
ILLINOIS JOURNAL OF MATHEMATICS
Volume 36, Number 3, Fall 1992

BETTI NUMBERS, CHARACTERISTIC CLASSES AND
SUB-RIEMANNIAN GEOMETRY

BY

ZHONG GE

Introduction

In this paper we will develop generalized characteristic classes and (a part
of) the Hodge theory in the context of degenerate metrics (called sub-
Riemannian metrics). As an application, we study topological obstructions to
putting a connection on a fiber bundle over a Riemmanian manifold with
prescribed curvature. The novelty in the application is that we make no
assumption on the geometry of the fiber.
Roughly speaking, a sub-Riemannian metric on a manifold M is a fiber-

wise metric on a subbundle H c TM satisfying H6rmander’s condition.
Associated with this metric is the distance between any two points, called
Carnot-Carath6odory distance, defined to be the minimum of the length
functional over the space of absolutely continuous curves tangent almost
everywhere to H and connecting the two points. This metric and the
corresponding distance have appeared in a number of different contexts (cf.
[2], [3], [71, [8], [9], [111, [13], [181, [201, [21], [22], [251, [271, [291).

In 1 we first study the geometry of sub-Riemannian metrics. In particular,
we generalize the GaussoBonnet-Chern type formulas to sub-Riemannian
metrics, showing that certain global invariants of the underlying distribution
(certain "horizontal cohomology classes") can be given by the data of the
sub-Riemannian metrics, in a slightly less canonical way in general. This
construction is canonical if H is contact.
One of the difficulties in the study of sub-Riemannian geometry is that so

far no intrinsic connection has been defined (cf. [27]) in general. However, if
we choose a complementary subbundle to H, we can develop an analogue of
the Levi-Civita connection, which enables us to parallel translate horizontal
tangent vectors along horizontal paths. This connection was encountered in
the study of collapsing of Riemannian metrics to sub-Riemannian metrics [9].
Similar connections in the context of principal bundles have been introduced
by Kamber and Tondeur (cf. [15], p. 14). However, unlike in the Riemannian
case, the curvature is not a tensor in the ordinary sense. In this paper we
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show that the curvature, modulo a differential ideal, is a tensor, and gives
rise, via the Chern-Weil homomorphism, to global characteristic classes
which are horizontal cohomology classes.
The global invariants of H here will be cohomology classes of a differential

complex associated with H. This differential complex is constructed as
follows. If H c TM, say, is locally defined by k 1-forms to tok 0,
then the differential ideal AN (M) C A (m) is locally generated by k 1-forms
to tok 0, then the differential ideal AN(M)c A(M) is locally
generated by tOa,..., to, dtoa,... dtok. Then the complex is the quotient
AH(M) A(M)/AN(M), with the induced exterior differentiation d/_/,
and the cohomology groups (to be called horizontal cohomology) is that of
the differential complex An(M). Though this cohomology group is easy to
define, until recently it has not been used much in geometry (see Rumin
[25]). Recently Ginzburg observed that if H is a contact distribution, then the
lower dimensional cohomology groups of An(M) are isomorphic to the
de Rham cohomology groups (interestingly enough, a similar result on the
homology level was in Thom [28]). In 1.2. we generalize his result to certain
2-step generating distributions (i.e., H + [H, H] TM).
Having developed the geometry of sub-Riemannian metrics, in 2 we will

develop a part of the Hodge theorem for sub-Riemannian metrics. To do
this, we assume that a volume form dv on M is given, in addition to the
sub-Riemannian metric. If H is contact, we can choose a canonical volume
form. Our main result in 2 is the proof of the hypoellipticity of AII_I duai4
+ and/_/ acting on A /(M) under certain explicit condition on the tangent
cone. Here some identities obtained in 1 play a fundamental role. Our
results are inspired by a result of Rumin [25] for the case where M is
pseudo-hermitian. Also recall that if H is integrable, then there is a har-
monic integration theory due to Kamber-Tondeur [16], [17], Reinhart [23],
and Kacimi-Hector [14]. So the results in this paper can be considered as
generalizations of a part of their results.
The generalization of the Hodge theorem to degenerate metrics seems

particularly suitable for the study of the problem of putting a connection on a
fiber bundle M over an Riemannian manifold with a prescribed curvature,
since the sub-Laplacian A)_/ has a relatively simple form in this case. As an
application of Theorem 2.1, in 3 we study the case where M is the total
space of a fiber bundle over a Lie group

WMG

with a given connection which has an "almost left invariant" curvature,
showing that if the curvature satisfies certain complicated but explicit in-
equalities, then the first Betti number of M must be zero (cf. Theorem 3.2
and the remarks following).
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I. Geometry of sub-Riemannian metrics and
generalized characteristics

1.1. Geometry of sub-Riemannian metrics

In this subsection we will recall some basic properties of sub-Riremannian
metrics and introduce a local invariant of the underlying distribution.

Let M be a connected, compact manifold, and H c TM a smooth subbun-
die of TM. A sub-Riemannian metric on M is a symmetric positive bilinear
form (.,.) on H, (.,.): H H - R. If H satisfies HOrmander’s condition,
there is a Carnot-Carath6odory distance between x, y M, defined to be

d(x, y) min (4/(t), 4/(t)) dt
"yfnM(x, Y)

Here On(x, y) is the space of horizontal paths connecting x, y.
An important class of sub-Riemannian metrics are constructed as follows:

suppose that M is the total space of a fiber bundle W M- B over a
Riemannian manifold, and H comes from a given connection, i.e., TM
H K where K is tangent to the fibers. Then define a sub-Riemannian
metric on M by horizontally lifting the Riemannian metric on B to H.
Now we introduce a local invariant of H which will play a most important

role in later developments. We will use a construction which is very similar to
the construction of a tangent cone (cf. [8], [9], [19], [24]). Let H H + [H, HI
be the subbundle of TM consisting of such elements c which locally can be
written as c b0 + b 1, b2 ], b0, b 1, b2 C(H). Then there is an antisym-
metric bilinear map/z(., )x: H H H1/H defined by

tx(a,b)x= [a,b] mo0(H). (1.1)

It is easy to verify that (1.1) is well defined.
Note that if M is the total space of a principle fiber bundle and H comes

from a connection, then/z is just the curvature of the connection.
Suppose that the vector bundle H1/H is of rank k 1, then /z(, )x is a

Rl-valued 2-form on Hx, thus determines k elements of A 2(Hx), which we
will denote by 01,..., 0 el. Thus we can write /z (01,..., 01) in a non-
canonical way. Let Ix(01,..., 01) be the exterior algebraic ideal in A(Hx)
generated by 01,..., 0 el. Sometimes we will write Ix(01,..., 01) simply as Ix.
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We say that H is of non-degeneracy r if - is the biggest number such that
for (r 1)-forms aa,..., akl on Hx,

a A 01 -- +akl A 0kl 0

unless a akl 0. Note that if H has non-degeneracy r > 0, then
the distribution H must be two-step bracket generating, i.e., H --H +
[H, H] TM.
We will prove that H has non-degeneracy r > 0 if H is strongly bracket

generating (cf. [27]), i.e. for any v Hx, v 4: O, the induced map H
TMx/Hx, v2 --, ix(v l, v2) is a submersion. If M is the total space of a fiber
bundle and H comes from a connection, then H is strongly bracket generat-
ing iff M is a fat bundle (Weinstein [30]).

