t
$$

Then

$$
\begin{equation*}
\frac{\partial}{\partial \tau} T P\left(D_{\tau}, D_{0}\right)=k(k-1) d V(\tau)+h P(\phi, \Omega(\tau), \ldots, \Omega(\tau)) \tag{1.10}
\end{equation*}
$$

Proof. Suppose that $D_{\tau}^{\prime}: C^{\infty}(V) \rightarrow C^{\infty}(M \times V)$ is a connection such that $D_{\tau}(s)=p_{H}\left(D_{\tau}^{\prime} s\right), s \in \Gamma(V)$, and

$$
V^{\prime}(\tau)=\int_{0}^{1} t^{k-1} P\left(\phi^{\prime}, \Omega^{\prime}(\tau), \Omega^{\prime}(\tau), \ldots, \Omega^{\prime}(\tau)\right) d t
$$

where $\phi^{\prime}=\partial D_{\tau}^{\prime} / \partial \tau$ and $\Omega^{\prime}(\tau)$ is the curvature of D_{τ}^{\prime}. Then $V(\tau)=p_{H}\left(V^{\prime}(\tau)\right)$, and

$$
\begin{aligned}
\frac{\partial}{\partial \tau} T P\left(D_{\tau}, D_{0}\right)= & p_{H}\left(\frac{\partial}{\partial \tau} T P\left(D_{\tau}^{\prime}, D_{0}^{\prime}\right)\right) \\
= & p_{H}\left(k(k-1) d V^{\prime}(\tau)\right)+k P\left(\phi, \Omega^{\prime}(\tau), \ldots, \Omega^{\prime}(\tau)\right) \\
= & k(k-1) d_{H}\left(p_{H}\left(V^{\prime}(\tau)\right)\right) \\
& +k P\left(p_{H}(\phi), p_{H}\left(\Omega^{\prime}\right)(\tau), \ldots, p_{H}\left(\Omega^{\prime}\right)(\tau)\right)
\end{aligned}
$$

Observe that if $\omega^{\prime}(\tau)$ and $\Omega^{\prime}(\tau)$ are the connection 1-form and the curvature of D_{τ}^{\prime} respectively, then the connection 1-form for D_{τ} is $\omega(\tau)=$ $p_{H}\left(\omega^{\prime}(\tau)\right)$, and

$$
\Omega(\tau)=d_{H}\left(p_{H}\left(\omega^{\prime}(\tau)\right)\right)-p_{H}\left(\omega^{\prime}(\tau)\right) \wedge p_{H}\left(\omega^{\prime}(\tau)\right)=p_{H}\left(\Omega^{\prime}(\tau)\right)
$$

hence (1.10) is proved.
The next theorem follows immediately from the lemma.
Theorem 1.14. Let P be an invariant polynomial mapping. Let D_{τ} be a family of horizontal connections with curvatures $\Omega(\tau)$, which satisfy

$$
\begin{aligned}
p_{H}(P(\Omega(\tau), \ldots, \Omega(\tau))) & =0, \\
p_{H}\left(P\left(\frac{\partial D_{\tau}}{\partial \tau}, \Omega(\tau), \ldots, \Omega(\tau)\right)\right) & =0
\end{aligned}
$$

Then the horizontal cohomology class $\operatorname{TP}\left(D_{\tau}, D_{0}\right) \in H_{H}(M)$ is independent of τ.

1.4. Curvature for sub-Riemannian metrics

In this sub-section we will apply the results in $\S 1.3$ to sub-Riemannian metrics.

Let D be the partial connection associated with a splitting $T M=H \oplus K$. We have seen that the partial connection is an example of horizontal connection (see §1.3). Now we compute its curvature.

Let e_{i} be an orthonormal frame for H.
Theorem 1.15. Suppose that $\wedge_{H}^{2}(M)$ satisfies the condition (L). Then the curvature of the horizontal connection (1.19) can be expressed in terms of the partial curvature as follows:

$$
\begin{equation*}
\Omega s=\sum_{i<j} p_{H}\left(e^{i} \wedge e^{j} \otimes R\left(e_{i}, e_{j}\right) s\right) \tag{1.11}
\end{equation*}
$$

Moreover, if p_{k}, P_{k} are the k-th Pontragian class of $H \rightarrow M$ and k-th Pontragian polynomial respectively, then

$$
P_{k}(\Omega)=p_{H}\left(p_{k}\right)
$$

Proof. By the condition (L), we only need to prove (1.11) at a point x_{0}. Note that the right hand side of (1.11) is defined independent of a local frame e_{i}. So we need only to prove (1.11) for a local frame e_{i} normal at x_{0}. Now

$$
\left.\Omega s\left(x_{0}\right)=\sum p_{H}\left(d_{H} e^{i} \otimes D_{e_{i}} s\right)\left(x_{0}\right)+\sum_{i<j} e^{i} \wedge e^{j} \otimes R\left(e_{i}, e_{j}\right) s\left(x_{0}\right)\right)
$$

We need to prove $d e^{i}\left(e_{j}, e_{k}\right)\left(x_{0}\right)=0$. In fact,

$$
d e^{i}\left(e_{j}, e_{k}\right)=\frac{1}{2}\left(e_{j}\left(e^{i}\left(e_{k}\right)\right)-e_{k}\left(e^{i}\left(e_{j}\right)\right)-e^{i}\left(\left[e_{j}, e_{k}\right]\right)\right)\left(x_{0}\right)=0
$$

So $\left(d_{H} e^{i} \otimes D_{e_{i}} s\right)\left(x_{0}\right)=0$.
Remark. If I_{x} is generated by $\theta^{1}, \ldots, \theta^{k}$ which are orthonormal with respect to the inner product on $\Lambda^{2}(H)$,

$$
\theta^{r}=\sum_{i j} \theta_{i j}^{r} e^{i} \wedge e^{j}
$$

where e_{i} is an orthonormal frame for H, then (1.11) can be written as

$$
\Omega=\sum_{i j}\left(R\left(e_{i}, e_{j}\right)-\sum_{l k r} R\left(e_{l}, e_{k}\right) \theta_{l k}^{r} \theta_{i j}^{r}\right) \otimes e^{i} \wedge e^{j}
$$

So we see that

$$
\begin{equation*}
R\left(e_{i}, e_{j}\right)-\sum_{r} \sum_{l k} \theta_{l k}^{r} \theta_{i j}^{r} R\left(e_{l}, e_{k}\right) \tag{1.12}
\end{equation*}
$$

is a tensor. However, in view of the importance of (1.12), we will prove that (1.12) is a tensor without condition (L).

