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COPULAS AND MARKOV PROCESSES

BY

WILLIAM F. DARSOW, BAO NGUYEN AND ELWOOD T. OLSEN

1. Introduction

In this paper we study Markov processes using the copulas of A. Sklar
[1], [2]. A 2-copula is a function C: [0, 1]2 -- [0, 1] satisfying:

(i) (Boundary conditions)

and

C(0, x2) C(Xl, 0) 0 for all Xl, x2 [0, 1]

C(Xl, 1) x and C(1, X2) X2 for all Xl, X2 [0, 1].

(ii) (Monotonicity condition)

C(Xl, x2) + C( y,, Y2) C(Xl, Y2) C( Yl, x2) > 0

for all Xl, x2, Yl, Y2 [0, 1] satisfying x _< Yl and x2 < Y2"

These conditions imply the continuity of C. Copulas are of interest because
they link joint distributions to one-dimensional marginal distributions. Sklar
showed that for any real valued random variables X and X2 with joint
distribution F12 there is a copula C such that

(1.1) F12(Xl, X2) C(FI(Xl),F2(x2) )

where F and F2 denote the cumulative distribution functions of X and X2
respectively. The copula C is said to connect XI and X2 or to be a copula of
X and X2. In the other direction, for any distribution functions F and F2
and any copula C, the function defined on the right hand side of (1.1) is a two
dimensional distribution whose margins are F and F2. Copulas thus capture
all of the information concerning the dependence structure of random
variables irrespective of their distributions and so provide a natural frame-
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work for many investigations. Here, we make use of copulas to investigate a
certain type of dependence structure--the conditional independence condi-
tion satisfied by random variables in a Markov process.

If the random variables X and X2 are continuous with joint distribution

F12 then the copula C is uniquely determined by (1.1). If, however, the
random variables are not continuous, the copula C is not unique; in this case,
the values of the copula are uniquely determined at points (x a, x 2) where xk
is in the range of Fk, k 1, 2, and a copula C for which the expression
above holds can be obtained by interpolating the values at these points in any
manner consistent with the defining properties of a copula. Interpolation
which is linear in each place ("bilinear interpolation")works, and we adopt
the convention that bilinear interpolation is always used to fill in values at
other points. With this convention, we can refer to the copula of X and X2.

For rn > 3 an m-copula is a function C: [0, 1] -+ [0, 1] satisfying:

(i) (Boundary conditions)
(a) C(xa,..., xi_a,O, xi+a,..., Xm) 0 for all and for all Xa,..., Xm;
(b) The function

(Xl,...,Xi_l, Xi+ 1, Xm) "-) C(Xl,...,Xi_l,l, Xi+l,...,Xm)

is an (m 1)-copula for all i.

(ii) (Monotonicity condition)

E sgn(V)C(V) > 0
VR

for all rectangles R of the form R I-I’= l[Xi, Yi], Xi Yi" Here, the sum is
over all vertices V (el,... ern) of the rectangle, where e X or Yi, and

sgn(V) {- 1, if the number of xi’s among the coordinates of V is odd,
1, otherwise.

Again, these conditions imply the continuity of C. Sklar’s basic theorem,
referred to above, states in this context that if Xa,..., X are real valued
random variables with joint distribution F1... then there exists an m-copula
C such that for all Xl,..., Xm,

(1.2) F1...m( xl, Xm) C(Fl(Xl),...,Fm(xm))

where F/ is the cumulative distribution function of Xi. Conversely, for any
distribution functions Fa,... F and any m-copula C, the right hand side of
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(1.2) defines an m-dimensional joint distribution function whose one-dimen-
sional marginals are F1,... Fm.

If the random variables in (1.2) are all continuous, the m-copula C in (1.2)
is uniquely defined; otherwise it is uniquely determined at points (Xl,..., xm)
where xk is in the range of Fk, k 1,..., m, and as before can be obtained
at other points by interpolation. Here, m-linear interpolation works, and we
adopt the convention that it is always used. For discussion of these issues, see
e.g., [1]-[4].
We begin Section 2 with a list of some key properties of 2-copulas.
This paper is divided roughly into two parts. In the first part (Sections 2, 3

and 4), we define a product, which we shall call the operation, on copulas
and discuss its interpretation in the context of Markov processes. The
operation is defined and its basic properties are given in Section 2 of the
paper. The operation on copulas has a natural interpretation in Markov
processes; it permits the conditional independence of random variables to be
described in terms of a binary operationmthe operationmon the copulas
of the process. Section 3 investigates this interpretation. In particular, the
operation on copulas corresponds in a natural way to the operation on
transition probabilities contained in the Chapman-Kolmogorov equations. It
leads, however, to a technique for constructing Markov processes which is
different from the conventional technique; in particular, once copulas have
been specified satisfying the product analog of the Chapman-Kolmogorov
equations, the marginal distributions can all be specified at will, subject to a
continuity condition. In the conventional technique, once transition probabil-
ities satisfying the Chapman-Kolmogorov equations are specified, it remains
to give a single marginal distribution, which can be viewed as the initial data
for the process. Section 4 gives examples.

In the second part (Sections 5 to 11)we define Markov algebras, the
algebraic entities which the operation on the set of copulas naturally
suggests, and explore some of their properties.

2. A product for 2-copulas

We state first some properties of copulas which we will need below. Let d
denote the set of all copulas on [0, 1]2, and let C . Then:

1. For any x and sc satisfying 0 < x < : < 1, the function

(2.1) -C(x,n)

is non-decreasing. Similarly, for any y and r/ satisfying 0 < y _< W _< 1, the
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function

(2.2) -, c(,,o) y)

is non-decreasing. Both of these results are immediate consequences of the
monotonicity condition.

2. Taking first r/ 0 and then r/ 1 in (2.1) and combining the inequali-
ties, we obtain

(2.3) o <_ C(x,n) <_ -x

for all x and [0,1] satisfying 0<x <:< 1 and for all r/ [0,1].
Similarly, for all y and r/ [0,1] satisfying 0 < y < r/ < 1 and for all

[o, 1],

(2.4) 0 < C(sc,r/) C(, y) < r/ -y.

3. For all x, , y and r/ [0, 1],

(2.5) Ic(,n)- C(x,y)[ < Ix- 1 + ly- ql.

This is an immediate consequence of (2.3) and (2.4). It follows from (2.5) that
copulas are Lipschitz continuous with Lipschitz constant equal to 1.

4. For all sc [0, 1] the function r/ --. C(:, r/) is non-decreasing. Similarly
for all r/ [0, 1] the function : C(, r/) is non-decreasing. These results
are special cases of (2.1) and (2.2), respectively, obtained by taking x y 0.
Thus, the x- and y-sections of a copula are non-decreasing functions.

5. Let C,1 C,2 and C,12 denote the partial derivatives OC/Ox, OC/Oy, and
oZC/Ox Oy, respectively. Since monotonic functions are differentiable almost
everywhere, it follows that for given y the partial derivative C,a(X, y) exists
for almost all x and

(2.6) 0<C,l(x,y) < 1 a.s.

Similarly, for given x the partial derivative C,2(x y) exists for almost all y
and

(2.7) 0 <. C,2(x y) 1 a.s.

These facts are immediate consequences of (2.3) and (2.4). The two state-
ments above hold almost surely with respect to Lebesgue measure on [0, 1]
for each y, in the case of (2.6), and for each x, in the case of (2.7).
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6. By similar reasoning, the functions (2.1) and (2.2) have derivatives
almost everywhere, and

(2.8)
and

(2.9)

[C(s,7) C(x,n)],2 >0 ifx<:

[C(:, 7) C(:, Y)],I -> 0 if y < 7.

It follows that the functions - C,l(x, 7) and C,2(G y) are defined and
non-decreasing almost everywhere.

7. The set of all 2-copulas is a compact and convex subset of the space
of all continuous real valued functions defined on the unit square under the
topology of uniform convergence. It follows that, in , pointwise conver-
gence implies uniform convergence. These facts are easy to prove; we omit
the arguments.

We observe that properties analogous to those set forth above hold for
m-copulas; we omit their statement, but we will use some of them later.

Three copulas arise repeatedly

M(x, y) min(x, y),
P(x, y) =xy,

W(x, y) max(x + y 1,0).

We leave it to the reader to verify that these functions satisfy the monotonic-
ity and boundary conditions for 2-copulas. It can easily be shown that for any
C

W<C<M

where the inequality is the usual pointwise partial ordering for continuous
functions.
The copulas M, P and W have the following stochastic interpretations:

Random variables X and X2 are connected by P if and only if they are
independent. Continuous random variables X and X2 are connected by M
(W) if and only if X2 is a.s. a non-decreasing (non-increasing) function of
X1. Thus, P corresponds to independence whereas M and W correspond to
species of deterministic dependence. We will see later that deterministic
dependence of two random variables can be characterized in terms of the
algebraic properties of their copula (Theorem 11.1).
We now define the product operation on copulas, which is central to this

paper. Consider A, B in . For x, y in [0, 1], set

(2.10) (A B)(x, y) flA,2(x,t)B,l(t, y) dt.
vo
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Since A and B are absolutely continuous in each place, by (2.5), the integral
in (2.10) exists.