LEMMA 1.1. If M is strongly bracket generating and (M, H) is not a
3-dimensional contact manifold, then H has non-degeneracy r > O.

Proof Assume otherwise, i.e., there are 1-forms al,...,akl which are
not all zero, such that

A 0kl 0 (1.2)a A 01 + +akl

Without loss of generality we assume that al,..., ak are linearly independent
at x M. Choose a coordinate system {xi} such that al dXl,..., akl drkl
at x. Write

oi E Ok dX A dg
k

lk

then from (1.2) at x we have

Ok dx A dXk O,
l>kl+l,k>kl+a

which is in contradiction with the fact that H is strongly bracket generating.

Remark. There are subbundles H which have non-degeneracy > 0 and
yet are not strongly bracket generating. For example, take (M, H) where
M R2n + 2, H is defined by two 1-forms

dz1 Xl dYl Xn dYnl dz2 Xnl+l dYnl+l x dy O.

Here (Xl, Yl,’’’, Xn, Yn, Z1, Z2) is a coordinate system on R2n+2, 2 < n _<
n 2. Then it is easy to see that H is not strongly bracket generating but yet
has non-degeneracy > 0.
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We recall the definition of partial connections, which is a generalization of
the Levi Civita connection to sub-Riemannian metrics (cf. [8], [9]). To define
such a partial connection, we need to choose a subbundle K in TM comple-
mentary to H, TM H K, and denote r: TM --, H the projection. Then a
bilinear map

(a,b) Hx Coo(H) - Dab Hx,

depending smoothly on x, is a partial connection if

(1) Da(fb ) < df, a > b + fDab a,b C(H), f Coo(M)

where ( ) is the dual bracket between T*M and TM.

(2) Da

(3)

b Dba =zr[a,b], a,b Coo(H),
a(b,c) (Dab, c ) + (b, Dac).

As an example, suppose that M is the total space of a fiber bundle
W M B over a Riemannian manifold and H comes from a connection
on the fiber bundle, then horizontally lifting the Levi-Civita connection on B
to H, we obtain a partial connection.

In [9] it is proved that for given H, K, and (.,.) on H, there exists a
unique partial connection.
An orthonormal frame e for H is normal at a given point xo M if

De.ei(xo) 0. In [9] it is proved that such a normal frame always exists. Note
that if e is normal at xo, ,n’[ei, ej](x0) 0.
The partial curvature of the partial connection is a trilinear map

defined by

R: Coo(H) Coo(H) Coo(H) Coo(H)

R( a, b)c DaDbC DbDaC D=[a, blC.

As the following result shows, unlike the curvature of the Levi-Civita
connection, R(a, b) is not a tensor in the "usual" sense.

LEMMA 1.2. Let a, b, c be smooth horizontal vector fields on M and f a
smooth function. Then

R(fa, b)c =fR(a,b)c, R(a,b)fc= (ix(a,b)f)c + fR(a,b)c.

For a proof see [8].
In general there is no partial connection and volume form canonically

associated with the sub-Riemannian metric. However, if H is a contact
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distribution, then there is a natural volume form dv and a complementary
bundle K to H defined as follows: let a be the 1-form such that a 0
defines H and

(x, y) da(x, Jy),x, y H, (1.3)

where J is an endmorphism of H such that det J 1. It is easy to see that
such a 1-form exists uniquely. Having determined a, then we define

K= {x, da(x, .) O} (1.4)

and dv a A (da)n. In this case the induced partial connection D will be
called the canonical partial connection of the sub-Riemannian metric.

1.2. Horizontal cohomology

In this subsection we will define global invariants of H, the cohomology
groups of H (also called horizontal cohomology groups), and study their
properties.

Let A(M) Ak (M) be the sheaf of smooth differential forms on M,
and AN (m) be the subsheaf consisting of w such that if H is locally defined
by k 1-forms Wl Dk O, then

O0 ( L A O0 at- gi A do)i)

where fi, g are smooth differential forms.
There is a natural filtration AN(M)= AkN(M), and d(Av(M))c

AkN+I(M). AN(M) is both an algebraic and a differential ideal of A(M).
The k-th vertical cohomology is defined by

ker dkuH[v(M)
Im dku-1

where dN AN (M) Av+I(M) is the restriction of the exterior differentia-
tion.

Let A/(M) be the quotient sheaf A(M)/AN(M), defined by the exact
sequence

0 --* AN(M) - A(M) --, AH(M) 0. (1.5)

An(M) has a natural filtration An(M) A(M), and a natural opera-
tor

dn dk/_/ Ak/_/(M) - Ak/_/+ 1(M)
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defined in the following way: if p/4" A (M) A/4 (M) is the projection,

di_iP/4( oo ) p/4( doo )

DEFINITION 1.1. The k-th cohomology ofH is

ker d
Im

Later on we will need the following technical condition: we say that
A(M) satisfies condition (L) if o A (M) satisfies w(x) 0 for every
x M (as a cross-section of A k(TM)) then w 0.

LEMMA 1.3. Suppose that H satisfies the following condition" there are

1-forms 1,..., ok, such that H is defined by o91 O)k 0 locally,
and dook + 1,..., dook can be uniquely written as

k kl
idtoj i= 1, k-kdOOkl+i E fj.t /k OOj q- E gj

j=l j=l

where f], g are smooth forms, then A2I_I (M) satisfies condition (L).

COROLLARY 1.4.
tion (L).

IfH is two-step generating, then A2 (M) satisfies condi-

Next we will determine the stalk of A (M) over x M, A TxM explic-
itly. Obviously if k 1 then A TxM Hx. However, for k > 2, A TxM is
not freely generated by Hx.

LEMMA 1.5. Suppose that the vector bundle H1/H is of rank k l, /z x
(01,..., ok). Then the stalk of A2H (M) over x M is

A2H T(M) A Z(Hx)/span(O1,...,Ok ).

Proof Select a subbundle V in TM which is complementary to H.
Suppose that Hx is spanned by el,... em, V spanned by bl,..., bk, and

em) c[j-----Cji.[ei, ej](x) Ecij(X)bl(X) mod(el

Then one can choose a local coordinate neighborhood {Xl,..., Xm, Yl,’’’, Yk}
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such that H is defined by o 0k 0, where

O(ydy cix dxj +

O(y2 + x2),

2 + X 2) 1 1 k 1"

1=kl + 1,...,k.