Lemma 1.16. (1.12) is a tensor.
Proof. In view of Lemma 1.2, we need only to prove that

$$
\begin{equation*}
\mu\left(e_{i}, e_{j}\right)-\sum_{r} \sum_{l k} \theta_{l k}^{r} \theta_{i j}^{r} \mu\left(e_{l}, e_{k}\right)=0 \tag{1.13}
\end{equation*}
$$

If H is given by 1 -forms $\omega_{1}=\cdots=\omega_{k}=0$, where

$$
d \omega_{i}=\theta^{i} \bmod \left(e^{j}\right)
$$

then $\left[e_{i}, e_{j}\right]=2 \sum_{r} \theta_{i j}^{r} n_{r} \bmod \left(e_{r}\right)$, where n_{r} is the dual vector field to ω_{r}. So

$$
\mu\left(e_{i}, e_{j}\right)=2 \sum_{r} \theta_{i j}^{r} n_{r}
$$

thus

$$
\begin{aligned}
\mu\left(e_{i}, e_{j}\right)-\sum_{r} \sum_{l k} \theta_{l k}^{r} \theta_{i j}^{r} \mu\left(e_{l}, e_{k}\right) & =2 \sum \theta_{i j}^{r} n_{r}-2 \sum_{r} \sum_{l k} \sum_{t} \theta_{l k}^{r} \theta_{i j}^{r} \theta_{l k}^{t} n_{t} \\
& =2 \sum \theta_{i j}^{r} n_{r}-2 \sum_{r} \sum_{l k} \sum_{t} \delta_{r t} \theta_{i j}^{r} n_{t}=0 .
\end{aligned}
$$

Now by the results in §1.3, we can express the horizontal Pontragin classes in terms of the 2-nd jets of the sub-Riemannian metric, moreover, if H is contact, the construction is canonical and the lower horizontal Pontragin classes are in fact the Pontragin classes of H (see Gromov [12], p. 65, for a related problem).

Define a tri-linear map $T: H \otimes H \otimes H \rightarrow H$ by

$$
T(x, y, z)=R(x, y) z-\sum \frac{1}{4}\left(\theta^{r}, \bar{x} \wedge \bar{y}\right)\left(\theta^{r}, e^{i} \wedge e^{j}\right) R\left(e_{i}, e_{j}\right) z
$$

Here \bar{x} denotes the dual of $x \in H$ in H^{*}.
Lemma 1.17. \quad Tis a well defined tensor.
Proof. Observe $\theta_{i j}^{r}=\left(\theta^{r}, e^{i} \wedge e^{j}\right) / 2$, expand $x=\left(x, e_{1}\right) e_{1}+\cdots+$ $\left(x, e_{m}\right) e_{m}$ and similarly expand y, and using Lemma 1.16, we prove the lemma.

2. The Hodge theory of $H^{1}(M)$ for degenerate metrics

The classical Hodge theorem says that on a Riemannian manifold the k-th de Rham cohomology group is isomorphic to the kernel of the Laplacian acting on k-forms. In this section we will generalize a part of the Hodge theorem to degenerate metrics (sub-Riemannian metrics).

Throughout this section, without loss of generality, we will work in the following setting. Let Q be a Riemannian metric on M which agrees with the sub-Riemannian metric (\cdot, \cdot) on $H, K=H^{\perp}$ be the subbundle orthogonal to H, and let D be the (unique) partial connection associated with the splitting $T M=H \oplus K$.
Q is called an extension of the sub-Riemannian metric. In general there is no canonical extension, however, if H is contact, there is a canonical way to extend the sub-Riemannian metric to a Riemannian metric on M : if α is the canonical 1 -form in (1.3), then we take Q such that α has norm 1, i.e.,

$$
Q(a+b, a+b)=d \alpha(a, J a)+(\alpha, b)^{2}, \quad a \in H, b \in K
$$

2.1. Main results

We first introduce some notations.
To begin with, let D^{Q} be the Levi Civita connection of (M, Q). The relation between the Levi Civita connection of Q and the partial connection of the sub-Riemannian metric is (cf. [9])

$$
\begin{equation*}
D_{a} b=\pi D_{a}^{Q} b, \quad a \in H, b \in C^{\infty}(H) \tag{2.1}
\end{equation*}
$$

where $\pi: T M \rightarrow H$ is the projection.
If ω_{1}, ω_{2} are two horizontal forms of the same degree, their inner product is

$$
\left(\omega_{1}, \omega_{2}\right)_{0}=\int_{M}\left(\omega_{1}, \omega_{2}\right)_{x} d v
$$

where $(\cdot, \cdot)_{x}$ is the inner product induced on $\Lambda\left(H_{x}\right)$. Define δ_{H} to be the dual of d_{H} with respect to (\cdot, \cdot), and define

$$
\Delta_{H}=d_{H} \delta_{H}+\delta_{H} d_{H}
$$

If $\omega \in \Lambda_{H}(M)$, its weighted Sobolev norm (cf. [24]) will be denoted by

$$
\|\omega\|_{1}^{2}=(\omega, \omega)_{1}=\int \sum_{i}\left(D_{e_{i}} \omega, D_{e_{i}} \omega\right) d v(x)
$$

where e_{i} is an orthonormal frame on H. In the following we suppose that I_{x} is generated by $\theta^{1}, \ldots, \theta^{k}$, which are orthonormal with respect to the induced inner product on $\wedge^{2}(H)$.

Lemma 2.1. If e_{i} is an orthonormal frame, y_{1}, \ldots, y_{k} is an orthonormal frame for $K=H^{\perp}$, then if ω is a horizontal 1-form or 2-form,

$$
\begin{align*}
d_{H} \omega & =\sum_{i} e^{i} \wedge D_{e_{i}} \omega-\sum\left(\theta^{r}, \sum_{i} e^{i} \wedge D_{e_{i}} \omega\right) \theta^{r} \tag{2.2}\\
\delta_{H} & =-\sum_{i} i\left(e_{i}\right) D_{e_{i}}-D^{0} \tag{2.3}
\end{align*}
$$

where D^{0} is the 0 -order operator

$$
\begin{equation*}
D^{0}=\sum_{j} p_{H}\left(i\left(y_{j}\right) D_{y j}^{Q}\right) \tag{2.4}
\end{equation*}
$$

Remark. $\quad D^{0}$ only depends on $d v, Q$, and K. In particular, if H is contact, then D^{0} is a canonically defined tensor, thus is another invariant of the sub-Riemannian metric.