THEOREM 2.1. A * B is in -d’.

Proof Let C=A, B and let x, , y and be any numbers in [0,1]
satisfying0<x<:< land0<y < < 1. Then

C(x, y) + C(, 7) C(x,’q) C(, y)

fo [ A( e, t) A( t)] B(t, r/) B( t, y)] ,1 dt

>_0

by (2.8) and (2.9). Thus, C exhibits the monotonicity property. The boundary
conditions are also easily verified. I

THEOREM 2.2. As a binary operation on the operation is right and left
distributive over convex combinations.

Proof This is clear from the definition of the operation in (2.10).

Let C be any copula. By direct calculation, the products of C with P, M
and W are as follows:

P,C=C,P=P,
M,C=C,M=C,

(W C)(x, y) y C(1 x, y),

(C W)(x, y) x C(x,1 y).

In particular, P is a null element in and M is an identity.
The remainder of this section is devoted to showing that the operation is

associative. Our argument proceeds by way of two preliminary results. The
first concerns a continuity property of the product and has independent
interest.

THEOREM 2.3. Consider An, B in such that A
B*AA ,BandB A

A. Then, A B

Proof We prove A B - A B; the proof of the other conclusion is
analogous. Consider e > 0. Fix x and y in [0, 1] and write g(t) B(t, y) and
fn(t) A(x, t) An(x, t). Clearly g’ and f, are in L([0, 1]), by (2.6) and
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(2.7); in particular, IIf I]oo < 2. There is a non-zero step function

k

p E aixi
i=1

such that [[g’-lla < e where 0 x0 < x < < xk 1 and Xi is the
characteristic function of [xi_ 1, xi]. Since fn(Xi) 0 for each i, there is an
N such that n > N implies

fn( Xi) fn( Xi-1)

for all i. Then, when n > N,

f01g’(t)f(t) dt [g’(t) d( t)] f( t) dt fold ( ) f, ( ) dt

k

< 2e +

_
lail

i=1
’(t) dt

i-

k

2e + E lail "lf(xi) --fn(Xi-,)l
i=1

< 3e.

This yields the desired result.

This theorem says that the product is continuous in each place. We will
see later (Theorem 7.6) that it is not jointly continuous.
A copula A induces a probability measure a on the Borel sets in

[0, 1]2 via the assignment

(2.11) a(R) A(x, y) A(x, q) A(, y) + A(s,r/)

for all rectangles R [x, sc] y, r/] c [0, 112. By the monotonicity condi-
tion, the measure of every rectangle, and therefore of every Borel set, is
nonnegative, and a([0, 1]2) 1. It is not true that every probability measure
ce on [0, 1]2 is induced by a copula A in the manner of (2.11). For a measure
a to be induced by a copula, it must spread mass in a manner consistent with
the boundary conditions on a copula; that is, it must be true that for all x
and y,

a([O,x] [0,1]) =x and a([O, 1] [O,y]) =y.

It is easy to see that these conditions are both necessary and sufficient for
to be induced by a copula. It is sometimes useful to construct a copula
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with desired properties by starting with a measure a satisfying the consis-
tency conditions above. This construction is used in the following lemma.

LEMMA 2.1. The set of copulas whose induced measures are absolutely
continuous with respect to Lebesgue measure is dense in the set d’ of all copulas.

Proof (Sherwood [9]). Let a copula A and a number e > 0 be given. We
want to construct a copula B, satisfying liB -A < e, whose induced mea-
sure/3 is absolutely continuous with respect to Lebesgue measure. Choose an
integer N > 1 such that N > 2/e. Cut [0, 1]2 into N2 congruent squares Sij,
i, j 1, 2,... N. Let B be the copula whose induced measure/3 satisfies

[(Sij ) ol(Sij )

and whose mass is spread uniformly in Sij. In this expression a denotes the
measure induced by the copula A. Clearly/3 is absolutely continuous with
respect to Lebesgue measure. We leave to the reader the task of verifying
that/3 is induced by a copula. Observe that for any (x, y) [0, 1]2, there is a
corner (xi, y) of some square Si such that

1

Then

IA(x, y) B(x, y)[ < [A(x, y) -A(xi, yj)[ +[A(xi, yi) B(xi, yj)[
+ B( xi, Y) B( x, Y)

< 2(Ix xil -]- lY Yjl)

Here, we have used (2.5) and the fact that by construction ]A(x i, y.)-
B(xi, yj)] O. m

It is a corollary of the proof of Lemma 2.1 that given a copula A and a
number e > 0 we can always find a copula B satisfying I]A- B]] < e, the
density of whose induced measure/3 with respect to Lebesgue measure is a
linear combination of Xij’s, where Xij is the characteristic function of the set

Sij constructed in the proof of the theorem. We denote the density as the
Radon-Nikodym derivative d/dtx where/x is Lebesgue measure. It is then
easy to see that in this case d/dlz is bounded and

d/3 9,12 9,21 a.s.(2.12) d/.

We make use of this fact in the proof of the associativity theorem.
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THEOREM 2.4. The binary operation is associative.

Proof Let A, B and C be copulas. We want to show that

A ,(B, C) =(A, B), C.

By Theorem 2.3 and Lemma 2.1 it suffices to consider B in ’ for which the
doubly stochastic measure /3 induced by B is absolutely continuous with
respect to Lebesgue measure. Furthermore, we may assume that (2.12) holds,
that is, that B,12 and B,21 exist almost everywhere, are bounded and inte-
grable, and are equal almost everywhere. Fix x and y and set f(t) A(x, t)
and g(s) C(s, y). Then

[A * (B * C)](x, y) lf’(t)-d-{ ,2(t s)g’(s) ds dt

folfolf’(t)B,12(t,s)g’(s)dsdt
lg’(s)-’d- dt ds

[(A B), C](x,y)

by Fubini’s theorem.

We turn now to a probabilistic interpretation of the operation.

3. The product and Markov processes

Let X and Y be random variables defined on the same probability space,
and let C be their copula. The conditional expectations E(Ix<xl) and
E(Iy<ylX) are closely related to the copula, and this fact is basic to the
interpretation we give here of the product.

THEOREM 3.1. If random variables X and Y have the copula C, then

(3.1)
and

(3.2)

E(Ix<xlY)(oo ) C,2(Fx(x),Fy(Y(w)) )

E(Iy< y[X)(oo) C.l(Fx( X(oJ)), Fy( y))

a.So

a.s.

Before proving the theorem, we present an argument for random variables
X and Y whose distribution functions are continuous and strictly increasing.
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In this case, we can write for the conditional probability P(X < xlY)=
E(Ix<xlY):

P(X<xlY=y) lim P(X<xly <Y<y +Ay)
Ay-oO

lim
AyO

lim
AyO

Fxy(X y + Ay) Fxy(X y)
Fy( y + Ay) Fy( y)

C(Fx(x),Fy(y + Ay))- C(Fx(x),Fy(y))
Fy( y + A y) Fy( y)

C,2(Fx(x),Fy(y))

wherever the derivative in the last expression exists.

Proof of Theorem 3.1. Let tr(Y) denote the inverse images of the Borel
sets under Y. Since the function to--) C,2(Fx(x),Fy(Y(to))) is measurable
with respect to tr(Y), we need only show that for all A tr(Y) and for all x,

(3.3) fAc,2(Fx(x), Fy(Y(to)) dP(to) fAIx<x(to) dP(to).

This will prove (3.1); (3.2) is proved analogously. In fact, it is sufficient to
consider A y-1((_% a]) in (3.3). Then

LHS of (3.3) fa_ C,2(Fx(x),FY()) dFy()

fFy(a)C,z(Fx(x) rl) drt
"0

C(Fx(x), Fy(a))
RHS of (3.3).

The second equality above clearly holds when Fy is continuous. When it is
not, we argue as follows. Let tk range over the points of discontinuity of Fy
and let [bk, c] be the corresponding jump interval in the values of Fy. Let
F, be a quasi-inverse of Fy satisfying Fy(F,(s)) s when s [bk, ck] for
any k and Fy(F,(s)) bk when s (bk, Ck). Then, the second equality
above holds if and only if

Ck bk

for all x and k. This condition is guaranteed to hold because of the linear
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interpolation convention previously adopted (see above in Introduction);
the condition does not, however, imply the linear interpolation conven-
tion. In any event, with this condition satisfied, and F as above,
C,2(Fx(x), Fr(F(s)) C,2(Fx(x) s) for almost every s. It follows that

(Fy(a)Cfa_=c,2(Fx(x),Fy(t))dFy(t) Jo ,2(Fx(x) Fy(F,(s))ds

fVv(ac (Fx(x) s) ds,2
"0

The first equality holds by Lebesgue’s definition of the Lebesgue-Stieltjes
integral (see, e.g., [13], [14]). m

We observe that the proof of the foregoing theorem uses the linear
interpolation convention in an essential and apparently unavoidable way. We
shall return to this point later.

It follows directly from Theorem 3.1 and the definition of the product
that, if X, Y and Z are random variables and X and 2 are conditionally
independent given Y, then

CXZ CxY * Cyz.

The converse statement need not be true, however (see Theorem 3.3 below).
Thus, we have a stochastic interpretation of the product, and also an
essential limitation on that interpretation. We will explore the interpretation
further in the context of Markov processes.

