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NOTE ON CONTINUITY OF INFORMATION RATE
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NAOHUMI MURAKI AND MASANORI 0HYA

1. Introduction

The mutual information is a measure describing how much information
carried by an input probability measure of an input system X is correctly
transmitted to an output system Y through a channel A. This quantity plays
an essential role in communication theory since it is the measure that
quantitively expresses efficiency of information transmission [9].

L. Breiman [3] showed that the information rate, i.e., the mutual informa-
tion per unit time is upper semicontinuous in the vague topology of input
probability measures for stationary channels with finite-memory. This result
has been used [3] to show that the stationary capacity of such a channel
coincides with the ergodic capacity of the channel (conjecture by Khinchin
[9]). The continuity property of the information rate has been discussed as a
basic property of information function. In this paper, we study this continuity
with respect to several topologies in the space of input probability measures.
In 2, we briefly review finite-alphabet, discrete-time communication pro-
cesses and fix terminologies used here. In 3, we explain several topologies
for the space of input probability measures and show the continuity of the
information rate in the set-wise convergence of the input measures. In 4, we
show that the information rate is not continuous in the cylinder-wise conver-
gence of the input measures. In 5, for finite-memory stationary channels, we
show the continuity with respect to Ornstein’s d-distance for the input
measures. The d-distance topology is weaker than the set-wise convergence
and is stronger than the cylinder-wise convergence (see 6). In 6, we present
an example of a non-finite-memory channel for which the information rate is
discontinuous in the d-distance. We give, also in 6, some remarks for the
results obtained in 4 and 5.

2. Preliminaries

In information theory, a finite-alphabet and discrete-time communication
process is mathematically formulated as follows [9]: Let A and B be finite
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alphabets, that is, non empty finite sets having more than two elements.
Denote by Z the set of all integers. We take the input and output systems
X, Y as the spaces X Az and Y Bz of doubly infinite sequences of
letters in A, B, respectively. The joint system X Y Az Bz, denoted by
Cz, is the space of doubly infinite sequences of letters in the alphabet
C A B. x is the r-field of X generated from the field /x consisting
of all cylinder sets on X. The set X becomes a compact dynamical system
with the product topology of the discrete topology for the alphabet A and
with the shift TA. Here the shift is defined as

TA((x.).z) (x,+,),z for x (x,),z Az.

We denote by (X) and T(X), the set of all probability measures on X
and the set of all stationary probability measures on X with respect to the
shift TA, respectively. -y, ’r’, TB, (Y), T(Y), are defined. We use
the same symbol T for TA, TB, Tc when no confusion occurs. A stationary
channel h from X to Y is a mapping from X to ()satisfying:

(1) h(x)(F) is a measurable function of x X for any fixed F -v,
(2) A(TAx)(F) h(x)(T 1F) for any x X and any F q-y.

We often use the notation h(x,F) to denote h(x)(F). This channel h
induces the following two transformations of probability measures z h(/)
and /z (6 (R) h)(/x). The first is from (X) to (Y) and the second is
from (X) to (X Y) defined by

h(/.)(F) -= fx(x)(F) dl(x) for F -v,

((6 (R) h)(/z))(G) fx(6(x) (R) ,(x))(G)d(x) for G x (R) -v,

where 6(x) is the Dirac measure with respect to a point x. Note that if
tx 9T(X), then A() 9T(Y) and (6 (R) A)(tz) 9(X Y). For a pair
of integers s and with s =< t, let [s, t] be the interval in Z consisting of all
integer n Z such that s =< n __< t. We canonically identify a finite sequence
a (as,..., at) in AIs’t] with a uniquely determined measurable set

{x AZlxn "--Oln, n [s, t]} xx"

Any element of A[s’t] is called a message. We often denote A[0’n-1] by A
for short. The entropy rate (/z) of a stationary probability measure /z and
the information rate /r(tz; ,) of a stationary probability measure /z with
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respect to a stationary channel A are defined as

(IX) lim --1 Sn(IX) I’(IX; A) lim
1
in(ix;

n n

Here Sn(IX ) and In(IX; it) are the entropy and the mutual information for the
finite spaces A[’n-1] and B[’n-1] generated by messages of length n, which
are given by