Proof. Let $p_{1}: \wedge(M) \rightarrow \Lambda(H)$ and $p_{2}: \wedge(H) \rightarrow \Lambda_{H}(M)$ be the orthogonal projections respectively, then $p_{H}=p_{2} \circ p_{1}$ and define $\bar{d}=p_{1} d$. Then, using (2.1), we can rewrite \bar{d} as

$$
\begin{equation*}
\bar{d}=\sum_{i} e^{i} \wedge D_{e_{i}} \tag{2.5}
\end{equation*}
$$

thus when acting on horizontal 1-forms or 2-forms,

$$
d_{H} \omega=p_{2} \bar{d} \omega=\bar{d} \omega-\sum_{r}\left(\theta^{r}, \bar{d} \omega\right) \theta^{r}
$$

So (2.2) is proved. Now we compute δ_{H}. Let δ^{Q} be the adjoint of d with respect to Q,

$$
\begin{aligned}
\delta_{H} \omega & =p_{1} \delta^{Q} \omega \\
& =p_{1}\left(\sum i\left(e_{i}\right) D_{e i}^{Q} \omega+i\left(y_{i}\right) D_{y_{i}}^{Q} \omega\right) \\
& =\sum i\left(e_{i}\right) D_{e_{i}} \omega+p_{1}\left(i\left(y_{i}\right) D_{y_{i}}^{Q} \omega\right)
\end{aligned}
$$

Lemma 2.2. If for any $x, y \in C^{\infty}\left(H^{\perp}\right), D_{x}^{g} y \in C^{\infty}\left(H^{\perp}\right)$, then $D^{0}=0$.

Remark. If H^{\perp} is an integrable distribution (e.g., H is contact), then $D^{0}=0$ if every leaf of H^{\perp} is totally geodesic with respect to Q.

Lemma 2.3. If ω is a horizontal 1-form,

$$
\begin{align*}
-\Delta_{H}^{1} \omega= & \sum_{i} D_{e_{i}} D_{e_{i}} \omega-D_{D_{e_{i} e_{i}}} \omega+\sum_{i j} e^{i} \wedge i\left(e_{j}\right) R\left(D_{e_{i}}, D_{e_{i}}\right) \omega+D_{0} \sum_{i} e^{i} \wedge D_{e_{i}} \\
& +\sum_{i} e^{i} \wedge D_{e_{i}} D_{0} \omega-\sum_{r j} e_{j}\left(\theta^{r}, \sum_{i} e^{i} \wedge D_{e_{i}} \omega\right) i\left(e_{j}\right) \theta^{r} \\
& -\sum_{r}\left(\theta^{r}, \sum_{i} e^{i} \wedge D_{e_{i}} \omega\right) i\left(e_{j}\right) D_{e_{j}} \theta^{r} \tag{2.6}
\end{align*}
$$

Proof. Select an orthonormal frame e_{i} which is normal at $x_{0} \in M$. Using (2.5),

$$
\Delta_{H}^{1} \omega=(\bar{d} \delta+\delta \bar{d}) \omega-\delta\left(\sum\left(\bar{\omega}, \theta^{r}\right) \theta^{r}\right)
$$

The last term above is the last two terms in (2.6), while the first term above is easily seen to be equal to (cf. Wu [31])

$$
D_{e_{i}} D_{e_{i}} \omega-D_{D_{e_{i} i} e^{2}} \omega+\sum_{i j} e^{i} \wedge i\left(e_{j}\right) R\left(D_{e_{i}}, D_{e_{i}}\right) \omega+D_{0} \sum_{i} e^{i} \wedge D_{e_{i}}
$$

If M is the total space of a fiber bundle, then Δ_{H}^{1} takes a much simpler form

Corollary 2.4. If M is the total space of a fiber bundle $W \rightarrow M \rightarrow B$ over a Riemannian manifold with totally geodesic fibers, and the sub-Riemannian metric is the horizontal lifting of the Riemannian metric on B, then

$$
\begin{align*}
& -\Delta_{H}^{1} \omega=\sum_{i} D_{e_{i}} D_{e_{i}} \omega-D_{D_{e_{i}} e_{i}} \omega+\sum_{i j} e^{i} \wedge i\left(e_{j}\right) R\left(D_{e_{i}}, D_{e_{i}}\right) \omega \\
& -\sum_{r j} e_{j}\left(\theta^{r}, \sum_{i} e^{i} \wedge D_{e_{i}} \omega\right) i\left(e_{j}\right) \theta^{r}-\sum_{r}\left(\theta^{r}, \sum_{i} e^{i} \wedge D_{e_{i}} \omega\right) i\left(e_{j}\right) D_{e_{j}} \theta^{r} \tag{2.7}
\end{align*}
$$

where D is the horizontal lift of the Levi Civita connection on B.
To state our main result, we need to define some quantities associated with H. To begin with, suppose that I_{x} is generated by $\theta^{1}, \ldots, \theta^{k}$

$$
\theta^{r}=\sum_{i j} \theta_{i j}^{r} e^{i} \wedge e^{j}, \quad \theta_{i j}^{r}=-\theta_{j i}^{r}
$$

Without loss of generality we assume that they are orthonormal:

$$
\sum_{i j} \theta_{i j}^{s} \theta_{i j}^{t}=\delta_{s t}
$$

Define

$$
\begin{align*}
& \lambda_{1}(x)=\max \left|\sum_{r} \frac{2 \sum_{i j s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{s i}, u_{t j}\right)-\sum_{i j s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{s t}, u_{i j}\right)}{\sum_{s i}\left|u_{s i}\right|^{2}}\right| \tag{2.8}\\
& \lambda_{2}(x)=\max \left|\sum_{r u} \frac{\sum_{i j l k s t} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{s t}^{u} \theta_{i l}^{u}\left(u_{s j}, u_{t k}\right)}{\sum_{s i}\left|u_{s i}\right|^{2}}\right| \tag{2.9}
\end{align*}
$$

Lemma 2.5. $\quad \lambda_{1}(x), \lambda_{2}(x)$ only depend on I_{x} (and not on the choice of $\left.\theta^{1}, \ldots, \theta^{r}, e_{1}, \ldots, e_{n}\right)$.

Proof. We first prove that λ_{1}, λ_{2} are independent of e_{i}. Suppose that \bar{e}_{i} is another orthonormal frame, $e_{i}=\sum_{i_{1}} a_{i i_{1}} \bar{e}_{i_{1}}$; then we have

$$
\theta_{i j}^{r}=\sum_{i_{1} j_{1}} \bar{\theta}_{i_{1} j_{1}}^{r} a_{i_{1} i} a_{j_{1} j}
$$

Now define a transformation $u_{i j} \rightarrow \bar{u}_{i j}$ by $u_{i j}=\sum_{i_{1} j_{1}} \bar{u}_{i_{1} j_{1}} a_{i_{1} i} a_{j_{j} j}$, which is orthogonal with respect to $\sum_{s i}\left(u_{s i}, u_{s i}\right)$.