First, some preliminaries. If we have a two-place function g(x, y) and we
set f(x) g(x, y) for fixed y, we shall use the notation

fabh( x) g( dx, y)

for the Stieltjes integral

far’h(x) dr(x).

We will need the following intermediate result in the proof below of the
theorem which interprets the product in the context of Markov processes:

LEMMA 3.1. Let A and B be copulas. Then for almost all x,

(3.4) folA l(t y)B 2(x t) dt folA,(t y)B,1(x, dr)OX
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Proof Let b be any C function which vanishes at 0 and 1. Then

x ) ( folA,l( t, y ) B,l( X, dt ) ) dx

-fol)t(x)(forfo1A,l(t, y)n,l(,dt)d)dx

f014( (f0l )x)-ff- A,l(t y)B,2(x,t )dt dx

where the second step must be justified. Then (3.4) follows immediately,
since the result above holds for all b. To justify the second step, observe that
the maps

and f - foil( t)B(x, dt)

are both positive bounded linear functionals defined on the set of all right
continuous step functions on [0, 1]. By direct calculation they are equal for all
such functions f. Since right continuous step functions are dense in zl([0, l]),
the linear functionals defined above extend uniquely to linear functionals
which are equal for all functions f zl([0, 1]). This completes the proof, m

Now let Xt, T, denote a real stochastic process, that is, a sequence of
real valued random variables indexed by T, where T is some set of real
numbers. We will call the process continuous if X is a continuous random
variable for all T. We follow the convention of replacing the subscript
by in case the index set T is discrete; the subscript may denote an
element of either a continuous or a discrete set. The symbols F and Fst
denote the distribution function of X and the joint distribution of X and
Xt, respectively.
A process Xt, T is called a Markov process if for all finite index sets

tl,... and T satisfying < 2 < < < t,

(3.5)

The interpretation of the operation is clarified in the following theorem.
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THEOREM 3.2. Let Xt, T, be a real stochastic process, and for each
s, T let Cstdenote the copula of the random variables X and Xt. The
following are equivalent:

(i) The transition probabilities P(s, x, t, A) P(X A IX x) of the
process satisfy the Chapman-Kolmogorov equations [7], [8]

(3.6) P(s,x,t,A) f P(u,,t,A)P(s,x,u,d)

for all Borel sets A, for all s < in T, for all u (s, t) T and for almost all
xR.

(ii) For all s, u, T satisfying s < u < t,

(3.7) Cst Csu * Cut.

Proof To see that (ii) implies (i), observe first that since A P(s, x, t, A)
is a probability measure for all s < and almost all x, it is sufficient to verify
the Chapman-Kolmogorov equations (3.6) for Borel sets A of the form
A (-, a) and that for sets A of this form the transition probabilities are
given in terms of the copulas by

(3.8) P(s, x, t, A) Cst, l(Fs(x), Ft(a)) a.s.

by Theorem 3.1. Thus, for sets A of the form A (-, a), we have for
almost all x,

(3.9) fP(u,_ , t, A)P(s, x, u, d)

f Cut,,(Fu(),Ft(a))Csu,l(Fs(x),Fu(d))

Cut, ( ), Ft( a) )Csu,l(Fs( x), d))

0--- Cut’l(T]’ Ft(a))Cu 2(r’ r/) dr/
=Fs(x

(Csu * Cut),l(Fs(x),Ft(a)).

But by (3.7) Csu Cut---Cst; substituting this in the last expression yields
(3.6), since the last quantity above is P(s, x, t, A) by (3.8). Lemma 3.1 was
used in the third step of this argument.

Conversely, if the Chapman-Kolmogorov equations hold, then the first
expression in (3.9) is equal to Cst, l(Fs(x), Ft(a)) for almost all x, by (3.8), so
that (3.7) holds.
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If the random variables of the process are continuous, this completes the
proof. If not there is one more detail to attend to. We assert that if Csu and
Cut obey the linear interpolation convention referred to in the Introduction,
then so does Csu Cut. Verification of this is straightforward but tedious,
and we omit details. This fact and (3.9) yield the desired conclusion also in
this case. m

Satisfaction of the Chapman-Kolmogorov equations is a necessary but not
sufficient condition for a Markov process. We can also state a sufficient
condition in terms of copulas. To do so, we first define a generalization of the

product.
Let A be an m-copula and let B be an n-copula. Define A,B:

[0, 1]m+n- _.) [0, 1] via

(3.10) ArB(Xl,...,Xm+n_l)

fmA,m(X1,... Xm_l,)B,l(,Xm+l,..., Xm+n-1) d:.

Observe that if m n 2, the * and products are related by

A * B(x, y) =A*B(x,1, y).

By arguments similar to those used in Section 2 it is readily verified that
A * B is an (m + n 1)-copula and that the product is distributive over
convex combinations, is associative (in the sense that (A, B),C
A *(B * C)) and is continuous in each place.

THEOREM 3.3. A real valued stochastic process Xt, T is a Markov
process if and only if for all positive integers n and for all 1,... T
satisfying tk < tk+l, k 1,...,n- 1,

(3.11) Ctl...tn Ctlt2r Ct2t3r r Ctn_lt

where Ctl...t is the copula of Stl,... Stn and Ctkt+ is the copula ofXt and

Stk+

Proof We have to show that (3.11) above implies the conditional inde-
pendence property (3.5) of a Markov process and vice versa.

For notational convenience we write F for Ftl, C12 for Ctlt2 and so forth.
Observe first that if tl, t2, and 3 T satisfy < 2 < t3, then the

conditional independence property (3.5) for n 2 holds if and only if

(3.12) E(Ix<,Ix3<3lX2) E(Isl<illS2)E(Is3<l3lS2) a.s.
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To see that (3.5) implies (3.12), observe that for any Borel set B,

fxl(B/Xl < tZlIx3 < tx3
dP fx Ig3 < t.3

de
I(B) xi-l((--,/./,1))

fX E(Ix3<la,31Xl, X2) dR
-I(B) ("1XFI((-, 1))

I(B) (.,1Xi_ 1(( oo,/ 1))
</-/’3

< 1E ( Ix3 </3 IX2) dR

E( Ix1 < txl lX2 )E( Ix3 < x31X2 ) dR.
)

This yields (3.12). The converse is proved similarly; in fact, one need only
read the chain of equalities above in different order.

Integrating both sides of (3.12) over X-1((-%/x2)) yields

2
F123(11, ]Z2,/Z3) f_ mC12, 2(Fl(l)’ F2())C23,1(F2()), F3(3)) dF2()

/’F2(2)C )C23 1( T] F3(3J0 12,2(F1(/x,), r/ )) dr/

C12 * C23(Fl(Id,1),F2(I,2)

This yields (3.11) for the case n 3, if X1, X2 and X3 are continuous. If
they are not continuous, we assert that if C12 and C23 obey the linear
interpolation convention stated in the introduction, then so does C2 * C23.
Verification of this is straightforward but tedious, and we omit the details.
This fact and the preceding equation imply the desired result even if the
process is not continuous.

Conversely, suppose (3.11) holds for the case n 3; we want to show that
for all Borel sets B o-(X2)

(3.13) fBIXI<IIx3<3 dR fsE(Ixl<txllX2)E(Ix3<l,x31X2 ) dP.

As usual, it suffices to verify that this is the case when B has the form
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B X-I(( -oo, J,2)), and for sets of this form, it follows by Theorem 3.1 that

LHS of (3.13) Ca23(F1(tzI),Fz(tZ2), F3(/z3) )
fF2(i2)CJo 12,2(Fl(/J,1) :)623,1(: F3(/z3) ) d

RHS of (3.13).

The argument for n > 3 proceeds by similar reasoning and an induction.
We give only the idea of the proof. Let < < < t. (Note the slightly
altered notation; this simplifies somewhat the necessary accounting in sub-
scripts.) We have from the conditional independence condition

E(Ix,<,IX1,..., Xn) E(Ix,<,IXn) a.s.

Therefore, schematically,

C(FI( tzl), Fn( tZn), 8( tZ) )

Cnt, l(Fn(Xn(oO)), Ft(tz)) dP(w)
1N nA

0 0

[Fn("n)Cnt,l(,n, Ft(,I)C1...n(F,(,I),... F._,(.._,),
0

C,...n, Cnt(Fl(#l),... F(,,),

The details are similar to those given above for the case n 3, and the
converse is also similar, m

Remarks. 1. It was observed above that satisfaction of the Chapman-
Kolmogorov equations is not sufficient to guarantee that a process is Markov.
It is easy to see this from the copula viewpoint" We can explicitly construct a
family of m-copulas different from those given in (3.11)which are compatible
with the 2-copulas of a Markov process, and thus with the Chapman-
Kolmogorov equations. For example, let the random variables in a stochastic
process be pairwise independent, so that every 2-copula of the process is P.
Since P P P, the Chapman-Kolmogorov equations are satisfied. In this
case it is easy to verify that the formula (3.11) returns the m-fold product for
all m- 3, 4,... it follows that the only Markov process with pairwise
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independent random variables is a process in which all finite subsets of
random variables in the process are independent. But there are many
3-copulas which coincide with P on each of the faces of [0, 113; for example,
it is easy to check that for lal < 1,

(3.14) Ca(x, y, z) xyz + ax(1 x)y(1 y)z(1 z)

is a copula. We use this copula in place of (3.13) for some set of three
random variables in the process, say X1, X2 and X3. We then decree that
each finite subset not containing all three shall be independent, whereas the
m-copula of a set containing all three shall have the form

Cl...m( Xl, Xm) Ca( Xl, x2, x3)P4...m(X4,..., Xm)

where C is as above. If we now specify marginal distributions, all of the
finite dimensional joint distributions of the process are obtained by compos-
ing the copulas in the family constructed above with the marginal distribu-
tions. We leave it to the reader to verify that the resulting joint distributions
satisfy the compatibility conditions of Kolmogorov’s fundamental theorem.
[6], [7], [8]. Now apply Kolmogorov’s theorem to obtain a stochastic process
with the specified joint distributions. Since the random variables in the
process are pairwise independent by construction, the Chapman-Kolmogorov
equations are satisfied. But since the copula C of the three random variables
singled out is inconsistent with (3.11), the process is not a Markov process.