Sn( IX) - E IX( a)log IX(a),
A[0’ 1]

g,,(
In(IX;A) E IX"(a,/3)log a,/3)

(O, )A[’n-1]XO[O’n-1] IX(OI.) IX! ( )7

where IX’ it(IX) and IX"= (3 (R) it)(IX). The entropy rate g(IX) represents the
averaged information generated by a stationary probability measure IX, and
the information rate/’(IX; it) does the averaged information transmitted from
IX to it(IX) by a stationary channel it. Using the Radon-Nikodym derivative
dIX"/d(IX (R) IX’), the mutual information/(IX; it) between IX and IX’ is defined
[14] by

fx ( rig" rig"
I(IX; it) dIX (R) IX’ log dIX (R) IX’Y )dix (R) Ix’

when IX" is absolutely continuous with respect to IX (R) IX’, and otherwise
/(IX; it) .
The continuity of the information rate [(. ;A) as a function of an input

probability measure has been studied by Breiman as follows:

THEOREM 2.1 [3]. The information rate/r(.; it) of a finite-memory station-
ary channel it is upper semicontinuous with respect to the vague topology in the
space of stationary probability measures.

The finite-memory channel will be precisely defined in 5. Since the
mutual information I(. ;it) is lower semicontinuous in general, it is interest-
ing for us to ask under which conditions the information rate /(IX; it) is
continuous with respect to IX. In this note, we mainly study this question.
Throughout this paper we use the notation S(p) or S(pl,... Pn) to denote
the entropy of a probability distribution p (Pl,..., Pn): S(p) ET= l’r/(Pi),
where r/(t)= -tlogt for t>0 and r/(0)=0. The symbol e is used to
denote the base of the natural logarithm. The base of the logarithm is always
assumed to be 2.
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3. Several topologies in the space of input probability measures

In order to investigate the continuity of the function [(. ;A), we introduce
several topologies for the space of stationary probability measures. There
exist three natural topologies as follows:

(T1) Norm-topology defined by the total variation norm of real valued
measures:

(T2) Topology defined by the "set-wise" convergence

(T3) Topology defined by the "cylinder-wise" convergence

Obviously T1 is stronger than T2, and T2 is stronger than T3. The topology
T3 is often called the vague topology. We shall later show that the informa-
tion rate is continuous in topology T1 and in topology T2 for every stationary
channel and is discontinuous in topology T3 for almost stationary channels.
Additionally, we also study the continuity in the following topology, i.e.,
Ornstein’s d-distance [11]:

(T4) Metric topology defined by the d-distance:

d(ix,ix’) sup inf
n E "n [0,

ln--1E d(oi, oi) d(.o(o
n-llxA[O,n-11 n i=o

where n n(ix, ix’) is the set of all probability measures o on A[0’n-1] x
Ato, n-1] such that the left marginal and the right marginal of o coincide with
the restrictions ix A[’n-l] and ix’ A[’n-1], respectively. The d--distance
was used by Ornstein to prove his famous isomorphism theorem for Bernoulli
shifts [10], [15], and it has been applied to several aspects in information
theory [6], [7]. This d-distance topology T4 is strictly weaker than the
topology T2, and is strictly stronger than topology T3 (see 6). Thus the
d-distance fills the gap between the set-wise convergence and the cylinder-wise
convergence. The information rate is not always continuous in the d-distance
(see 6). As will be shown in 5, however, it is continuous in the d-distance
for a special class of channels, i.e., the finite-memory channels.