Now we compute the various terms in (2.8). The first term in (2.8) is

$$
\begin{aligned}
\sum \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{s i}, u_{t j}\right) & =\sum \bar{\theta}_{i_{1} j_{1}}^{r} a_{i_{1} i} a_{j_{1}} \bar{\theta}_{s_{1} t_{1}}^{r}\left(\bar{u}_{s_{2} i_{2}}, \bar{u}_{t_{2} j_{2}}\right) a_{s_{2} s} a_{i_{2} i} a_{t_{2} t} a_{j_{2} j} \\
& =\sum \theta_{i j}^{r} \bar{\theta}_{s t}^{r}\left(\bar{u}_{s i}, \bar{u}_{t j}\right)
\end{aligned}
$$

Similarly, we can prove that other terms are invariant under the transformations $e^{i} \rightarrow \bar{e}^{i}, u_{i j} \rightarrow \bar{u}_{i j}$. Hence (2.9) is independent of the choice of e_{i}. Next we prove that λ_{1}, λ_{2} are independent of the choice of θ^{i}. If $\theta^{i}=\Sigma_{j} b_{i r} \bar{\theta}^{r}$ where $\bar{\theta}^{r}$ is another orthogonal frame, then

$$
\sum \theta_{i j}^{r} \theta_{s t}^{r}=\sum b_{r r_{1}} b_{r_{r 2}} \overline{\boldsymbol{\theta}}_{i j}^{r_{1}} \bar{\theta}_{s t}^{r_{2}}=\sum \delta_{r_{1} r_{2}} \bar{\theta}_{i j}^{r_{1}} \overline{\boldsymbol{\theta}}_{s t}^{r_{2}}=\sum \bar{\theta}_{i j}^{r} \bar{\theta}_{s t}^{r},
$$

hence (2.8) is independent of the choice of $\boldsymbol{\theta}^{r}$. Similarly we can prove that (2.9) is independent of e^{i}, θ^{r}.

Theorem 2.6. If at every point $x \in M, 1-\lambda_{1}(x)-2 \lambda_{2}(x)>0$, then Δ_{H}^{1} is hypoelliptic.

Corollary 2.7. If H has non-degeneracy >0, and $1-\lambda_{1}(x)-2 \lambda_{2}(x)$ >0, then

$$
H^{1}(M)=\left\{\omega \in \wedge_{H}^{1}(M), d_{H} \omega=\delta_{H} \omega=0 .\right\}
$$

Now let us look at the case where H is a contact manifold, and we assume $\theta=\sum_{i} e^{i} \wedge e^{n+i} / n^{1 / 2}$. This sub-Riemannian metric is usually called an almost Heisenberg metric. Then we compute $\lambda_{1}<3 / 2 n, \lambda_{2} \leq 1 / 2 n^{2}$. Thus if $n>1,1-\lambda_{1}(x)-2 \lambda_{2}(x)>0$, so (compare [25]).

Corollary 2.8. If M is a $(2 n+1)$-dimensional almost Heisenberg manifold, $n>1$, then Δ_{H}^{1} is hypoelliptic.

2.2. The proof of Theorem 2.6

By definition, we need to prove that there is a positive $\delta_{0}>0$ such that

$$
\begin{equation*}
\left(\Delta_{H}^{1} \omega, \omega\right)_{0} \geq \delta_{0}(\omega, \omega)_{1}-N(\omega, \omega)_{0} \tag{2.10}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left(\Delta_{H}^{1} \omega, \omega\right) & =\left(d_{H} \omega, d_{H} \omega\right)_{0}+\left(\delta_{H} \omega, \delta_{H} \omega\right)_{0} \\
& =(\bar{d} \omega, \bar{d} \omega)_{0}-\sum\left(\bar{d} \omega, \theta^{r}\right)_{0}^{2}+\left(\delta_{H} \omega, \delta_{H} \omega\right)_{0} \\
& =\left(\left(\bar{d} \delta_{H}+\delta \bar{d}\right) \omega, \omega\right)_{0}-\sum_{r}\left(\bar{d} \omega, \theta^{r}\right)_{0}^{2} .
\end{aligned}
$$

Modulo a 0 -order operators, $\delta_{H}=\sum_{i} i\left(e_{i}\right) D_{e_{i}}$, hence modulo first order operators,

$$
\bar{d} \delta+\delta \bar{d}=\sum_{i} D_{e_{i}} D_{e_{i}}+\sum_{i j} e^{i} \wedge i\left(e_{i}\right) R\left(D_{e_{i}}, D_{e_{j}}\right)
$$

Let $\omega=\sum_{i} u_{i} e^{i}$. In what follows we will use O_{1} to denote a sum of terms of the form $\left(D_{i} u_{j}, u_{k}\right)_{0}$, which is bounded (for any positive $\varepsilon>0$) by

$$
\left|O_{1}(\omega)\right|_{0} \leq \varepsilon\|\omega\|_{1}^{2}+N_{\varepsilon}\|\omega\|_{0}^{2}
$$

Now we have

$$
\left(\theta^{r}, \bar{d} \omega\right)^{2}=\left(\sum_{i j} \theta_{i j}^{r} D_{e_{i}} u_{j}\right)^{2}+O_{1} .
$$

Thus

$$
\begin{align*}
\left(\Delta_{H} \omega, \omega\right)_{0}= & \sum_{i j}\left(D_{e_{i}} u_{i}, D_{e_{i}} u_{i}\right)+\sum_{i j}\left(R\left(D_{e_{i}}, D_{e_{j}}\right) u_{i}, u_{j}\right)_{0} \\
& -\sum_{r}\left(\sum_{i j} \theta_{i j}^{r} D_{e_{i}} u_{j}\right)_{0}^{2}+O_{1} . \tag{2.11}
\end{align*}
$$

By integration by parts the second term above is

$$
\begin{align*}
\sum_{i j}\left(R\left(D_{e_{i}}, D_{e_{j}}\right) u_{i}, u_{j}\right) & =\sum_{i j} \sum_{l k}\left(\theta_{l k}^{r} \theta_{i j}^{r} R\left(D_{e_{l}}, D_{e_{k}}\right) u_{i}, u_{j}\right)_{0}+O_{1} \\
& =2 \sum \theta_{l k}^{r} \theta_{i j}^{r}\left(D_{e_{l}} u_{i}, D_{e_{k}} u_{j}\right)_{0}+O_{1} \tag{2.12}
\end{align*}
$$