Here O(X 2 + y2) denotes a 1-form Eli dxi + Egj dyj, where fi O(x
f O(x 2 + y2). So

2 + y2),

i A dxj + O(lyl + Ixl) i 1 ka"
d(Dl

E Cij

O(lyl / Ixl), i k + 1,...,k

then it is easy to see that the lemma follows.

The above result can be easily generalized to k > 2,

LEMMA 1.6. The stalk of An(M) over x M is

AHT(M) A(Hx)/Ix(O1,...,Okl);

i.e., we have the exact sequence

O-/x A(H) -- AI_ITMO.
Following an idea of Ginzburg, consider the short exact sequence (1.5),

from which follows the long exact sequence

0 --> HNa(M) ---> Hi(M) --> HA(M)
--> H2( M) --> H2(M) --> HI(M) --> (1.6)

Ginzburg observed in certain important cases that Hv(M) 0, e.g., (M, H)
is a contact manifold of dimension 2r + 1; then H(M) is isomorphic to
Hk(M) for k 1,..., r- 1 (see also Rumin [25]). We will generalize his
result to certain 2-step generating subbundle H (cf. [27]). We first begin with:

LEMMA 1.7. If every x M admits a neighborhood U such that HN(U) O,
O, 1,..., r + 1 < n, then H(M) is isomorphic to H(M), 1,..., r.7

Proof We have the commutative exact sequence

o-- A (u u v) ---, A (u)

0----> AH(U V)-----> AH(U) (D

A(v) A(uv) o

A(v)----- A(u c v)----, 0
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and by a standard argument (see Bott et al. [1]) we can prove the lemma.

LEMMA 1.8. If at every x M, H has non-degeneracy r, then H(M)
Hk(M) O.

Proof Fix a point p M, then there is a coordinate system (Xi, yj) and k
1-forms Ol,..., wt: such that H is defined by o ot: 0, where

ooj dyj- Eaixi dx --[- O(Ix] 2 -[-- ly12), j 1,..., k,

and

d%.=OJ+O(lxl + lyll), j= 1,...,k.

Now let as be a closed s-form (s < r) of the form Efi A O0 -[" Eg A dooi.

Then

dogr E dfi A oo + E ((-1)s-lfi -F dgi) A dto,

hence by the assumption we have (-1)s-lfi + dg 0 mod{o}, where {w} is
the algebraic ideal generated by Wl,..., %. Now we need only to prove that
for an s-form a il < <ikfjA Oil A’’’A (.Oik dog =0iff og 0. Here
J (il,-.., it:), fy is an (s--k)-form fj Eh(jl, Js-,O djl / dj2
A A dXjs_kO NOW

dog E dfj A ’ + E(-1)-ih A dil A A aik

+ + E( 1)"-u-1h A (.Oil A A dogi. A O)iu+l A (.Dis_k

from which follows Ej>_kf(1, 2 k-l,j) A d%. 0. Again by the assumption
that H has non-degeneracy r >s, we have f(i,2 k-m,y) 0. Similarly
fj 0 for any J. So the lemma is proved.

COROLLARY 1.9. Under the same condition as in Lemma 1.8, H]_I(M)=
Hi(M), i= 1,..., r- 1.

Before concluding this subsection, we look at the geometric meaning of the
cohomology of H.
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We say that a differentiable map f: N M is horizontal if the pull back of
H* by f, f*(H*) is zero. Such maps have appeared in various contexts, such
as variations of Hodge structures (cf. Carlson and Toledo [3], Griffiths [10]).
Denote Iq [0, 1] ... [0, 1]. Let Cq(M) be the free abelian group

generated by the q-singular cubes f: Iq M, and Cq, H(M) be the subgroup
generated by horizontal ones, and

C(M) Cq(M), CH(M) Cq,H(M).

Define the k-th horizontal singular homology group by

ker 6q
Hq’H(M) Im ta-l"

Here is the restriction of the boundary operators to CH(M). There is a
well defined pairing between H/(M) and Hq, H(M). Suppose that f repre-
sents a k-th horizontal singular homology, and to represents a k-th horizon-
tal cohomology, then define

<[f], [to]> ffto. (1.7)

LEMMA 1.10. The pairing (1.7) is well defined.

Proof. Let to’ (resp. f’) represents the same element as to (resp. f). So
there is a horizontal k such that f’ f + 3k. Without loss of generality we
assume that H is defined by k 1-forms e ek 0 within the image
of f, f’, k. Then to’r to + Ehi A e + g A dei,

dto + . (1.8)

Now the first term above is

deg(gi)ff,hi A ei + gi A dei ff,gi A dei (-l) ff, dg A e O.

As for the second term in (1.8), note that by definition dto can be written as
dto Y’.h’ A e + g’ n dei, so

Hence fito fy’to’.
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Now by the result of Thom [28]: if (M, H) is a contact (2r + 1)-manifold,
Ha, H(M) is isomorphic to Ha(M), r 0, 1,...,r- 1, we know that the
pairing (1.7) is nondegenerate modulo torsion elements.

1.3. Characteristic classes for horizontal connections

Let V be a vector bundle over M, and H* c T*M the subbundle dual to
H. In this subsection we will study the geometric properties of a "horizontal
connection" in which the connection is only defined for horizontal vector
fields. In particular, partial connections associated with sub-Riemannian
metrics are examples of horizontal connections. Our main goal here is to
generalize the classical theory of connections (cf. Chern [4]) to horizontal
connections.

DEFINITION 1.2. A horizontal connection is a linear smooth map

which satisfies

D" C=(V) C=(H* (R) V)

D( fs) dHf (R) s + fDs, f C( M), s C=( H).

Example 1. Let TM H K be a splitting, where K is a vector bundle
over M, and let PK" TM --* K be the projection onto K. Define D" C=(V) -C=(H* (R) V)by

Ds EPK[ s, ei] (R) e i, s C( g),

where e is a local frame for K. It is easy to see that D is a horizontal
connection.

Example 2. If M is the total space of a fiber bundle W M B and H
comes from a connection, and DB is the Levi-Civita connection on B, and D
the horizontal lift of DB, then define

Os E (eiS) (R) ei, S C(H),

where e is an orthonormal frame for H. It is easy to verify that D is a
horizontal connection.

Example 3. Let Dab a H, b C=(H), be a partial connection for the
sub-Riemannian metric. Obviously the partial connection is an example of
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horizontal connection. If an orthogonal frame e spans H, define a horizontal
connection D" C=(H) C=(H* (R) H) by

Ds Ee (R) Oei(S), (1.9)

where e are the dual frame of ei. It is easy to check that (1.9) is well defined.
Now let D be a horizontal connection. Let (s1,..., sk) be a local frame for

V. Write s Efisi, then

Ds dnf (R) S -- fitoij (R) Sj

where Ds toij (R) Sj, and toij A/(M). The connection 1-form relative to
the local frame s is the matrix valued horizontal 1-form to (toij).
We choose another s’ frame for V, s hijsj. Let h -1 (hij) -1 represent

the inverse matrix, then we compute:

to’ dih h- + htoh- 1.