2. In the conventional approach, one specifies a Markov process by giving
the initial distribution Fro and a family of transition probabilities P(s, x, t, A)
satisfying the Chapman-Kolmogorov equations. In our approach, one speci-
fies a Markov process by giving all of the marginal distributions and a family
of 2-copulas satisfying (3.7). Ours is accordingly an alternative approach to
the study of Markov processes which is different in principle from the
conventional one. Holding the transition probabilities of a Markov process
fixed and varying the initial distribution necessarily varies all of the marginal
distributions, but holding the copulas of the process fixed and varying the
initial distribution does not affect any other marginal distribution.

3. We comment here on the essential use of the linear interpolation
convention in the proof of Theorem 3.1. Observe that if we have a family of
copulas satisfying (3.7), and we specify discontinuous marginal distributions,
we can still obtain a family of compatible finite dimensional distributions via
(3.11) and therefore we can apply Kolmogorov’s theorem to obtain a stochas-
tic process with the given marginal distributions and copulas. But if the
copulas and marginal distributions are such that the linear interpolation
convention is not satisfied, the interpretation of the partial derivatives of the
copulas as conditional expectations (Theorem 3.1) may fail, so that (3.7)
apparently does not guarantee satisfaction of the Chapman-Kolmogorov



COPULAS AND MARKOV PROCESSES 617

equations. We conclude that the approach outlined here permits continuous
Markov processes to be specified by giving copulas satisfying (3.7) and any
continuous marginal distributions, but that, in constructing Markov processes
whose random variables are not continuous, including Markov chains, the
selection of the copulas satisfying (3.7) and of the discontinuous marginal
distributions is coupled, due to the requirement that linear interpolation
must obtain.

4. Examples

In this section we give several examples of Markov processes, or rather of
ways to construct or specify Markov processes, using copulas.
Example 4.1. Let T be the set of all non-negative integers. Choose any

2-copula C and set Cm, C"-m where m < n and the latter symbol denotes
the (n m)-fold product of C with itself (Co is by convention the copula
M). The resulting family of copulas clearly satisfies (3.7), so that a Markov
process is specified by supplying a sequence F, of continuous marginal
distributions. Processes constructed in this manner are analytically similar to
Markov chains, and some of the theorems concerning Markov chains have
direct analogsincluding analogous proofsfor processes constructed in
this manner. See, for example, Theorem 7.1 below. These processes need not
be stationary, however, since the marginal distributions may vary with n.
Example 4.2. The preceding can be generalized as follows. Let T be the

set of integers. To each k in T assign any 2-copula Ck. Then, for m < n in
T, set

M, if m n,
Cmn Cm * Cm+ * * Cn-1, if m < n.

This yields a Markov process upon assigning a continuous distribution
function to each element of T.
Example 4.3. One can calculate the copulas for a known Markov process,

and then specify a new process by way of the same family of copulas and new
marginal distributions. In this manner, for example, one can obtain a Brown-
ian motion process with non-Gaussian marginal distributions. The transition
probabilities for Brownian motion are given by

P(s,x,t,(-,yl) 1 Y

1//2 rr(t -s ) f-exp( -(u x)2/2(t -s)) dt

for 0 < s < t. Since

P(s,x,t,(-, y]) Cst, l(Fs(X),Ft(y))
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we can integrate the expression above to obtain

(4.1) Cst(Fs(X),Ft(y))

’ exp( ( u v ) 2/2( -s) ) du

for 0 < s < t. Let

1
exp( u2/2) du.

2vqg

If we assume that X0 0 a.s., then Ft(x) G(x/v/-{) for > 0. Substituting
this in (4.1)yields, after simplification

This is a family of copulas which must, by construction, satisfy (3.7). Now any
desired continuous non-Gaussian marginals can be specified to obtain a
Brownian motion process with non-Gaussian marginals.
Example 4.4. A number of one-parameter families of copulas are known

[4], [5], [11], [15]. Sometimes the copulas in a family satisfy

(4.2) C Ct C,.t

either directly or after a suitable change of parameter. Then we can set

ast exp(s t) for s < and also set Cst C,s,; in this case (4.2) implies
(3.7).

For example,

Co,(x, y) xy + 3axy(1 x)(1 y)

is a family of copulas for x < a < x, which, by direct calculation, satisfies
(4.2). Defining Cst as above, we observe that lim Cst P for this family,
so that the random variables in a Markov process constructed using this
family become more nearly independent as Is gets larger.

Let IV, P and M be as defined in the introduction. Since any convex
combination of copulas is a copula, it follows that C given by

2(1 +ce2(1 ce) W + (1 ce2)P + M(4.3) Ca 2 2

is a copula when -1 < a < 1. Note that random variables whose connecting
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copula is C in this family are nearly independent if lal is small, strongly
positively correlated if a is near 1 and strongly negatively correlated if a is
near -1. By direct calculation the copulas C of (4.3) satisfy (4.2) so that
if we define Cst in the manner indicated above, we have once again Crs
Cst Crt. We many now specify a Markov process by assigning any continu-
ous marginal distributions.
Example 4.5. M.J. Frank has used the copulas W, P and M to construct a

large class of families of copulas satisfying (3.7). Let a,/3: [0, ) x [0, )
[0, 1] be such that a,/3 >_ 0 and a +/3 _< 1. Define

Cst a(s,t)W + (1 a(s,t) (s,t))P + (s,t)M

for 0 _< s _< < . It is easily checked that Crs , Cst Crt if and only if

(4.4a)
(4.4b)

(r,s)a(s,t) + a(r,s)(s,t) a(r,t)
a(r,s)a(s,t) + (r,s)(s,t) fl(r,t).

Set f(s) a(O, s) and g(s) (0, s). Then setting r 0 in (4.4) we obtain
the conditions

g(s)a(s,t) + f(s)(s,t) f(t)
f(s)a(s,t) + g(s)(s,t) g(t).

This system is readily solved to obtain

a(s,t)
f(t)g(s) f(s)g(t)

g(s)2 -f(s)2

/3(s,t)
g(t)g(s)-f(t)f(s)

g(s) 2 -f(s) 2

f(t) + g(t)
a(s, t) +/3(s, t) f(s) + g(s)

It is easily verified that the following four conditions are sufficient (but not
necessary) conditions for (4.4) and the other conditions on a and/ to hold:

(i) f: [0, ) [0, 1] is increasing, with f(0) 0;
(ii) g: [0, o) [0, 1] is decreasing, with g(0) 1;
(iii) f < g and sup f < inf g;
(iv) f + g is decreasing.

Note that a+/3 lifandonlyiff+g= 1.
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We give two simple examples of families of copulas obtained via the
construction above.

First, let f 0 and let g be any strictly decreasing function satisfying
g(0) 1 and lims_ g(s) 0. Then

Cst= (1 g(t) ) g(t)
g( s)

P + M
g(s)

for 0 < s < t. Here, as above, lim Cst P.
Second, let

2+t
f(t) 2(1+t)

and g(t) 2(1+t)"
Then

t-s 2+t+s
Cs’= 2(l+t)

W+
2(1+t)

M

for 0 < s < t. In this case, lim Cst (W + M)/2.
Exam/gle 4.6. A Markov chain is a Markov processes Xn, n T, for

which T is the nonnegative integers, and in which the random variables X
take values in a finite set of positive integers. The most thoroughly studied
Markov chains are the stationary ones (stationary here means that the
transition probabilities are all the same). In this example, we show how to
associate a matrix of transition probabilities for a link in a Markov chain with
the copula of the corresponding link. This is a case where the random
variables are not continuous, so we will need to rely on the linear interpola-
tion convention stated in the Introduction to obtain a unique such copula.

Let X denote a Markov chain taking values in the set {1,2,3}. De-
note a matrix of transition probabilities of the process by Q, where Qkl
P(X IX k), n > m. We want to calculate the corresponding copula
C Cmn. Let pk denote the probability that Xm k (this probability can be
computed from the initial distribution and the transition probabilities of
prior states in the process). Write p (Pl, /92, /93). Observe that the proba-

k is then (pQ). Observe also that the distribution functionbility that X
F is given by

Fro(l) =Pl,

Fro(2) =/91 + P2,

Fm(3) 1.