Here we have made use of the fact (cf. Lemma 1.16) that modulo 0 -order operators,

$$
\begin{equation*}
R\left(D_{e_{i}}, D_{e_{j}}\right)=\sum_{r} \sum_{l k} \theta_{l k}^{r} \theta_{i j}^{r} R\left(D_{e_{l}}, D_{e_{k}}\right) \tag{2.13}
\end{equation*}
$$

Now, using integration by parts repeatedly, the third term in (2.11) is

$$
\begin{align*}
\sum_{r}\left(\sum_{i j} D_{e_{i}} u_{j}\right)_{0}^{2}= & \sum_{i j k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(D_{e_{i}} u_{j}, D_{e_{l}} u_{k}\right)_{0} \\
= & \sum_{r f} \sum_{i j l k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(D_{e_{l}} u_{j}, D_{e_{i}} u_{k}\right)_{0} \\
& -\sum_{i j k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(R\left(D_{e_{i}}, D_{e_{l}}\right) u_{j}, u_{k}\right)_{0}+O_{1} \\
= & \sum_{r} \sum_{i j l k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(D_{e_{l}} u_{j}, D_{e_{i}} u_{k}\right)_{0} \\
& -\sum_{i j l k r u} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{i l}^{u} \theta_{s t}^{u}\left(R\left(D_{e_{s}}, D_{e_{t}}\right) u_{j}, u_{k}\right)_{0}+O_{1} \\
= & \sum_{r} \sum_{i j l k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(D_{e_{l}} u_{j}, D_{e_{i}} u_{k}\right)_{0} \\
& -\sum_{i j l k r u} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{i l}^{u} \theta_{s t}^{u}\left(D_{e_{s}} u_{j}, D_{e_{t}} u_{k}\right)_{0} \\
& +\sum_{i j l k r u} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{i l}^{u} \theta_{s t}^{u}\left(D_{e_{t}} u_{j}, D_{e_{s}} u_{k}\right)_{0}+O_{1} . \tag{2.14}
\end{align*}
$$

Here we have used (2.13) again. Inserting (2.12) and (2.14) into (2.11), we obtain

$$
\begin{aligned}
\left(\Delta_{H} \omega, \omega\right)_{0} \geq & \sum_{i j}\left(D_{e_{i}} u_{i}, D_{e_{i}} u_{i}\right)_{0}-2 \sum \theta_{l k}^{r} \theta_{i j}^{r}\left(D_{e_{l}} u_{i}, D_{e_{k}} u_{j}\right)_{0} \\
& +\sum_{r} \sum_{i j l k r} \theta_{i j}^{r} \theta_{l k}^{r}\left(D_{e_{l}} u_{j}, D_{e_{i}} u_{k}\right)_{0} \\
& -\sum_{i j l k r u} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{i l}^{u} \theta_{s t}^{u}\left(D_{e_{s}} u_{j}, D_{e_{t}} u_{k}\right)_{0} \\
& +\sum_{i j l k r u} \theta_{i j}^{r} \theta_{l k}^{r} \theta_{i l l}^{u} \theta_{s t}^{u}\left(D_{e_{t}} u_{j}, D_{e_{s}} u_{k}\right)_{0}+O_{1} \\
\geq & \left(1-\lambda_{1}-2 \lambda_{2}\right) \sum_{i j}\left(D_{e_{i}} u_{j}, D_{e_{i}} u_{j}\right)_{0}+O_{1}
\end{aligned}
$$

Hence we have proved (2.10).

3. Application: A vanishing theorem

In this section we will apply Theorem 2.6 to the case where M is the total space of a fiber bundle over a Lie group with a connection whose curvature is "almost left-invariant", showing that if the curvature satisfies certain inequalities, then the 1 -st Betti number of the total space must be zero. The novelty here is that no assumption on the fiber is made.

For the problem of finding a connection with prescribed curvature, in general very little is known. Weinstein [30] proved that a fat bundle is not flat. For the special case where M is the total space of a 3 -sphere bundle over the 4 -sphere, Derdzinski and Rigas [6], using the theory of self-dual connections, showed that if M is a fat bundle, then the fiber bundle must be the Hopf-fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$.

3.1. Vanishing theorem for a connection on M with prescribed curvature

In this subsection we will first state our main result of this section.
Let $W \rightarrow M \rightarrow G$ be a Riemannian submersion, where G is a Lie group with a left-invariant metric and fibers are totally geodesic. The horizontal bundle is obtained as follows: if K is the subbundle of M tangent to the
fibers, then $H=K^{\perp}$ is the orthogonal complement. Let e_{i} be a left invariant orthonormal frame for $T G$, then e_{i} can be lifted to be an orthonormal frame for H, which we still denote by e_{i}. Such an orthonormal frame on M will be called a lifted left invariant orthonormal frame.

Definition 3.1. We say that H has left invariant curvature if $\mu(\cdot, \cdot)$: $H \times H \rightarrow T M / H$ can be generated by $\theta^{1}, \ldots, \theta^{r}$, such that with respect to a lifted left invariant orthonormal frame e_{i} for H,

$$
\begin{equation*}
\theta^{r}=\sum_{i j} \theta_{i j}^{r} e^{i} \wedge e^{j} \tag{3.1}
\end{equation*}
$$

where $e_{k}\left(\theta_{i j}^{r}\right)=0$.

Remark. If H is Hörmander, then $\theta_{i j}^{r}$ is constant.
Without loss of generality we will assume that θ^{r} are orthonormal.
We first define some quantities associated with H and the left invariant metric on the Lie group G.

Let

$$
\begin{equation*}
D_{e_{i}} e_{j}=\sum_{i j} \Gamma_{i j}^{r} e_{r} \tag{3.2}
\end{equation*}
$$

In the following formula v, v_{l} will denote elements of g, the Lie algebra of $G, \omega=\sum_{i} u_{i} e^{i}$. Define

$$
\begin{align*}
R_{H}(\omega)= & \sum_{i j l k}\left(e^{i} \wedge i\left(e_{j}\right)\left(R\left(D_{e_{i}}, D_{e_{j}}\right)-\theta_{i j}^{r} \theta_{l k}^{r} R\left(D_{e_{l}}, D_{e_{k}}\right)\right) \omega, \omega\right) \\
& +\sum_{i j l m s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{l} \Gamma_{i l}^{j} \Gamma_{s m}^{t} u_{m}-u_{l} \Gamma_{i l}^{t} \Gamma_{s m}^{j} u_{m}\right) \\
& +\sum_{i j l k s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right) \Gamma_{m v}^{j}\left(u_{v}, u_{t}\right) \\
& +\sum_{i j l s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right)\left(\Gamma_{l m}^{j} u_{m}, u_{t}\right)-2 \sum_{i j k l m r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u} \Gamma_{l m}^{j} u_{m} \Gamma_{k v}^{t} u_{v} \tag{3.3}
\end{align*}
$$