We extend D to be a derivation mapping

by

Then

C(A(M) (R) V) C(A/+I(M) (R) V)

D(Op (R) s) duO (R) s + (-1)op A Ds.

df (R) s di4f A Ds + di-if ADs + fD2s fD2s.
Let D2(s)(xo) -(Xo)S(Xo). [ will be called the curvature for the horizon-
tal connection D. In terms of a local frame si,- dHto to A to.

If we change to another local frame, s. hijsj, then fY= hfh -1.
We say P" End(Ck) C is an invariant polynomial mapping,

P(hAh -1) P(A) for any h GL(Ck). Define P(D) P(O).
if

THEOREM 1.11. Let P be an invariant polynomial mapping.
(a) di_iP(O) O.
(b) Given two connection DO and D1, we can define a differential form

TP(Do, D1) so that

P(D1) P(Do) dH(TP(D1, Do) }.
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Proof Without loss of generality we assume that P is homogeneous of
order k. Let P(A1,...,Ak) denote the complete polarization of P, so
dP(A) P(dA, A,...,A). Note that this implies dI_IP(A)
P(dI_IA, A, A).

Let D: C(V) COO(T*M V), 0, 1, be two connections such that
pz_i(Ds) Dis, 0, 1, for s C(V). Such connections exist at least lo-
cally. In fact, take a local frame s. for C(V), and let w be the connection
1-form for Di, 0, 1. Now tog can also be considered as matrix-valued
1-forms on M. Then let D be the connections whose connection 1-forms are
w respectively.
Now let ITi be the curvature of D. Then

dI-IPI4(wi) PI-I(ti) A PI-I(ti) i=0,1.

Next let D’ tD’ + (1 t)D’o with the connection 1-form to’t to + tO’
where 0’= W’l

Define TP(D’, D’o) kfP(O’, ITt, 12’) dt. Then, as is well known (cf.
[4]),

dP(D) =0, i=0,1;

p( D’x) p( D’o) dP( O’, lTt, ITt).

Now

di_iP( Di) PI_i(dP( D)) O,

and

P(D1) P(Do) pt_i(P(D’) P(D’o) ) PH(dTP(D’I, D’o))
di4(Pi_i({rn(D’, D)})).

On the other hand,

PI-I(TP( D’a, D’o) ) PH( folP( 0’, ’t, ’t) dt )
P(PI-I(O’) Pi_i(fYt) Pi_i(fY,)) dt

P(O,-t,...,t) dt TP(D1, Do).
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From the above proof we have:

LEMMA 1.12. If D" C=(M)- C=(T*M (R) V) is a connection such that
pz_t(D’s) Ds, s C=(V), and P is an invariant polynomial, then pI4(P(D’))

P(D).

If V is a complex vector bundle, then as in standard vector bundle theory
[4], we define the total horizontal Chern class

( )c(D) det I + --fl el(D) + c2(D) +

where ck(D) is the 2k-form, called the k-th horizontal Chern class. Similarly,
we define the total horizontal Chern character

ch(D) Tr(exp(il/2rr)).

If V is a real vector bundle with a fiberwise metric (.,
horizontal connection D is sub-Riemannian if

)v, then we say a

d(Sl, S2>v-- (OSl, S2>v+ (sl, Dsz)v, $1,$2 C(V).

If D is a sub-Riemannian connection, we define the total horizontal Pontra-
gin class as

( 1 )p(D) =det I+ ---fl =pa(D) +p2(D) + "",

where pk(D) is the 4k-form, called the k-th horizontal Pontragin class.
Moreover, if the vector bundle V has even rank 2r, then one can define the
Euler class (fl (Ou))

(-1)
e( D) .rr.---r _, e ,fl A A 0G_1,2

Similarly one can define secondary invariants.
In the following we will let P be an invariant homogeneous polynomial of

degree 4k.

LEMMA 1.13.
rb OD,/Oz and

Let D, be a family of horizontal connections on V, let

V(’) 1t-1p( b, n(’), n( ’),..., l)(’)) dt.
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Then

0
--TP(D,or DO) k(k 1) dV(r) + hP(ch, l)(’c),..., f(r)) (1.10)

Proof Suppose that D’" C(V) Coo(M V) is a connection such that
D(s) pt_z(D’s), s F(V), and

V’(r) foat*-lP(’,O’(r),a’(r),...,O’(r)) dt,

where th’ OD’/Oz and ’(r) is the curvature of D’. Then V(r) PH(V’(’r)),
and

(o ,)0
TP(D, Do) PH -r TP(D’, Do)O’r

=pH(k(k- 1)dV’(r)) + kP(6,a’(),...,a’(r)).
k(k 1)dH(PH(V’(’r)) )
+ kP(PH(6), PH( IT)( r),..., PH( IT)(’)).

Observe that if o/(r) and fY(r) are the connection 1-form and the
curvature of D’ respectively, then the connection 1-form for D is w(r)=
PH(w’(’)), and

12(’r) dH(PH( W’( r)) ) pH( W’( r)) /X pH( O0’(’C))

hence (1.10) is proved.
The next theorem follows immediately from the lemma.

THEOREM 1.14. Let P be an invariant polynomial mapping. Let D be a
family of horizontal connections with curvatures (z), which satisfy

p,(P(fl(),...,a())) o,

P/4 P =o.

Then the horizontal cohomology class TP(D, Do) HH(M) is independent
ofz.

1.4. Curvature for sub-Riemannian metrics

In this sub-section we will apply the results in 1.3 to sub-Riemannian
metrics.
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Let D be the partial connection associated with a splitting TM H K.
We have seen that the partial connection is an example of horizontal
connection (see {}1.3). Now we compute its curvature.

Let e be an orthonormal frame for H.

THEOREM 1.15. Suppose that AzI_I (M) satisfies the condition (L). Then the
curvature of the horizontal connection (1.19) can be expressed in terms of the
partial curvature as follows"

as

_
PH(e A e (R) R(e,, e)s). (1.11)

i<j

Moreover, ifpk, Pk are the k-th Pontragian class of H - M and k-th Pontra-
gian polynomial respectively, then

Pk(12 ) PI-I( Pk).

Proof By the condition (L), we only need to prove (1.11) at a point x0.

Note that the right hand side of (1.11) is defined independent of a local
frame ei. So we need only to prove (1.11) for a local frame e normal at x0.

Now

12S(Xo) -,PI-I(dI4 ei (R) OeiS)(Xo) + E ei A e (R) R(ei, ej)S(Xo) ).
i<j

We need to prove dei(e, ek)(xo) 0. In fact,

dei(ej, ek) 1/2(ej(ei(ek)) ek(ei(ej)) ei([ej, ek]))(X0) 0.