It follows from Theorem 3.1 above that

C(Fm(x), Fn(Y)) P(X < ylX ) d.
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p. (q()-t- 9()

plQI3

pl Q12

plQll

P2Q23 P3Q33

p2Q2I paQal

0 Pl Pl -I- P2 1

Fro. 1 Measure assigned by the copula C corresponding to the stochastic matrix Q to nine
rectangles in the unit square.

The copula C corresponding to Q can be calculated explicitly from the
information above and this formula, with the help of the linear interpolation
convention. The measure induced by the resulting copula is depicted in
Figure 1.

In the figure, Q() denotes the kth column of Q. The measure of each of
nine rectangles is indicated in the figure; mass is spread uniformly on each of
the nine rectangles, by reason of the linear interpolation convention. The
values of the copula at the vertices of the rectangles can easily be determined
from the figure and the boundary conditions on copulas.
A principal fact to observe here is that the copula of Figure 1 depends not

only on Q but also on the probabilities p. This says that if one varies the
initial distribution holding the transition probabilities of the process fixed,
the copulas of the process vary. This statement is complementary to an
observation made above at the end of Section 3.
Example 4.7. Fix a > 0 and let C and E be copulas satisfying C E-

E C C and E E E. Many copulas satisfying these conditions can be
found; see Section 8 below. For > 0 let

antn
Cn)(4.5) Ct-e-at E+ _,

n!
n=l

It is straightforward to verify that C is a copula and that Cs+ CsC for all
s, > 0. The system {Cst: 0 < s < t} where Cst Ct_ gives rise to a continu-
ous process analogous to that in Example 4.1. It is an open question whether
or not every one parameter semigroup Ct, > 0 of copulas has the form
(4.5).
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5. Markov algebras

We showed in section 2 above that for any copulas A and B, the product
A, B is a copula, that the product is associative, that the product
distributes over convex combinations, and that the product is continuous in
each place. Recall also that P and M are null and unit elements, respec-
tively, for the product, and that the set of all copulas is a compact and
convex set in the Banach space C([0, 1]2) of continuous functions on the unit
square under the uniform norm. Observe finally that if A is a copula, then
AT defined by AT(x, y)=A(y,x) is also a copula. This motivates the
following definition:

DEFINITION 5.1. A Markov algebra is a compact convex subset of a
real Banach space on which a product (:, r/) sc7 is defined which is
associative, which distributes over convex combinations, which is continuous
in each place (but not necessarily jointly continuous), and which possesses
unit and null elements.

This definition is not a purely axiomatic one, since it requires that there be
an underlying Banach space. Compare [20], in which the term "Markov
algebra" is used in the context of Markov chains with a different but related
meaning.

DEFINITION 5.2. A Markov algebra is symmetric if it possesses a con-
tinuous operation r/ r/T satisfying (r/r)T= r/, (At/ + (1 h))T= At/T +
(1 h):T and (T]:)T-- TTIT.
By remarks above, we have the following theorem:

THEOREM 5.1. The set of all 2-copulas is a symmetric Markov algebra
under and as previously defined. The unit and null elements are given by

M( x, y) =min(x,y) and P( x, y) xy

respectively.
There is one other interesting example, or rather class of examples, of

Markov algebras, in addition to copulas under the product. A stochastic
matrix is a matrix whose entries are nonnegative and each of whose rows
sums to 1; the set of n n stochastic matrices will be denoted n. A doubly
stochastic matrix is a matrix whose entries are nonnegative and each of
whose rows and columns sums to 1; the set of n n doubly stochastic
matrices will be denoted .n. Clearly each of these sets is convex. It is easy to
verify also that each is closed under matrix multiplication and that each
forms a compact set in Rn2. Observe also that the (matrix) transpose of a
doubly stochastic matrix is doubly stochastic...n possesses a unit element
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(the n n identity matrix, which we shall here denote Mn) and a null
element (the n n matrix each of whose entries is l/n, which we shall here
denote Pn). Therefore, _’, like , is a symmetric Markov algebra. ’", on
the other hand, is not symmetric; it also does not possess a null element. To
see this, observe first that if Q has all rows equal, then PQ Q for
all P . It follows that ,n possesses a multiplicity of right null
elements; but then it possesses no left null element, since by a standard
algebraic argument, every right null element must equal every left null
element, which is impossible if there is a multiplicity of right null elements.
That is not symmetric follows as a corollary--the transpose of a right
null element must be a left null element, so there can be no transpose
operation satisfying the symmetry axiom.

It is which plays a central role in the theory of Markov chains. The
set of copulas under the operation is a sort of generalization of the set
of singly stochastic matrices under matrix multiplication, but as the argument
above makes clear, it has some additional algebraic structure not present in
’", namely a (unique) null element and a transpose operation.
The goal of the remainder of the paper is to investigate the algebraic

properties of the Markov algebra and to interpret those properties in the
context of Markov processes. We begin with the algebras _".

6. The algebras

We discuss here properties of the algebras .n. In later sections, we will
address the question of whether the algebra has similar properties.
An element A

_
is extreme if A =AB+(I-A)C and (0,1)

implies B C A.

THEOREM 6.1.
matrices.

The extreme points of are the n n permutation

This is a well known theorem, attributed to Birkhoff and von Neumann.
[lO].

THEOREM 6.2. An element Q of .? has an inverse in . if and only if Q
is extreme. In this case, the inverse of Q is Q.

Proof By the previous theorem, if Q is extreme, it is a permutation
matrix, and therefore possesses an inverse, which is its transpose. On the
other hand, if Q possesses an inverse and Q AA + (1- A)B for some
A (0, 1), then necessarily

M Q-1Q AQ-1A + (1 A)Q-1B.
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Since M is extreme, it follows that Q-I Q-1B M, and therefore that
A B Q. Thus, Q is extreme, and by Theorem 6.1 above it is therefore a
permutation matrix whose inverse is necessarily QV.

Thus, the invertible elements of ..n are the extreme elements. Since .n
is a compact and convex set in Rnz, it follows from the Krein-Milman
theorem that every element of _n is a convex combination of permutation
matrices.
An element Q ..rn is idempotent if Q2 Q.

THEOREM 6.3. The number of idempotents in . is finite. Each of them is
symmetric. Moreover, E ..n is idempotent if and only if there is an integer
k > 1 and there are integers mj > 1, j 1,..., k whose sum is n and there is
an n n permutation matrix Q, such that

E Qr

Pm 0 0

0 Pm2 0

0 0 Pmk

a

where Pmj denotes the null element in ..mj.

Proof. Since this theorem does not seem to be well known, we outline a
proof. Let E ..n be idempotent but not null. If E has a column with
every entry positive then Em- en, by a basic result concerning Markov
chains. [7, p. 173]. But then E idempotent implies E Pn, contrary to
hypothesis. Consequently, each column has a zero entry. Let denote the
indices j such that Ej 4: 0. Then since E is idempotent, we have for all
indices j,

n

Ejk E EjlElk E EjlElk.
l=1 ,.

Since E is doubly stochastic, we obtain

If E. Eit < 1 for any , the foregoing relation would imply 1 < 1, a
contradiction. Therefore, necessarily c Jk for all ,,,e"k. It follows from
this (by an argument we omit) that k , that is, that necessarily Ee 4:0
for any idempotent E and all k 1,..., n. It also follows that there is a
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permutation matrix Q such that

0 C Q

where A is rn rn and rn #k. Since the partitioned matrix on the right
is doubly stochastic, the sum of the entries in C is n m, and the sum of the
entries in B is therefore necessarily zero. It follows that B is the zero matrix
and hence that A and C are both idempotents. The proof can be completed
by induction on n; the theorem is true by direct calculation for n 2. m

It is easy to show that the only invertible idempotent (and therefore the
only extreme idempotent) is Mn. There is a natural partial ordering of
idempotents: E F if and only if E and F commute, and EF FE E. It
is associated with a pointwise ordering of diagonal elements:

THEOREM 6.4. If E, F ..n are idempotents and E F, then Ekk <_ Fkk
for k 1,..., n. Partial converse: If E and F are commuting idetnpotents and
[EF]kk Ekk for k 1,..., n, then E F.

Proof The proof of this theorem is similar to the proof of Theorems 8.5
and 8.6 below.
The center of .n is the set of elements of _n that commute with all

elements of _n.

THEOREM 6.5.
,XMn: 0 <_ ,X <_ 1}.

The center of ..n is the interval [Pn, Mn] {(1 A)P +

Proof Clearly any element of[Pn, Mn] is in the center. Suppose that A is
in the center. Fix 4: j and let Q be the permutation matrix that inter-
changes and j. Then since QA AQ, necessarily

Aik Ajk

Aki Akj

Aij Aji

Aii

k :/: i,j,

k vi,j,

Upon varying and j it is easy to see that any two diagonal entries are the
same and that any two off diagonal entries are the same. Thus, A has the
required form. m

We do not assert that this is an exhaustive list of interesting properties of
the algebras _n. One can easily construct ideals in .n (sets closed under
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convex combinations and under multiplication on one side by arbitrary
elements of _n); we can prove no interesting facts about the ideals and so
will not mention them further. Also, ..rn contains divisors of zero for at least
some values of n; for example, if

E

0 0

0 0

0 0

0 5 0 -5

0 0

0 0

0 0

0 0 5 5

then E and E2 are idempotents (by Theorem 6.3) and E1E2 E2E P4,
by direct computation. We can make no general statements, however, about
the divisors of zero in the algebras _n.
The properties above are not exhaustive, but we shall take them as a

framework for analyzing the algebra of interest.