and

$$
\left.\begin{gather*}
\gamma_{1}=\max _{\omega \neq 0} \frac{R_{H}(\omega)}{(\omega, \omega)}, \tag{3.4}\\
\beta_{1}(\phi)=\max \mid \\
\mid \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} D_{e_{l}}\left(e^{i} \wedge i\left(e_{j}\right)\right) v_{k}, v\right) \\
+\sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right) e^{i} \wedge i\left(e_{j}\right) v_{m}, v\right) \mid \tag{3.5}\\
\mid\left\{(1-\phi)(v, v)+\phi \sum_{l}\left(v_{l}, v_{l}\right)^{2}\right\}, \\
\beta_{2}(\phi)=\max \mid \sum_{i j k l m r s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left\{2 u_{l j} \Gamma_{k v}^{t} u_{v}+2 u_{k t} \Gamma_{l m}^{j} u_{m}\right\} \\
\\
-\sum_{i j l k r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right)\left(u_{m j}, u_{t}\right) \\
 \tag{3.6}\\
\left.-\sum_{i j l r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right) u_{l j}, u_{t}\right) \\
\\
\quad-\sum_{i j l s t r} \theta_{i j}^{r} \theta_{s t}^{r}\left\{\Gamma_{i l}^{j} u_{t} u_{s t}+\Gamma_{s l}^{t} u_{l} u_{i j}-\Gamma_{s l}^{t} u_{l} u_{s j}-\Gamma_{s l}^{j} u_{l} u_{i t}\right\}
\end{gather*} \right\rvert\,
$$

Here ϕ is a fixed number, $0<\phi<1$.
Lemma 3.1. $\quad \beta_{1}(\phi), \beta_{2}(\phi), \gamma_{1},(0<\phi<1)$ are independent of the choice of the left invariant frame e_{i}, θ^{j}.

Proof. The proof is similar to that of Lemma 2.5.
Theorem 3.2. If at every point H has non-degeneracy $r>0,1-\lambda_{1}-2 \lambda_{2}$ >0 and the following inequalities are satisfied for some $0<\phi<1$,

$$
\begin{align*}
1-\lambda_{1}-2 \lambda_{2}-\phi\left(\beta_{1}(\phi)+\beta_{2}(\phi)\right) & \geq 0 \tag{3.7}\\
\gamma_{1}-(1-\phi)\left(\beta_{1}(\phi)+\beta_{2}(\phi)\right) & \geq 0 \tag{3.8}
\end{align*}
$$

then $\operatorname{dim} H^{1}(M) \leq m$. Moreover, if the inequality (3.8) is strict, then $H^{1}(M)$ $=0$.

Remark 1. Note that no assumption on the fiber is made.
Remark 2. Δ_{H}^{1} acts on $\Lambda_{H}^{1}(M)$, the space of smooth cross-sections of H^{*}. Observe that $\Lambda_{H}^{1}(M)$ has a description independent of H : if $p_{1}: M \rightarrow B$
is the projection of the fiber bundle, then H^{*} can be identified with the pulled back bundle $p_{1}^{*} T^{*} B$, so $\Lambda_{H}^{1}(M)$ is the space of smooth cross-sections of $p_{1}^{*} T^{*} B$.

Remark 3. If H^{\prime} is a connection whose curvature is not left invariant but sufficiently close to the curvature of a left invariant connection H satisfying the conditions in Theorem 3.2, in particular, satisfying the strict inequality (3.8), then $H^{\prime}(M)=0$ (cf. Corollary 3.7).

Now we look at the simplest case.
Corollary 3.3. Let M be the total space a fiber bundle $W \rightarrow M \rightarrow T^{m}$ over a flat m-dimensional tori, H a connection on M with left invariant curvature satisfying $1-\lambda_{1}-2 \lambda_{2}>0$, then $\operatorname{dim} H^{1}(M) \leq m$.

Proof. In this case $\beta_{1}=\beta_{2}=0$, so the conclusion follows from Theorem 3.2.

3.2. Proof of Theorem $\mathbf{3 . 2}$

To prove the theorem, we need to compute $\left(\Delta_{H}^{1} \omega, \omega\right)$, which is quite involved.

Lemma 3.4. If ω is a horizontal 1-form,

$$
\begin{align*}
& \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right) R\left(D_{e_{l}}, D_{e_{k}}\right) \omega, \omega\right) \\
&=-2 \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right) D_{e_{k}} \omega, D_{e_{l}} \omega\right) \\
&-2 \sum_{i j k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} D_{e_{l}}\left(e^{i} \wedge i\left(e_{j}\right)\right) D_{e_{k}} \omega, \omega\right) \\
&-\sum_{i j l m k r}\left(\theta_{i j}^{r} \theta_{l k}^{r}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right) e^{i} \wedge i\left(e_{j}\right) D_{e_{m}} \omega, \omega\right) . \tag{3.9}
\end{align*}
$$

Proof. Using the integration by parts, we have

$$
\begin{aligned}
& \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right) R\left(D_{e_{l}}, D_{e_{k}}\right) \omega, \omega\right) \\
&=-2 \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right) D_{e_{k}} \omega, D_{e_{l}} \omega\right) \\
&-2 \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} D_{e_{l}}\left(e^{i} \wedge i\left(e_{j}\right)\right) D_{e_{k}} \omega, \omega\right) \\
&-\sum_{i j l m k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right)\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right) D_{e_{m}} \omega, \omega\right)
\end{aligned}
$$

In the following let $\omega=\sum_{i} u_{i} e^{i}, u_{i j}=e_{i}\left(u_{j}\right)+\sum_{l} \Gamma_{i l}^{j} u_{l}$, so $D_{e_{i}} \omega=\sum u_{i j} e^{j}$.