So (de (R) Des)(xo) O.

Remark. If Ix is generated by 01,..., 0k which are orthonormal with
respect to the inner product on A 2(H),

or E oirj ei A e,
ij

where e is an orthonormal frame for H, then (1.11) can be written as

e) _,R(el, ek)OlrkOirj) (R) e A e.
lkr

So we see that

R(ei, ej) E EOlrkO’R(el, ek)
r lk

(1.12)
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is a tensor. However, in view of the importance of (1.12), we will prove that
(1.12) is a tensor without condition (L).

LEMMA 1.16. (1.12) is a tensor.

Proof In view of Lemma 1.2, we need only to prove that

Ix(ei, ej)

_
E OfkOIx(e,, ek) 0. (1.13)
lk

If H is given by 1-forms 601 (.ok 0, where

doo 0 mod (ey)

then [ei, e] 2}2rO.n mod (er) where n is the dual vector field to 60 r. So

Ix( ei, ej) 2 _, O.nr;

thus

Ix( ei, e) _, _, OlrkOirjIx( el, ek) 2 _, oirjnr 2
Ik

E E E OlkOijOlknt
lk

2EO.nr- 2E E E’r,O’n, O.
r lk

Now by the results in 1.3, we can express the horizontal Pontragin classes
in terms of the 2-nd jets of the sub-Riemannian metric, moreover, if H is
contact, the construction is canonical and the lower horizontal Pontragin
classes are in fact the Pontragin classes of H (see Gromov [12], p. 65, for a
related problem).

Define a tri-linear map T" H (R) H (R) H H by

T(x, y,z) R(x, y)z E-(or, A )(Or, e A eJ)R(ei, ei)z.

Here denotes the dual of x H in H*.

LEMMA 1.17. T is a well defined tensor.

Proof Observe 0. (O r, e /k e)/2, expand x (x, el)e + +
(x, em)e and similarly expand y, and using Lemma 1.16, we prove the
lemma.
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2. The Hodge theory of HI(M) for degenerate metrics

The classical Hodge theorem says that on a Riemannian manifold the k-th
de Rham cohomology group is isomorphic to the kernel of the Laplacian
acting on k-forms. In this section we will generalize a part of the Hodge
theorem to degenerate metrics (sub-Riemannian metrics).
Throughout this section, without loss of generality, we will work in the

following setting. Let Q be a Riemannian metric on M which agrees with the
sub-Riemannian metric (.,.) on H, K H - be the subbundle orthogonal
to H, and let D be the (unique) partial connection associated with the
splitting TM H K.
Q is called an extension of the sub-Riemannian metric. In general there is

no canonical extension, however, if H is contact, there is a canonical way to
extend the sub-Riemannian metric to a Riemannian metric on M: if a is the
canonical 1-form in (1.3), then we take Q such that a has norm 1, i.e.,

Q(a +b,a +b) da(a Ja) + (a b) 2 aH,bK.

2.1. Main results

We first introduce some notations.
To begin with, let DQ be the Levi Civita connection of (M, Q). The

relation between the Levi Civita connection of Q and the partial connection
of the sub-Riemannian metric is (cf. [9])

Dab rcDaQb, a H, b C( H), (2.1)

where : TM ---> H is the projection.
If o 1, (.o 2 are two horizontal forms of the same degree, their inner product

is

(0)1’ 0)2)0 fM(0)1’ O)2)x dU

where (.,.)x is the inner product induced on A(Hx). Define 6/_/ to be the
dual of d/_/with respect to (.,.), and define

AI_I di46i_I + 6i_idu.

If o An(M), its weighted Sobolev norm (cf. [24])will be denoted by

I1o11] (, (.o)1 f _., (Dei, Dei) dv( x)
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where e is an orthonormal frame on H. In the following we suppose that I
is generated by 01,..., 0 h, which are orthonormal with respect to the induced
inner product on A 2(H).

LEMMA 2.1. If e is an orthonormal frame, Y 1,..., Y is an orthonormal
frame for K H , then if w is a horizontal 1-form or 2-form,

dHtO- Eei A DeitO- E (or, Eei A Deito)or, (2.2)

61_1 _i(ei)Dei- D, (2.3)

where DO is the O-order operator

DO ,p,(i(y.)D). (2.4)

Remark. Do only depends on dr, Q, and K. In particular, if H is contact,
then Do is a canonically defined tensor, thus is another invariant of the
sub-Riemannian metric.

Proof Let Pl" A (M) --. A (H) and/92" A (H) An (M) be the orthog-
onal projections respectively, then p/_/= P2 P and define d p d. Then,
using (2.1), we can rewrite d as

J= Eei/Oei (2.5)

thus when acting on horizontal 1-forms or 2-forms,

dH O0 --132 d-o) d-ok E( or o) ) Or.

So (2.2) is proved. Now we compute 6/4. Let 6Q be the adjoint of d with
respect to Q,

HO0 plQO0

p,( Ei( ei)DeOi w + i( Yi)Dw)
Ei(ei)Dew + p(i(Yi)Dw).

LEMMA 2.2. Iffor any x, y C=(H ), Dxgy C(H +/-), then DO O.
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Remark. If H +/- is an integrable distribution (e.g., H is contact), then
DO 0 if every leaf of H +/- is totally geodesic with respect to Q.

LEMMA 2.3. If to is a horizontal 1-form,

--A1Hto EOeiOeito ODeieito 4r _e A i(ej)R(Dei, Dei)to + Do_e A Dei
ij

+ Ee / DeiDoto Eej(Or, EeiA Deito)i(ej)Or
rj

--E ( Or, E ei /k Oeito)i(ej)Oe,Or" (2.6)

Proof
(2.5),

Select an orthonormal frame e which is normal at x0 M. Using

The last term above is the last two terms in (2.6), while the first term above is
easily seen to be equal to (cf. Wu [31])

OeiOeito ODeieito "-[- Ee A i(ej)R(Dei, Dei)to "4- DoEe A Dei.
ij

If M is the total space of a fiber bundle, then A/ takes a much simpler
form

COROLLARY 2.4. IfM is the total space of a fiber bundle W --, M --. B over
a Riemannian manifold with totally geodesic fibers, and the sub-Riemannian
metric is the horizontal lifting of the Riemannian metric on B, then

--A1Hto EDeiOeito ODeieito + Ee m i(ej)R(Oei, Dei)to
ij

or, E ei A Deito)i(ej)Or- E ( Or, E ei A Deito)i(ej)DeyOr, (2.7)

where D is the horizontal lift of the Levi Civita connection on B.
To state our main result, we need to define some quantities associated with

H. To begin with, suppose that I is generated by 01,..., 0k

O r--- EoiryeiAe
ij
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Without loss of generality we assume that they are orthonormal:

Define

/l(X) max E
Esilusil 2

2ijstO’Osrt( Usi, Utj) ijstOi;.Osrt( Ust, Uij)
(2.8)

Az(X ) max E Y’ijlkstOiO;kOsUtOiUl( usj’ utk)
(2.9)

LEMMA 2.5. AI(X),/2(X) only depend on Ix (and not on the choice of
01,...,Or, ea,...,en).