It is easy to show the continuity of the function /(-; A) for the total
variation distance T1 as follows. We can extend the affine functional [(. ;A)
on ,_.T(X) to a linear functional on the Banach space MT(X) (the space of
all stationary real-valued measures on X) for which we use the same
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notation I(. ;,t) as above, and it is defined by

/(0; h) O,

)ii--, ( >= 0.. o),

[(/.; A) m [(+; A) -/(-; A) ( Mr(X)),
where + and - are the positive and negative components in the Jordan
decomposition of , respectively. This definition is consistent. Then it is
easily shown that

sup [(/; A) sup
,.T(X) MT(X), I1

So the linear functional [(. ;A) is bounded and its norm is just Cs, where Cs
is called the stationary capacity of a stationary channel A. So the functional is
continuous in the total variation distance.
The continuity of the information rate [(-;A) for the set-wise convergence

T2 is also easily shown by using the Parthasarathy-Umegaki ergodic decom-
position theorem of the information rate [13], [16], as follows. Since any
bounded measurable function is approximated by simple functions in the
uniform norm, the topology T2 equals the topology T2’ defined by

(T2’) t.j , f/dlj f/dl. (Vf B(X)),

where B(X) is the Banach space of all real-valued bounded measurable
functions on X. By the Parthasarathy-Umegaki ergodic decomposition theo-
rem of the information rate, there exists a bounded measurable function h
on X such that

/(; ) fxh() ,() (v (x)).

Therefore we obtained the continuity of the information rate [(. ;A) in the
topology T2.

In the following two sections, we study the continuity of the information
rate in the cylinder-wise convergence T3 and in the d-distance T4.

4. Discontinuity of information rate in the cylinder-wise convergence

In this section we show that the information rate is discontinuous in the
cylinder-wise convergence for almost all channels except those with station-
ary capacity 0.
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TI-IEOIEM 4.1. The information rate [(. ;A) of a stationary channel is
discontinuous for the vague topology in T(X) unless its stationary capacity
isO.

To prove Theorem 4.1, we prepare several notions. It is easily checked by
the Stone-Weierstrass theorem and by the continuity of the characteristic
functions of cylinder sets that the topology T3 equals the vague topology T3’
defined by

where C(X) is the Banach space of all real-valued continuous functions on
X. In a compact dynamical system (X,T), a point x X is called a
quasi-regular point if

lim
1 -_ f(Tix)

noo n
i=0

exists for any f C(X). For any quasi-regular point x of (X, T), there exists
a unique stationary probability measure ux such that

[ fdu lim __1 . f(Tix ) (f C(X))
x noo n

i=0

in virtue of Riesz’s theorem. A point x X is called a regular point if it is a
quasi-regular point and the associated stationary probability measure ux is
ergodic. Let us denote the set of all quasi-regular points on (X, T) by Q and
the set of all regular points on (X, T) by R. The Parthasarathy-Umegaki
ergodic decomposition theorem of information rate [13, 17] asserts that

I(/,; A) Vx; A) dtx( x )

where u is the ergodic measure associated to each regular point x R.
When the functional [(. ;,t) is not identically 0, there exists some stationary
probability measure/x such that /(/z; ,) > 0, and hence some regular point
x R such that I(v; ,) > 0.

Therefore it is sufficient to prove the following two lemmas for the proof of
Theorem 4.1.

LEMMA 4.2. Ifx Xisperiodic in the sense that I{Tnx; n N}I P < 0%
then g(vx) 0 and I(ux; )t) O.
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LEMMA 4.3. For any quasi-regular point x Q, there exists a sequence
(yn)n N of periodic points yn so that vyn converges to ux in the vague
topology.

Proof of Lemma 4.2. Since (Ux), (h(Vx)) and ((8 (R) h)(Ux)) are finite,
we can decompose I’(vx; A) as I’(vx; h) (vx) + (h(Vx)) ((6 (R) h)(Vx)).
Let us compute these entropies.

Calculation of (Ux). Since the period of x is P, for any message
At’n-l with sufficiently large length n >__ P, we have

1 E 3(rix)(ol) -ff/’x(O) i=1 0

(::li {1, 2, P} Tix

(otherwise).

So we have

Sn(b’x) 27(Px(Ol)) P - log P.