7. Invertible and extreme elements of

Henceforth, we denote the product of A and B by AB.
Extreme elements in are defined analogously to extreme elements in

_n. For A, B , if AB M we say that A is a left inverse of B and B is
a right inverse of A. If C has both a left inverse L and a right inverse
R, then necessarily L R and the common value is the inverse of C; in this
case we say C is invertible. (Observe that by known properties of matrices, an
element A ...n has a left inverse if and only if it has a right inverse, so it
was unnecessary to make the distinction made here in discussion of the
algebras _n.)

THEOREM 7.1. C in ’ has a left inverse if and only if for each y [0, 1],
C,l(X, y) 0 or 1 for almost all x [0, 1]; and if C has a left inverse, then CT

is a left inverse of C. C has a right inverse if and only if, for each x [0, 1],
C,2(x, y) 0 or 1 for almost all y [0, 1]; and if C has a right inverse, then
CT is a right inverse.

Proof We prove the first statement only; the second follows from the first
by taking transposes. Suppose that for each y, C,1 0 or 1 for almost all x.
Since for almost all x the map y - C,l(x, y) is nondecreasing (see Section 2
above), it follows that for u < v, C,l(X u)C,l(x v) C,(x, u) for almost all
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x. Hence,

TCTC( x, y) C,2 (x, t)C,1( t, y) dt

f01C,l( t, x) C,1( t, y) dt

f01C,l( t, min x y ) dt

min{ x, y}
=M(x,y).

Thus, C has a left inverse, and CT is a left inverse of C.
For the converse, suppose LC M. Then for all y

y L,2( y, t)C,1(t, y) dt

t< L,2(y,t) dt t,y)2dt

(fo )1/2< yl/2 1C ) 2,l(t, y dt

y 1/2 1C,l( t, y) dt

This uses Schwartz’s inequality and the fact that the first partial derivatives of
a copula are sandwiched between 0 and 1 almost certainly (see Section 2
above). It follows that equality must hold at each step in the foregoing chain,
so that, from lines 3 and 4, for all y > 0,

f01 C,l( t, y) C,(t, y)2] dt= O.

Since the integrand in this expression is almost certainly positive, it follows
that for all y > 0, C,a(x, y) 0 or 1 for almost all x, as required. When
y 0 C,l(X, y) 0 for all x, by the boundary condition satisfied by C. This
completes the proof, m

THEOREM 7.2.
extreme.

Any element of -d’ that possesses a left or right inverse is
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Proof Suppose C is left invertible. Then by Theorem 7.1 there exist
disjoint sets U and V such that U u V [0, 1]2, C,1 0 almost everywhere
on U and C,2 1 almost everywhere on V. Suppose C AA + (1 A)B for
some A (0, 1). Then C,1 AA,1 + (1 A)B,1 almost everywhere. Since
0 < A,1, B,1 < 1 almost everywhere (see Section 2 above), necessarily A,1
B,1 0 almost everywhere on U and A,1 B,1 1 almost everywhere on V.
It follows that A,1 B,1 --C,1 almost everywhere, and thus, upon integra-
tion, that A B C. Therefore, C is indeed extreme. 1

TIJEOREM 7.3. Left and right inverses in are unique.

Proof Suppose C has left inverses A and B. Then A + B is also a left
inverse of C and is therefore, by Theorem 7.2, extreme. Consequently
A=B. I

Remarks. 1. An element of ’ may have an inverse on one side but not
on the other. Here is a 1-parameter family of copulas that are right invertible
but not left invertible.
For0<A < 1, let

Y,

C(x,y)= ax,
x+y-1,

if y <Ax,
ifhx <y_< 1- (1-h)x,
if1- (1-h)x<y_< 1

which can be pictured as indicated in Figure 2.

0

FIG. 2 Value of Cx(x, y) in three regions in the unit square.
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Each CA is in (. In particular CO W and C M. For 0 < A < 1, C,2 0
or 1 a.s., but C,1 A on a set of positive measure. Thus, the CA are right but
not left invertible when 0 < A < 1.

2. Consider the analogy with _n. In ( there are elements which are
invertible on one side only; this is not true in .n. In ’ all left or right
invertible elements are extreme; this is true in _n. It is an open question
whether all extreme elements in a are necessarily either left or right
invertible; in _n, an extreme element is necessarily invertible.

3. Observe that if A has a left inverse then the map C ACAT is a
continuous homomorphism of f. It maps M to AAT, which is equal to M
only if A has a right inverse. (We do not require that a homomorphism map
the null element into the null element or the unit into the unit; this would be
too restrictive; we require only that products, convex combinations and
transposes be preserved. The image of the null element is then necessarily a
null element in the range, but not necessarily of the algebra of which the
range is a subset, and similarly for the unit. Other properties of Markov
algebra homomorphisms are easy to figure out, and we omit discussion of
them.) Observe that the homomorphism here constructed is necessarily
injective for all left invertible copulas A but that it is onto only if A is also
right invertible. Thus, the homomorphism establishes a one to one correspon-
dence between ’ and a proper subset of itself which has the same algebraic
structure, if A is left but not right invertible.
The Krein-Milman theorem applies to f as well as to _n, and we can

conclude that ’ is the closure of the convex hull of its extreme points. We
can actually prove a stronger result: that the invertible elements of are
dense in . To prove this, we need first to describe a useful construction.
Let:0=x0<x1< <xn= l be a partition of [0,1], and let r be a

permutation of {1, 2,..., n}. Let A be a copula with induced measure a. Let
r shuffle the vertical strips

Vk [Xk_l, Xk) X [0, 1]

and carry along the measure a restricted to each of the strips. This will yield
a doubly stochastic measure a on [0, 112. More precisely, set AXk Xk
Xk_ and let a. 0 u0 < < u, 1 be the partition for which zXu,
Ax,(k). Define a via

(7.1) a,(B (’1 [b/k_l, b/k) X [0, 1])
--O([(Xr(k --Uk). -[-S] (’[Xr(k,_l,X(r,k,) X [0, 1])

for all Borel sets B. Here 1 denotes the unit vector along the x-axis. The
copula A induced by a is called a horizontal shuffle of A. Similarly, there
is a vertical shuffle A of A which equals ((AV))r. This definition is adapted
from Mikusinski et al. [12], but it is not quite identical to their definition.
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THEOREM 7.4. Every vertical and horizontal shuffle of a left (right) invert-
ible copula is left (right) invertible.

Proof This is an immediate consequence of the characterization in Theo-
rem 7.1. Let A be left invertible, so that for all y, A,l(x, y)= 0 or 1 for
almost all x. Then for all y and almost all x (u/:_ 1, u/:) we have (using
(7.1))

0
A,,,,(x, y) ,,,([0, x] [0, y])

0
0G.,,([ ,,,_ ,, x [o, y ])
,9

A,l(Xo.(/:)_ + (x "/:-1), Y)
0orl.

The desired result follows. If on the other hand A is right invertible, so that
for all x, A,z(X y) 0 or 1 for almost all y, then for all x [u/:_ 1, u/:) and
almost all y,

0
Ao.,2(x, y) ---ao.([0, x] X [0, y])

0-- a([u/:-l’X] X [0, y]) + E ao-([uj-,,u./] X [0, y])
j=l

O--O--(a([x’(/:)-"x"(/:) + (x- u/:_,)] X [0, y])

-’k g G([Xo’<j)-I’ Xo’<j)] X [0, y])
j=l

.(x<_l + ( u_. y) .(._. y
k-1

j---1

sum of O’s, l’s and ( 1) ’s lying necessarily in [0, 1

0or1.

Again, the desired result follows.
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THEOREM 7.5. Shuffles ofM are dense in

Proof. For a proof of this theorem using copulas, see Mikusinski et al.
[12]. The theorem can be formulated and proved without using copulas; see
Vitale [18], [191.
As a corollary of Theorem 7.5 we have:

THEOREM 7.6. The * product is not jointly continuous on ’.

Proof. By Theorems 7.4 and 7.5 there is a sequence C P for which
each Cn is invertible. Then Cr --, pr= p, since the transpose operation is
continuous. Thus, if the product were jointly continuous, we would have
CTnCn

_
p2 p. But CrCn M for all n and M 4= P. m

8. Idempotents in

An idempotent in 4" is any 2-copula E for which E2-- E. Constructions
introduced in this and in the next section guarantee the existence of idempo-
tents in ’ other than M and P. They arise in another way.

THEOREM 8.1. For C in , define C via

n

d. 1/n E C
k=l

The sequence ( converges uniformly, and its limit E is idempotent. Further-
more, EC CE E.