Proof We first prove that hi, h 2 are independent of ei. Suppose that i is
another orthonormal frame, e ilaiil.il; then we have

oirj E o-irlJlailiajlj.
ilJl

Now define a transformation Uij--> ij by Uij--ilJlliljlailiajlj, which is
orthogonal with respect to ]si(Usi Usi).
Now we compute the various terms in (2.8). The first term in (2.8) is

E OijO;t(Usi’ Utj) E --r --r )as2sai2iaOilJlailiajljOstl( Us2i t2J2 t2t aj2j

OijOst(lsi,tj )

Similarly, we can prove that other terms are invariant under the transforma-
tions e -- i, Ui --* --Uij. Hence (2.9) is independent of the choice of ei. Next
we prove_ that A1, A2 are independent of the choice of 0 i. If 0 ,jbir’
where 0 is another orthogonal frame, then

E OijOst E h "rl’r2
"rrl’rr2"iJ "st E rlr2Oij 0; E OijOst--r

hence (2.8) is independent of the choice of O Similarly we can prove that
(2.9) is independent of e i, O r.

THEOREM 2.6.
& hypoelliptic.

If at every point x M, 1 hl(X)- 2A2(x) > O, then AII_I
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COROLLARY 2.7.
> O, then

If H has non-degeneracy > O, and 1 h (x) 2h 2(x)

H(M) {w A(M), dHOO 8Hw 0.}

Now let us look at the case where H is a contact manifold, and we assume
0 Eiei/x en+i/nl/2. This sub-Riemannian metric is usually called an al-
most Heisenberg metric. Then we compute A < 3/2n, /2 1/2n2. Thus if
n > 1, 1 -/l(X) 2Az(X) > O, so (compare [25]).

COROLLARY 2.8. If M is a (2n + 1)-dimensional almost Heisenberg mani-
fold, n > 1, then A% is hypoelliptic.

2.2. The proof of Theorem 2.6

By definition, we need to prove that there is a positive t0 > 0 such that

Now

N(w,W)o. (2.10)

(A/w, w) (dHW, dHOO)o + (aHW, aHO0)O

(d-w,d-w)o- E(go,Or) +
2

+ Or)o.

Modulo a 0-order operators, t/_/
operators,

--Eii(ei)Dei hence modulo first order

d-- + EDeiDei + _,e A i(ei)R(De, De)
ij

Let o _,iUi ei. In what follows we will use O to denote a sum of terms of
the form (Diuj, Ug)o, which is bounded (for any positive e > 0) by

Now we have

2

E oirjDeiUj + 01"
ij
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Thus

(AH(’O, (’0)0 E (Deiui, De,Ui) "+" E (R(Dei, Dei)Ui, uj)0
ij ij

r Oj’DeiUj -[" 01" (2.11)
0

By integration by parts the second term above is

E (e(Dei, Dej)Ui, uj) E E (OlrkOiS"e(Del Oek)Ui, Uj)0 @ O1
ij ij lk

2 _, O,O.(De,ui, DekUj)0 q- 01 (2.12)

Here we have made use of the fact (cf. Lemma 1.16) that modulo 0-order
operators,

g(Dei Dej ) E E o,rko,5"R(De,, De,)"
lk

(2.13)

Now, using integration by parts repeatedly, the third term in (2.11) is

E oirjolrk(DeiUj, De,Uk)o
ijlkr

E E Oi;Olrk(DetUj, DeiUk)o
rf ijlkr

E oirjOlrk( R(Dei Del)U,, Uk )0 d" 01
ijlkr

E E O’O;k(DetUj, DeiUk)o
r ijlkr

Z Dr Dr Dul:lu

ijlkru

E oir,’o;,,(De,u ,Deiu,,)o
ijlkr

ijlkru

"+" E O’O;kOiUlOsUt( Detuj, DesUk)o "-I- 01
ijlkru

(2.14)
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Here we have used (2.13) again. Inserting (2.12) and (2.14) into (2.11), we
obtain

( AHOO, 00)0 >--" E (OeiUi, OeiUi)0
ij

2 E OlrkOirj(DetUi, De,Uj)0

q- E E O’Ok(OetUj, DeiUk)o
ijlkr

tr tutuE Oijt’lktilVst(DesUj, DetUk)0
ijlkru

"Jr E O’OlrkOiulOsut(OetUj, OesUk)0
+ 01

ijlkru

> (1 /’1- 2/2)E (Oeiblj, Oeilgj)o q" 01"
ij

Hence we have proved (2.10).

3. Application: A vanishing theorem

In this section we will apply Theorem 2.6 to the case where M is the total
space of a fiber bundle over a Lie group with a connection whose curvature is
"almost left-invariant", showing that if the curvature satisfies certain inequal-
ities, then the 1-st Betti number of the total space must be zero. The novelty
here is that no assumption on the fiber is made.
For the problem of finding a connection with prescribed curvature, in

general very little is known. Weinstein [30] proved that a fat bundle is not
fiat. For the special case where M is the total space of a 3-sphere bundle
over the 4-sphere, Derdzinski and Rigas [6], using the theory of self-dual
connections, showed that if M is a fat bundle, then the fiber bundle must be
the Hopf-fibration S3 - S7 S4.

3.1. Vanishing theorem for a connection on M with prescribed curvature

In this subsection we will first state our main result of this section.
Let W M G be a Riemannian submersion, where G is a Lie group

with a left-invariant metric and fibers are totally geodesic. The horizontal
bundle is obtained as follows: if K is the subbundle of M tangent to the
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fibers, then H K z is the orthogonal complement. Let e be a left invariant
orthonormal frame for TG, then e can be lifted to be an orthonormal frame
for H, which we still denote by ei. Such an orthonormal frame on M will be
called a lifted left invariant orthonormal frame.

DzFiria:iorq 3.1. We say that H has left invariant curvature if /x(.,. ):
H H TM/H can be generated by 01,..., 0 r, such that with respect to a

lifted left invariant orthonormal frame e for H,

or EO"ei /X e (3.1)
ij

where ek(Oi) O.