Lemma 3.5.

$$
\begin{aligned}
\sum_{r}\left(\theta^{r}, \bar{d} \omega\right)^{2}= & \int \sum_{i j s t r} \theta_{i j}^{r} \theta_{s t}^{r} u_{i t} u_{s j} \\
& +\int \sum_{i j k l m r s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left\{u_{l j} u_{k t}-2 u_{l j} \Gamma_{k v}^{t} u_{v}-2 u_{k t} \Gamma_{l m}^{j} u_{m}\right. \\
& \left.+2 \Gamma_{l m}^{j} u_{m} \Gamma_{k v}^{t} u_{v}\right\} \\
& +\int \sum_{i j l k s s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right)\left\{\left(u_{m j}, u_{t}\right)-\left(\Gamma_{m v}^{j} u_{v}, u_{t}\right)\right\} \\
& +\int \sum_{i j l s t r} \theta_{i j}^{r} \theta_{s t}^{r}\left\{\Gamma_{i l}^{j} u_{t} u_{s t}+\Gamma_{s l}^{t} u_{l} u_{i j}-\Gamma_{s l}^{t} u_{l} u_{s j}-\Gamma_{s l}^{j} u_{l} u_{i t}\right\} \\
& -\int \sum_{i j l m s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{l} \Gamma_{i l}^{j} \Gamma_{s m}^{t} u_{m}-u_{l} \Gamma_{i l}^{t} \Gamma_{s m}^{j} u_{m}\right)
\end{aligned}
$$

Proof. By definition,

$$
\begin{align*}
\sum_{r}\left(\theta^{r}, \bar{d} \omega\right)^{2}= & \int \theta_{i j}^{r} u_{i j} \theta_{s t}^{r} u_{s t} \\
= & \int \sum_{r i j s t}\left\{\theta_{i j}^{r} u_{i t} \theta_{s t}^{r} u_{s j}-\sum_{i j l m s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{l} \Gamma_{i l}^{j} \Gamma_{s m}^{t} u_{m}-u_{l} \Gamma_{i l}^{t} \Gamma_{s m}^{j} u_{m}\right)\right\} \\
& +\int \sum_{i j l s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{l} e_{s}\left(u_{t}\right) \Gamma_{i l}^{j}-u_{l} \Gamma_{i l}^{t} D_{e_{s}} u_{j}\right. \\
& \left.+u_{l} \Gamma_{s l}^{t} e_{i}\left(u_{j}\right)-u_{l} \Gamma_{s l}^{j} e_{i}\left(u_{t}\right)\right) \\
& +\int \sum_{i j r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(e_{i}\left(u_{j}\right) e_{s}\left(u_{t}\right)-e_{i}\left(u_{t}\right) e_{s}\left(u_{j}\right)\right) \\
= & I_{1}+I_{2}+I_{3} \tag{3.10}
\end{align*}
$$

The second term in (3.10) is

$$
I_{2}=\int \sum_{i j r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\mu\left(e_{i}, e_{s}\right) u_{j}, u_{t}\right)+\int \sum_{i j r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\pi\left[e_{i}, e_{s}\right] u_{j}, u_{t}\right)=I_{21}+I_{22}
$$

Using the formula

$$
\pi\left[e_{i}, e_{s}\right]=D_{e_{i}} e_{s}-D_{e_{s}} e_{i}=\sum_{l}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right) e_{l},
$$

we have

$$
\begin{equation*}
I_{22}=\int \sum_{i j l s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right)\left(u_{l j}, u_{t}\right)-\int \sum_{i j l s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right)\left(\Gamma_{l m}^{j} u_{m}, u_{t}\right) . \tag{3.11}
\end{equation*}
$$

On the other hand, using (1.13),

$$
\begin{align*}
I_{21}= & 2 \int \sum_{i j l k r s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(e_{l}\left(u_{j}\right), e_{k}\left(u_{t}\right)\right) \\
& -\int \sum_{i j l k s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\pi\left[e_{l}, e_{k}\right] u_{j}, u_{t}\right) \\
= & \int \sum_{i j k r s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right)\left(e_{m}\left(u_{j}\right)+\sum_{v} \Gamma_{m v}^{j} u_{v}, u_{t}\right) \\
& -\int \sum_{i j l k r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right)\left(\Gamma_{m v}^{j} u_{v}, u_{t}\right) \\
& +2 \int \sum_{i j l k r s t u m v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(u_{l j}, u_{k t}\right)-2 \int_{i j l m k r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(u_{l j}, \Gamma_{k v}^{t} u_{v}\right) \\
& -2 \int \sum_{i j l m k r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l m}^{j} u_{m}, u_{k t}\right) \\
& +2 \int \sum_{i j l m k r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l m}^{j} \Gamma_{k v}^{t} u_{m}, u_{v}\right) \tag{3.12}
\end{align*}
$$

Now we compute the third term in (3.10):

$$
\begin{array}{r}
I_{3}=\int \sum_{i j r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left\{u_{l} e_{s}\left(u_{t}\right) \Gamma_{i l}^{j}-u_{l} \Gamma_{i l}^{t} D_{e_{s}} u_{j}+u_{l} \Gamma_{s l}^{j} e_{i}\left(u_{j}\right)-u_{l} \Gamma_{s l}^{j} e_{i}\left(u_{t}\right)\right\} \\
=\int \sum_{i j r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left\{\left(u_{l}, u_{s t}\right) \Gamma_{i l}^{j}-\left(u_{l} \Gamma_{i l}^{t}, u_{s j}\right)+\left(u_{l} \Gamma_{s l}^{t}, u_{i j}\right)-\left(u_{l} \Gamma_{s l}^{j}, u_{i t}\right)\right\} \\
-\int \sum_{i j m r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left\{\left(\Gamma_{i l}^{j} u_{l}, \Gamma_{s m}^{t} u_{m}\right)-\left(\Gamma_{i l}^{t} u_{l}, \Gamma_{s m}^{j} u_{m}\right)+\left(\Gamma_{s l}^{t} u_{l}, \Gamma_{i m}^{j} u_{m}\right)\right. \\
\left.-\left(\Gamma_{s l}^{j} u_{l}, \Gamma_{i m}^{t} u_{m}\right)\right\} \tag{3.13}
\end{array}
$$

Insert (3.11), (3.12), (3.13) into (3.10), we prove the lemma.
Now we can write $\left(\Delta_{H}^{1}(\omega), \omega\right)$ explicitly.