Proof. The proof parallels the proof of the analogous theorem for
stochastic matrices given in [7, p. 175]. m

Our results for idempotents in " are fragmentary. The questions we
address first are those raised by the characterization of idempotents of . in
Theorem 6.3. First, are the idempotents in ’ necessarily symmetric? This
remains an open question. Second, is there an analog of the direct sum
decomposition of Theorem 6.3, applicable to idempotents in 4"? There is an
analog of the direct sum construction, and it has interest independent of the
application we will make of it here. We digress to introduce this construction;
we shall return to the question concerning characterization of idempotents
below.
The construction is called the ordinal sum construction, and it is well

known. [4], [16], [17]. In this context, a partition of [0, 1] denotes a finite or
countable family {(an, bn)} of disjoint intervals the union of whose closures is
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[0, 1]. To each n assign a 2-copula Cn. The function C defined by

I (x-an y-an) if(x y)[a bn] 2an + (bn-an)fn bn_an, bn_d- n,
C(x, y)

M(x, y), otherwise

is a 2-copula, called the ordinal sum of the copulas C with respect to the
partition {(an, bn)}.

THEOREM 8.2. A 2-copula C has an ordinal sum decomposition with
respect to a partition {(an, bn)} of [0, 1] if and only if the end points of the
intervals (an, bn) are fixed points of the map x --, C(x, x) for all n. In this case,
the functions C defined by

Cn(x, y )
+(bn-an)X, an+(bn-an)Y)-an

are copulas and C is their ordinal sum with respect to the partition.

Proof. The proof is nearly the same as the proof of the well-known
analogous theorem for associative binary operations. See [4, 16]. m

THEOREM 8.3. Suppose A and B are 2-copulas that are ordinal sums of
2-copulas A and B with respect to the same partition of [0, 1]. Then, AB is an
ordinal sum of the AnBn with respect to that partition.

Proof Induction; the theorem is true when there are two subintervals in
the partition by direct calculation, m

It follows from Theorem 8.3 that an ordinal sum of idempotents is
idempotent. It is also true that if E is idempotent and Q is right invertible,
then QrEQ is idempotent. The question raised by Theorem 6.3 can now be
formulated more precisely: Can every idempotent be decomposed in the form
QrEQ where Q is right invertible and E is an ordinal sum of copies of P
and M? This is an open question; we conjecture that the answer is yes.
The ordinal sum construction yields a continuous one-parameter family of

idempotents in connecting P and M, which we will use later. Consider the
intervals (0, 1 A) and (1 A, 1) for 0 < A < 1. With respect to these there
is an ordinal sum of P and M:

xy/(1 -?),E,(x, y)
M(x, y)

ifO_<x,y_< l-A,
otherwise.
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Also let E0=P and E
idempotent for 0 4= A 4= 1.

M. From Theorem 8.3 it follows that Ea is

THEOREM 8.4.

EE E.
For O#IX #A =/= 1, [[E; g and EhE,

Proof If 0 < IX < A, clearly Eh(1 IX, 1 IX) 1 IX. Consequently, by
Theorem 8.2, Eh has an ordinal sum decomposition with respect to the
partition (0, 1 Ix), (1 Ix, 1). It is readily verified that it is the ordinal sum
of

C E(a_,)/(I_,) and C2 M

with respect to this partition. It follows at once, from Theorem 8.3, that
E;E EE; E.

For the inequality of the first part,

Ea(x, y) E.( x, y)

(a
(1 -A)(1 -IX)’
M( x, y) xy/(1 -Ix),
O,

if0<x,y<l-A,

ifl-A <x,y_< 1-Ix,
otherwise.

It remains to show that the absolute value of each of these is no larger than
A -Ix. The last is trivial. The first, at once, since x < 1 -A and y < 1
A < 1 Ix. For the middle, there is no loss to assume that x < y. Then

xy I=x] 1
y x

]l_ix_y].M(x, y ) 1-Ix 1-Ix 1-Ix

But y _< 1 Ix so that it suffices to show that x(1 Ix y) < (1 Ix)(A Ix)
and, thus, that 1 Ix y < A Ix which holds since 1 y < A. I

We give one additional construction using idempotents and the ordinal
sum. Let {(an, b,)}n be a partition of [0, 1], and let and 2 be
disjoint index sets such that = 1 u 2. To each index n 1 assign an
idempotent En. Define a map - as follows: (C) is the ordinal sum
of the En’s, corresponding to indices in 1, and copies of C itself, corre-
sponding to indices in 2. By Theorem 8.3, this assignment is a homomor-
phism; it is injective, so long as 2 is not empty; it is onto only if 1 is
empty and the partition collapses to the single interval (0, 1).
There is a partial ordering for idempotents in which is identical to

that for idempotents in .n. For idempotents E and F define E F if and
only if EF FE E. It is clear that P E M for all idempotents E.
Note that the idempotents E of the preceding theorem with respect to
are order isomorphic to [0, 1].
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For C in ’ define the diagonal 6c by

for all x in [0, 1].

THEOREM 8.5.
E --<

If E and F are symmetric idempotents and E F, then

Proof We have by assumption that E2

Er= E, and Fr= F, whereupon
E, F2 F, EF FE E,

aF(X) aE(X) FZ(x, x) 2FE(x, x) + EZ(x, x)

fol[F,2(x,t)2- 2F,2(x,t)E,2(x,t ) + E,2(x,t) 2] dt

>_0

as needed.

There is a partial converse to this.

THEOREM 8.6. Let E and F be commuting symmetric idempotents such that
6EF 6. Then, E < F.

Proof Under the assumptions on E and F it follows at once that EF
is also a symmetric idempotent and that EF E, F. Also, EFE EZF
EF (EF)2 so that

(8.1) (EF),2(x,t)[E,I(t,x) (EF),I(t,x)] dt O.

But we also have EF 6E SO that E2F aE2, Consequently

(8.2) ,2(X t)[E,(t x) (EF),I(t x)] dt O.

Subtract (8.1) from (8.2) and use the fact that E and EF are symmetric to get

[E,1(t, x) (EF),I(t, x)] 2 dt 0

so that E,1 (EF),I almost everywhere, whereupon E EF.
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As a corollary to this there is:

THEOREM 8.7. There is only one symmetric idempotent whose diagonal is
the function x - x 2 and it is P

Proof Suppose E is idempotent and 6E(x)= x 2 for all x in [0, 1]. Since
EP PE P, then 6Ee(x) 6e(x) x 2 6e(x) for all x, whence 6ee
6e. By the preceeding theorem, then, E EP P. 1

Note that M is the only 2-copula whose diagonal is the identity map.

9. The center of

The center of - is the set of elements of that commute with all the
elements of . We showed in Theorem 6.5 that the center of -n is the
interval

[P, Mn] {(1 t)P + tMn’O <_t <_ 1}.

In this section, we prove the analogous result for . The proofs are the same,
except that the permutation matrices are replaced by shuffles of M. We shall
need a lemma of interest in its own right.

Recall the definition in section 7 of a horizontal shuffle A‘" of a copula A
with respect to a partition .@: 0 x0 < x < < x. 1 and a permuta-
tion r. The partition and r induce a second partition ’: 0 u0 <
U < < U 1 of[0, 1] for which Auk Ax‘’(k ). For uk_ _< x < u k and
0_<y<l,

(9.1) A (x, y) +

+ E [A(x‘’,j.), y) -A(x‘’(j)_ 1, y)].
j<k

LEMMA 9.1. For any partition : 0 Xo <
any permutation r,

A‘" AM"

< X 1 of [0, 1] and

for all A .
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Proof. Note that the second statement follows from the first upon taking
transposes. For x Uk_ 1, Uk),

The first and last equalities are obtained by applying (9.1) to M and A. The
second holds because M,z(X, y) X0,xl(Y) for almost all y.

THEOREM 9.1.
0_<t < 1}.

The center of is the interval [P,M] {(1- t)(+tM:

Proof. The proof is analogous to that of Theorem 6.5. Clearly (1 t)P +
tM is in the center for 0 < < 1. Suppose that A is in the center. Consider
any (possibly degenerate) partition

,_’0--X0 X <X2 X3 <X4 X5 1

for which x4 X3 X2 Xl > 0 and 6 < x. Let r be the 2, 4 transposi-
tion of {1, 2,..., 5}. It is readily verified that in this case M (M)T M.
Therefore, by Lemma 9.1, A A, since A lies in the center. Consequently
a a, where a and a are the doubly stochastic measure induced by A
and A, respectively. Let a denote the doubly stochastic measure induced by
A. Let Rij [Xi_l, Xi)X [Xj_I, Xj) and set e x 3 -x1. It follows readily
that for any Borel set B,

a(B) =a(B +e2),
a(B) =a(B +e1),

a(R24) or(R42 )
a(R22 ) a(R44 )

if B c R12 I,.) R32 U R52
if B c R21 k.) R23 k3 R25

It follows from this, upon varying X and e for fixed 6 < x, that any two
squares of side/ with sides parallel to those of [0, 1]2, which do not intersect
the line y x except possibly at a vertex, have the same a-measure and also
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that any two squares of side 6 with opposite vertices on the line have the
same a-measure.