Remark. If H is H6rmander, then oirj is constant.
Without loss of generality we will assume that O are orthonormal.
We first define some quantities associated with H and the left invariant

metric on the Lie group G.
Let

Oeiej-- EFier. (3.2)
ij

In the following formula v, l) will denote elements of g, the Lie algebra of
G, oo Eiuie. Define

RH(OO ) (ei /X i(ei)(R(De
ijlk

Dey ) oirjOlrkR(Oel, Oek))Oo,

-[- E oirjOsrt(UlltsmUm UliFsJmUm)
ijlmst

E
ijlkrstu

oirjOsrtOiUsOlUk( Flrff Fif]) FJmu( Uv, ut)

-[" E oirj Osrt ( Fils
ijlrst

Flsi)(F/mUm,Ut) 2 E
ijklmrstuv

000 F u Foirj u u
st is lk lm m kvUv

(3.3)
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and

/3,() max

RH(W)
YI max,o.o (w, w)

2 (oiriotkDel(eiA i(ei))Vk,V
ijlkr

(3.4)

/32(h) max

+ E (O’O[k([’ln [’11) ei A i(el)Vm,V )
ijlkr

E O;’OsrtOisOrk{2UtiFZvUv + 2UktF/mUm}
ijklmrstu

E oirjOsrtOiUsOk(Flr- Fll)(Umj, Ut)
ijlkrstuv

iflrst

(3.5)

E oirjOsrt{/lUtUst -Jr- :lUlUij- ’:lUlUsj
iflstr

Here is a fixed number, 0 < < 1.

FlUlblit

(3.6)

LEMMA 3.1. 1(<), 2()), ’Y1, (0 < b < 1) are independent of the choice of
the left invariant frame ei, 0 j.

Proof The proof is similar to that of Lemma 2.5.

THEOREM 3.2. If at every point H has non-degeneracy r > 0, 1 hi 2A2
> 0 and the following inequalities are satisfied for some 0 < < 1,

1 a 2A 2 (/1() q- 2()) -- O, (3.7)
3/1- (1 t)(/l((/) ) -- /2(t/)) " 0, (3.8)

then dim Hi(M) <_ m. Moreover, if the inequality (3.8) is strict, then HI(M)
=0.

Remark 1. Note that no assumption on the fiber is made.

Remark 2. A acts on A IH (M), the space of smooth cross-sections of
H*. Observe that A (M) has a description independent of H: if Pl: M B
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is the projection of the fiber bundle, then H* can be identified with the
pulled back bundle pT’B, so A1/4 (M) is the space of smooth cross-sections
of pT*B.

Remark 3. If H’ is a connection whose curvature is not left invariant but
sufficiently close to the curvature of a left invariant connection H satisfying
the conditions in Theorem 3.2, in particular, satisfying the strict inequality
(3.8), then H’(M) 0 (cf. Corollary 3.7).
Now we look at the simplest case.

COROLLARY 3.3. Let M be the total space a fiber bundle W- M - T
over a fiat m-dimensional tori, H a connection on M with left invariant
curvature satisfying 1 A 2A 2 > 0, then dim Ha(M) < m.

Proof. In this case
rem 3.2.

J2--0, SO the conclusion follows from Theo-

3.2. Proof of Theorem 3.2

To prove the theorem, we need to compute (A%o), o9), which is quite
involved.

LEMMA 3.4. If oo is a horizontal 1-form,

E (oirjOlrkei A i(ej)R(Det Oe,)OO oo)
ijlkr

-2 E (oirjOlrk ei A i(ej)De,og, DelOo)
ijlkr

-2 (oirjOlrkDet(ei A i(ej))DeoO, oo
ijlkr

E (OirjOlr(Flr FII) ei A i(ej)DemOO oo).
ijlmkr

Proof. Using the integration by parts, we have

E (oirjOlrk ei A i(ej)R(Del De)OO
ijlkr

-2 E (oirjOlrk ei A i(e:)De,oO, OetoO )
iflkr

-2 _, (oirjOlrkDe(ei A i(ej))DektO, tO

ijlkr

(3.9)

E (oirjOlrk ei /k i(e:)(Ft" Fll)OemOO oo).
ijlmkr

In the following let o iuiei, blij ei(uj) + ElF/rut, SO OeioO }2uijej.
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LEMMA 3.5.

E ( Or, d(-o) 2 f E oirjOsrtuitUsj
ijstr

ijklmrstu
.( 2ut;FvOijOstOisOlk UljUkt U 2Uk FlJmUm

+ 2FlmUmFkvU

-]-f E oirj’OsrtOiusOlUk(Fl- F){(Umj, Ut) -(FJmvuv,Ut)}
ijlkrstu

j ,,.F:tu-k- f E oijOst(rilutUst-b Uij r:lulusj rTlUllit
ijlstr

f E oirjOsrt(ulF/lFtsmUm UlFi}FjmUm).
ijlmst

Proof By definition,

E ( Or, d(-O) 2 foL.uiO2Us,

f rijst(oirj it osrt lgsj E oirjOsrt(ulF/IF:mUm UlFiSFjmUm)}
ijlmst

+ f ,SE, oirjOsrt(Hles(Ut)F/l bllFi}OesUj

+UlFtslei(u]) UlFei(ut) )
+ f E oirjOsrt(ei(uj)es(Ut) ei(ut)es(U]))

ijrst

11 + I2 + 13. (3.10)

The second term in (3.10) is

f E OOft(t-t(ei, es)Uj, ut) + f E oirjOsrt(’n’[ei, es]Uj, ut) 121 -p I22"
ijrst ijrst

Using the formula

7r[ ei, es] Oeies Deei E (Fils FJi)et,
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we have

122: f E OiOsrt(Fils-- Flsi)(Ulj, lgt) f E OiOsrt(Fils- Flsi)(F/mlm,Ut)
ijlrst ijlrst

(3.11/

On the other hand, using (1.13),

I2 2f E OiSOsrtOiUsOlUk(el(Uj), ek(Ut))
ijlkrstu

f E oirjOsrtOiUsOlUk(’n’[el, ek]Uj, Ut)
ijlkrstu

f E Oi;’OsrtOiusOlUk(Flr- FII)
ijlkrstu

em(Uj) + E FJmvUv, U t)
u

ijlkrstuv
Oi;.OsrtOiusOlUk( Flr 1-’ff])(FmJvg/v, ut)

+2f 2 oirjoro’U,sOf(U,,U,) 2f E
ijlkrstumv ijlmkrstuv

or. ifl t71.u (tj"st’tsOlk Ulj, F]cvRv

-2f E
(jlmkrstuv

oirjOsrtOiUsOlUk( F/mU Ukt )

+ 2f E OijOsrtOiUsOk( FlmFkvUm,Uv)" (3.121
iflmkrstuv

Now we compute the third term in (3.10):

I3 f E Oi;’Osrt{lgles(Ut)F/l UlFi}De,Uj + UlFlei(uj) ulFei(ut)}
ijrst

f E OiO;t((gll, Ust)F/l- (Ulri,tlsj) nt- (UlFtsl, lgij)- (lglFsJl, uit)}
ijrst

f g OijOst{(FilUl, FtsmUm) (Fi}Ul, F/mUm) -t- (Ftslul, F/mUm)
ijmrst

-(Fu/, FitmUm)} (3.13)