Corollary 3.6. If $\omega=\sum u_{i} e^{i}$,

$$
\begin{aligned}
\left(\Delta_{H} \omega, \omega\right)= & (\omega, \omega)_{1}+\sum_{i j l k}\left(e ^ { i } \wedge i (e _ { j }) \left(\left(R\left(D_{e_{i}}, D_{e_{j}}\right)\right)\right.\right. \\
& \left.\left.\quad-\theta_{i j}^{r} \theta_{l k}^{r} R\left(D_{e_{l}}, D_{e_{k}}\right)\right) \omega, \omega\right) \\
& -2 \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} e^{i} \wedge i\left(e_{j}\right) D_{e_{k}} \omega, D_{e_{l}} \omega\right) \\
& -2 \sum_{i j l k r}\left(\theta_{i j}^{r} \theta_{l k}^{r} D_{e_{l}}\left(e^{i} \wedge i\left(e_{j}\right)\right) D_{e_{k}} \omega, \omega\right) \\
& -\sum_{i j l m k r}\left(\theta_{i j}^{r} \theta_{l k}^{r}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right) e^{i} \wedge i\left(e_{j}\right) D_{e_{m}} \omega, \omega\right)-\int \sum_{i j s t r} \theta_{i j}^{r} \theta_{s t}^{r} u_{i t} u_{s j} \\
& -\int \sum_{i j k l m r s t u} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left\{u_{l j} u_{k t}-2 u_{l j} \Gamma_{k v}^{t} u_{v}\right. \\
& \left.-2 u_{k t} \Gamma_{l m}^{j} u_{m}+2 \Gamma_{l m}^{j} u_{m} \Gamma_{k v}^{t} u_{v}\right\} \\
& -\int \sum_{i j l r s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i s}^{l}-\Gamma_{s i}^{l}\right)\left\{\left(u_{l j}, u_{t}\right)-\left(\Gamma_{l m}^{j} u_{m}, u_{t}\right)\right\} \\
& -\int \sum_{i j l r s t u v} \theta_{i j}^{r} \theta_{s t}^{r} \theta_{i s}^{u} \theta_{l k}^{u}\left(\Gamma_{l k}^{m}-\Gamma_{k l}^{m}\right)\left\{\left(u_{m j}, u_{t}\right)-\Gamma_{m v}^{j}\left(u_{v}, u_{t}\right)\right\} \\
& -\int \sum_{i j l s t r} \theta_{i j}^{r} \theta_{s t}^{r}\left(\Gamma_{i l}^{j} u_{l} u_{s t}+\Gamma_{s l}^{t} u_{l} u_{i j}-\Gamma_{s l}^{t} u_{l} u_{s j}-\Gamma_{s l}^{j} u_{l} u_{i t}\right\} \\
& +\int \sum_{i j l m s t} \theta_{i j}^{r} \theta_{s t}^{r}\left(u_{l} \Gamma_{i l}^{j} \Gamma_{s m}^{t} u_{m}-u_{l} \Gamma_{i l}^{t} \Gamma_{s m}^{j} u_{m}\right)
\end{aligned}
$$

The following inequality, which is an easy consequence of Corollary 3.6, will complete the proof of Theorem 3.2.

Corollary 3.7. We have the following inequality:

$$
\begin{aligned}
\left(\Delta_{H} \omega, \omega\right) \geq & \left(1-\lambda_{1}-2 \lambda_{2}-\phi\left(\beta_{1}(\phi)+\beta_{2}(\phi)\right)\right)(\omega, \omega)_{1} \\
& +\left(\gamma_{1}-(1-\phi)\left(\beta_{1}(\phi)+\beta_{2}(\phi)\right)\right)(\omega, \omega)_{0}
\end{aligned}
$$

References

1. R. Bott and L.W. Tu, Differential forms in algebraic topology, Springer-Verlag, New York, 1982.
2. R.W. Brockett, "Control theory and singular Riemannian geometry" in New Direction in Applied Mathematics (P.J. Hilton and G.S. Young eds.), Springer, New York, 1981, pp. 11-27.
3. J.A. Carlson and D. Toledo, Variations of Hodge structure, Legendre submanifolds and accessibility, Trans. Amer. Math. Soc., vol. 31 (1989), pp. 391-411.
4. S.S. Chern, Geometry of characteristic classes, Proceeding of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress., Canad. Math. Congress; Montreal, 1972, pp. 1-40.
5. A.G. Chernjakov, "Obstruction to the existence of the non-holonomic structure on a smooth manifold" in Topology and Geometry-Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer-Verlag, New York, 1988.
6. A. Derdzinski and A. Rigas, Unflat connection in 3-sphere bundles over S^{4}, Trans. Amer. Math. Soc., vol. 265 (1981), pp. 485-493.
7. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotent, Acta Math., vol. 139 (1977), pp. 85-153.
8. Zhong Ge, On horizontal paths spaces and Carnot-Carathéodory metrics, preprint.
9. \qquad , Collapsing Riemannian metrics to Carnot-Carathéodory metrics and Laplacians to sub-Laplacians, preprint.
10. P.A. Griffiths, Periods of integrals on algebraic manifolds, III., Publ. Math. I. H. E. S., vol. 38 (1970), pp. 125-180.
11. M. Gromov, Structures métriques pour les variétés Riemanniennes, Cedic, Paris, 1981.
12. \qquad , Partial differential relations, Springer-Verglag, New York, 1986.
13. U. Hamenstädt, On the geometry of Carnot-Carathéodory metrics, preprint.
14. A. El Kacimi et G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien pour un feuilletage riemannien, Ann. Inst. Fourier, vol. 36 (1986), pp. 207-227.
15. F. Kamber and P. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer, New York, 1975.
16. ___, "Foliations and metrics" in Differential Geometry, Progress in Math., vol. 32, R. Brooks, A. Gray, B.L. Reinhart, Birkhäuser, 1983.
17. __, De Rham-Hodge Theory for Riemannian Foliations, Math. Ann., vol. 277 (1987), pp. 415-431.
18. A. Korányı, Geometric properties of Heisenberg-type groups, Adv. in Math., vol. 56 (1985), pp. 28-38.
19. J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom., vol. 21 (1985), pp. 35-45.
20. R. Montgomery, Shortest loops with fixed holonomy, MSRI, preprint.
21. P. Pansu, Croissance des boules et des géodésique fermeés dans les nilvariétés, Ergodic Theory Dynamics Systems, vol. 3 (1983), pp. 441-443.
22. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., vol. 129 (1989), pp. 1-60.
23. B.L. Reinhart, Harmonic integrals on foliated manifolds, Amer. J. Math., vol. 81 (1959), pp. 529-536.
24. L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., vol. 137 (1976), pp. 247-320.
25. M. Rumin, Un complexe de formes differentielles sur les variétés de contact, C. R. Acad. Sci. Paris, t. 310 (1990), serie I., p. 401-404.
26. D.C. Spencer, "Remark on the perturbation of structure" in Analytical functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 67-87.
27. R. Strichartz, Sub-Riemannian geometry, J. Differential Geom., vol. 24 (1986), pp. 221-263.
28. R. Tном, Remarques sur les problems comportant des inequations différentielles globales, Bull. Soc. Math. France, vol. 87 (1959), pp. 455-461.
29. T. Taylor, Some aspects of differential geometry associated with hypoelliptic second order operators, Pacific J. Math., vol. 136 (1989), pp. 355-378.
30. A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math., vol. 37 (1980), pp. 239-250.
31. H. Wu, The Bochner technique, Proc. of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 2, Science Press, Beijing 1982.

University of Arizona
Tucson, Arizona

[^0]: Received September 18, 1990.
 1991 Mathematics Subject Classification. Primary 53C05; Secondary 58G05.