Let S be a square of side 6 with sides parallel to those of [0, 1]2, which
does not intersect the line y x, and let T be a square of side 8 with
opposite vertices on this line. Let h and u be such that a(S)= h2 and
a(T) u82. Suppose that 8 1/m for some integer m. Since a([0, 1]2) 1,
it is necessarily true that

m(m 1)A6 2 + m,62-- 1.

Solving this for u we get

and thus

u , + (1

(9.2) a(T) (1 h)a + /a 2.

It is not difficult to show that the proportionality constant h is independent
of 8 and that

(9.3) a(R) A/z(R)

for any rectangle R which does not intersect the diagonal except possibly at a
vertex, where z denotes Lebesgue measure. A can be calculated from (9.2)
and (9.3). If x < y,

A(x, y) a([O, x] [0, y])

=a([O,x] [O,x]) +a([O,x] (x,y])
(1 A)x + lX 2 "-[- lx(y --X)
,xy + (1 ,)x.

Similarly, if y _< x then A(x, y) hxy + (1 h)y. Consequently, A
hP + (1- A)M. m

I0. Homomorphisms

Let ace" and be symmetric Markov algebras. A homomorphism is a map
xI,: ag’ which preserves the algebraic structure; that is, tit maps convex
combinations into convex combinations, products into products, and, if
ace’ and are both symmetric, transposes into transposes. As previously
noted, we do not require that map the null element into the null element
or the unit into the unit. Thus, if E is a symmetric idempotent in , the
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constant map which assigns E to each element of sO" is a homomorphism,
which we shall call a trivial homomorphism. We have seen examples of
classes of nontrivial homomorphisms : in Sections 7 and 8 above.
Recall that the nontrivial homomorphisms so constructed were one-to-one
maps. We have no example of a nontrivial Markov algebra which is not
one-to-one, and we conjecture that there are none.

In this section, we construct a homomorphism from _n .._.) .. Then we
prove two theorems concerning nonexistence of homomorphisms.
We define a map : ..n _._)

_
as follows: Let A .n. Divide [0, 1]2 into

n2 congruent squares with vertices (xi, xi), i, j O, 1,..., n, where xk k/n.
Let Xi denote the characteristic function of the square Sit [xi_ 1, xi)
[x_ 1, x.). Define via

x y n

[(A)](x, y) n Zijxij(s,t ) dsdt.
i,j=l

It is easy to verify that is a continuous homomorphism of ...n into ’.
Observe that maps Pn to P and M to an ordinal sum of copies of P.
Note also that if E is any symmetric idempotent copula with square inte-
grable second derivatives, and if the characteristic functions Xi in the
definition of are replaced by

[E,12(n(x xi),n(y Xj)), if (X, y) - Sijr/(x, y)
0, otherwise

then we again obtain a homomorphism of _n , since

1lij( U, t) k’( t, U) dt n jkil( U, U )

This is verified by direct calculation, using the fact that E is idempotent. The
condition that E have well behaved second derivatives can be dropped at the
cost of introducing more complicated notation, but it is essential that E be a
symmetric idempotent. Basically, therefore, to each symmetric idempotent in

corresponds a continuous homomorphism : ..n ..
There are, however, no homomorphisms going the other way, or at least no

continuous nontrivial ones.

THEOREM 10.1. Any continuous homomorphism of into .n is trivial.

Proof Suppose ’It: ---) .n is a continuous homomorphism. Let

{Ex:0<h < 1}

be the continuous one-parameter family of idempotents of Theorem 8.4.
Then, the composite map A --, Ex (Ex) is continuous. Since each (Ex)
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is idempotent, since there are only finitely many idempotents in .n, and
since .n is topologically connected, then (Ex) (E,) for all A,/x in
[0,1]. In particular, (P) (M). Whereupon, (A) (AM)=
(A)(M) (A)(P)= (AP)= (P) for all A in ’. That is, is
trivial, m

There are likewise no nontrivial homomorphisms .n ..,m when n > m,
or at least no surjective ones.

THEOREM 10.2. For n > m > 1 there is no homomorphism of _qn
onto ..m.
Proof Suppose ’tit: ..n ___) ..m is a homomorphism. We assume that is

onto, so that, as is easy to verify, (Mn) M and (P,) Pro" Let 0 be
the restriction of to the group G of permutation matrices in _n. It is
readily checked that a surjective homomorphism maps invertible elements
onto invertible elements; it follows that 0 is a group homomorphism taking
values in Gm. Since m < n, the kernel N of 0 is a non-trivial normal
subgroup of Gn. Let k be the number of elements in N and let u in .n be
the convex combination

1

hN

Then

1
(10.1) (u) - o(h) =Mm.

hN

Since N is a normal subgroup of G, necessarily gu ug for all g in Gn. It
follows that u is in the center of ., so that, by Theorem 6.5, u APn +
(1 A)M. for some [0, 1]. It is easily checked that u is idempotent. It is
also easily checked that the only convex combinations of Pn and M which
are idempotent occur when 0 or 1. But since N is a nontrivial normal
subgroup u necessarily has nonzero off diagonal entries, so that necessarily
)t 4: 0. It follows that 1 and therefore that u P,,. Thus, (10.1) says that
xIt(Pn) Mm. Since m > 1 by hypothesis, M :/= Pm and we have a contradic-
tion. m

11. Interpretation

We conclude this paper with some observations on the interpretation of
the algebraic concepts of ’ in the context of Markov processes.
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Invertible and Extreme Copulas. Extreme stochastic matrices correspond
to deterministic links in a Markov chain, in the sense that if the transition
matrix Qn, n+ is extreme and the state at n is known with probability 1, then
the state at n + 1 is known with probability 1, since all transition probabili-
ties are 0 or 1.

Left invertible copulas also correspond to deterministic links in a Markov
process, but the argument is more circumspect. We will say that random
variables X and X in a Markov process are deterrninisticly related if t > s
and there is a Borel function f such that X f(X) almost surely. This is
true for continuous random variables if and only if the copula Cst is left
invertible. We state the result as a formal theorem:

THEOREM 11.1. Let X and X2 be continuous random variables. The
following are equivalent:

(a) There is a Borel function f such that X2 f(X1) a.s.
(b) For all x, E(Ix2 < x [XI) 0 or 1 a.s.
(c) The copula C12 is left invertible.

Proof Statements (b) and (c) are equivalent by Theorems 7.1 and 3.1,
using the fact that the random variables are continuous. We will complete
the proof by showing that statements (a) and (b) are equivalent.
Suppose E(Ix2 <xlX1)= 0 or 1 almost certainly for all x. Then for all

Borel sets B,

fx E(tx2< [Xl)]X2<
i_. I(B

x x

It follows that

I(B

fxl(B/2<x

dP

fx?I(B)(Ix2 <x
2E(Ix2<xlSl)Ix2<x

E(tx2 [Xl))2< dP

"k- E(tx2<x[Xl)2) dR
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which implies that E(Ix2 < lXl) Ix2 < x almost certainly for all x. But then
X2 is measureable with respect to the completion of the r algebra of sets
o-(X1) generated by X1, so that statement (a) holds.

If statement (a) holds, then o-(X2) c r(X1) so that E(Ix2<xlX1) Ix<x
a.s. This implies (b). m

Observe that right invertibility of the copula Cst is neither necessary nor
sufficient for X and Xs to be deterministically related. In fact, we can use a
right invertible copula which is not left invertible to construct a Markov
process which has a curious property. Suppose that C is right invertible but
not left invertible, and let E CrC. Suppose all copulas in a Markov
process Cu are invertible for u < v < s and < u < v where s < t. Set

Cur =Cut * C, u < s < v <
Cur=E, s < u < v <

Cuv=Cr* Ct,, s < u < < v.

It is easy to verify that the entire process satisfies (3.7) and therefore the
Chapman-Kolmogorov equations. Observe that Ct CCr= M, so that X
and X are deterministically related. But if s < u < v < t, C, E is not
left invertible, so in the interval (s, t), the process is not deterministic. The
right invertible copula C permits the intrusion of a bubble of randomness in
an otherwise deterministic Markov process.
The interpretation of Theorems 7.4 and 7.5 is also interesting; cf. [12], [18],

[19]. These results imply that any link in a Markov process can be approxi-
mated to arbitrary accuracy by a deterministic link. Thus, if one constructs a
discrete Markov process by setting the copula of each adjacent pair of
random variables equal to some non-invertible copula C and then approxi-
mates C closely enough by an invertible copula A, one can apparently expect
the corresponding deterministic process to exhibit behavior similar to that
exhibited by the original nondeterministic process; certainly adjacent pairs of
random variables in the associated Markov process can be expected to exhibit
similar behavior. The joint behavior of distant pairs may not be so similar,
because of the fact (Theorem 7.6) that the product is not jointly continu-
ous.

Idempotents. Observe that a Markov process all of whose marginal distri-
butions F are the same and all of whose copulas C are the same consists of
interchangeable random variables if

C 2 =C

since this condition implies that C C for all n, and the higher order joint
distributions are all identical by reason of the Markov condition. The
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converse is also true: if the random variables in a Markov process are
interchangeable, then necessarily Ce C, and all of the marginal distribu-
tions are the same. By DeFinetti’s theorem [6] interchangeable random
variables are conditionally independent. Thus, we think of idempotents in
as corresponding to conditionally independent Markov processes.
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