Insert (3.11), (3.12), (3.13) into (3.10), we prove the lemma.
Now we can write (AIH(tO), to) explicitly.
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COROLLARY 3.6. If to Euie’

(AHW, to) (to, to) + (e A i(ej)((R(De De))
ijlk

--OiS’O;kR(Oel, Oek))(A), (-10)
2 E (oirjOlrk ei /k i(ej)OektO OettO )

ijlkr

2 (oirjOlrkOe,(ei/k i(e,))Dew, to)
iflkr

E ( oirjOlrk ( lr ’ll ) e / ( e ) Oemt to) f E OiS" Osrt U U

iflmkr ijstr

f E oirjOsrtOiUsOluk{UljUkt 2Ulj[’vUv
ijklmrstu

2blktFlmU -+- 2l imUml kvU v’,

f E oirjOsrt(ils- :i){(Ulj, Ut)
ijlrst

E oirj’OsrtOiUsOlUk(’ln- 7l){(Umj, Ut) [’Jmv(Uv,Ut)}
iflrstuv

rj _:lu _sJlUf E OijOst{ilUlUst-Jr- :lUlUij lUsj lUit
ijlstr

"+ f E OiS’Osrt(Ul’l’:mUm Ul[’i’Jmlgm)"
ijlmst

The following inequality, which is an easy consequence of Corollary 3.6,
will complete the proof of Theorem 3.2.

COROLLARY 3.7. We have the following inequality"

(AHW, W ) > (1 A,- 2A2 (J1() "" J2() ))( (- (-)1

+(T- (1 b)(/3,(b) +



402 ZI-IONG GZ

REFERENCES

1. R. Boa-a" and L.W. Tt, Differential forms in algebraic topology, Springer-Verlag, New York,
1982.

2. R.W. BROCI,:Ea’r, "Control theory and singular Riemannian geometry" in New Direction in
Applied Mathematics (P.J. Hilton and G.S. Young eds.), Springer, New York, 1981,
pp. 11-27.

3. J.A. CARLSON and D. TOLEDO, Variations of Hodge structure, Legendre submanifolds and
accessibility, Trans. Amer. Math. Soc., vol. 31 (1989), pp. 391-411.

4. S.S. CHERN, Geometry of characteristic classes, Proceeding of the Thirteenth Biennial
Seminar of the Canadian Mathematical Congress., Canad. Math. Congress; Mon-
treal, 1972, pp. 1-40.

5. A.G. CHERNJAI,:OV, "Obstruction to the existence of the non-holonomic structure on a
smooth manifold" in Topology and Geometry-Rohlin Seminar, Lecture Notes in
Math., vol. 1346, Springer-Verlag, New York, 1988.

6. A. DERDZNSI,a and A. RIGAS, Unflat connection in 3-sphere bundles over S4, Trans. Amer.
Math. Soc., vol. 265 (1981), pp. 485-493.

7. B. GAVEAt, Principe de moindre action, propagation de la chaleur et estimes sous-elliptiques
sur certains groupes nilpotent, Acta Math., vol. 139 (1977), pp. 85-153.

8. ZHONG GE, On horizontal paths spaces and Carnot-Carathodory metrics, preprint.
9. Collapsing Riemannian metrics to Carnot-Carathodory metrics and Laplacians to

sub-Laplacians, preprint.
10. P.A. GRIFFIa’HS, Periods of integrals on algebraic manifolds, IlL, Publ. Math. I. H. E. S., vol.

38 (1970), pp. 125-180.
11. M. GROMOV, Structures mtriques pour les varits Riemanniennes, Cedic, Paris, 1981.
12. Partial differential relations, Springer-Verglag, New York, 1986.
13. U. HAMENSrXD% On the geometry of Carnot-CarathYodory metrics, preprint.
14. A. EL KACII et G. HECa:OR, Dcomposition de Hodge basique pour un feuilletage riemannien

pour un feuilletage riemannien, Ann. Inst. Fourier, vol. 36 (1986), pp. 207-227.
15. F. KABER and P. TONDEtR, Foliated bundles and characteristic classes, Lecture Notes in

Math., vol. 493, Springer, New York, 1975.
16. "Foliations and metrics" in Differential Geometry, Progress in Math., vol. 32, R.

Brooks, A. Gray, B.L. Reinhart, Birkh/iuser, 1983.
17. De Rham-Hodge Theory for Riemannian Foliations, Math. Ann., vol. 277 (1987), pp.

415-431.
18. A. KORXNI, Geometric properties of Heisenberg-type groups, Adv. in Math., vol. 56 (1985),

pp. 28-38.
19. J. MIa’CHELL, On Carnot-Carathodory metrics, J. Differential Geom., vol. 21 (1985), pp.

35-45.
20. R. MONa’OERV, Shortest loops with fixed holonomy, MSRI, preprint.
21. P. PANSt, Croissance des boules et des g6od6sique ferme6s dans les nilvari6t6s, Ergodic

Theory Dynamics Systems, vol. 3 (1983), pp. 441-443.
22. P. PANSt, Mtriques de Carnot-Carathodory et quasiisomtries des espaces symtriques de

rang un, Ann. of Math., vol. 129 (1989), pp. 1-60.
23. B.L. RENHARa’, Harmonic integrals on foliated manifolds, Amer. J. Math., vol. 81 (1959), pp.

529-536.
24. L. ROa’HSCHILD and E. S:EIN, Hypoelliptic differential operators and nilpotent groups, Acta

Math., vol. 137 (1976), pp. 247-320.
25. M. RtJMN, Un complexe de formes differentielles sur les varits de contact, C. R. Acad. Sci.

Paris, t.310 (1990), serie I., p. 401-404.
26. D.C. SPENCER, "Remark on the perturbation of structure" in Analytical functions, Princeton

Univ. Press, Princeton, N.J., 1960, pp. 67-87.



CHARACTERISTIC CLASSES 403

27. R. STRICHARTZ, Sub-Riemannian geometry, J. Differential Geom., vol. 24 (1986), pp. 221-263.
28. R. THOM, Remarques sur les problems comportant des inequations diffrentielles globales, Bull.

Soc. Math. France, vol. 87 (1959), pp. 455-461.
29. T. TAYLOR, Some aspects of differential geometry associated with hypoelliptic second order

operators, Pacific J. Math., vol. 136 (1989), pp. 355-378.
30. A. WEINSTEIN, Fat bundles and symplectic manifolds, Adv. in Math., vol. 37 (1980), pp.

239-250.
31. H. Wt, The Bochner technique, Proc. of the 1980 Beijing Symposium on Differential

Geometry and Differential Equations, vol. 2, Science Press, Beijing 1982.

UNIVERSITY OF ARIZONA
TUCSON, ARIZONA