Hence we get

g(Ux) lim
Sn(l"x) O.

no n

Calculation of Sn(( (R)/)(b’x)). (( (R)/)(b’x) is written as

1 P

( (R) l)(lx) -- E ( (R) l)((rix))
i=1

For any message (a,/3) X[0’n-ll X yt0, n-ll with n _>_ P, we have

(( (R) t)((Tix)))(Ol., ) ((Tix) (R) l(rix))(ol, [)

f l( Zix ) ( [ ) ( Zix Ol. )
0 (otherwise).
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We therefore obtain

1 P

((( (R) /)(Px))(O/,fl) ff Z i(Zix,l)}k(Zix,[)
i=1

1
l(Zix)([ )-p

0

(::li {1, 2, P) Tix

(otherwise),

which implies

Sn((a (R) ’,)(llx)) Z ,r](((a (R)

=EE e
fl i=l

P

{log PE Z ’p V )(fl))
i=

i=1

1
log P + S((Tix)).

i=1

Calculation of [(Ux; A): Since Sn(A(Ux)) is written as

P ) 1 P1 E A(Tix) "- E an(l(ziX)) + CnSn(’( Px ) ) an /=1 /=1

with a bounded sequence Cn, we have

Sn(l(Px)) (Sn(( (R) /’)(/)x)) --log P) + C,. (4.1)

By taking the limit as n in (4.1) (l/n), we get (A(ux))=
S((3 (R) A)(Ux)). Therefore we have

(,; x) (,) + (g((x)) g(( (R) x)(,)) o.

Proof of Lemma 4.3. The topology of X is metrizable by a distance

d(x,Y) =- _, dm(x’Y)
mZ 21ml (X, y X),
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where

1 (Xm =/=Ym)
dm(X’ Y) =--

0 (Xm ym).

For a given quasi-regular point x, we define a sequence (yn)n N of periodic
points yn by

yn (y,)k, Y, X(kmodn),

where the expression "k mod n" means the only integer j {0, 1,..., n 1}
such that j k (mod n). Then, for any such as 0 =< =< n 1, we have

d( zix, ZiY n) E dm(Zix’ Ziyn)
m Z 2 Iml

1 1
=< 21m-’--- -b"

21mlm< -i n-i<m

For any fixed continuous function f C(X) and any e > 0, there exists
> 0 such as If(x) f(y)l =< e (d(x, y) =< 6), because of the compactness

of X. Let M be an integer such as 4/2M =< 3, and n be any sufficiently large
integer such as n >= 2M. Then we have

2 2 4
d(Tix, Tiy n) <_ - -I-

2n_i <= - Z forM__</<=n-M,

and hence

If(Zix) -f(Tiyn)l <= e for M _< =< n M,

by which we can evaluate the difference

n

-ff E f(ziX) f/dy
i=1
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for sufficiently large n"

n1 Ef(Zix) fJdyn-i=1

-ff El(Tix) -ff E f(T y
i=1 i=1

n

E If(ziX) f(Tiyn)ln
i=1

__1 E If(Zix) f(Ziyn)l +n
i=M

M-1

_
If(Tix) f(Tiyn)l

i=1

n

i=n-M+l
If(Zix) -f(Ziyn)l}

1
< -{(n 2M + 1)e + 2(M- 1)llfll + 2MIIfll}n

On the other hand, since (1/n)Y’.in= lf(Tix) converges to fxfdvx, we get

fJdpyn "-) fJdl (Vf C(X)).

That is, the sequence of stationary probability measures ]flyn converges to the
stationary probability measure ux in the vague topology. D

So we obtain the discontinuity of the information rate in the cylinder-wise
convergence. Furthermore we obtain the following as a consequence of
Lemma 4.2 and Lemma 4.3.

TIaEOREM 4.4. The set ofzero points of the information rate function/r(.; a)
is dense in T(X) in the vague topology.

Proof T(X) is the vague closure of the convex hull of the set of all
ergodic probability measures on X. Any ergodic probbility measure /z is
represented by some regular point x R such that /z vx [12]. Therefore
the set of all stationary probability measures having finite supports is dense in
T(X) with respect to the vague top.ology according to Lemma 4.3. From
Lemma 4.2, the set of zero points of I(. ;A) is dense in T(X) in the vague
topology. [2
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5. Continuity of information rate in the d-distance

As shown in the preceding two sections, the information rate is continuous
in the set-wise convergence T2 and discontinuous in the cylinder-wise conver-
gence T3 for almost all channels. So it is a natural question to ask whether
the information rate is continuous or not in the Ornstein d-distance defining
the topology between the set-wise convergence topology and the cylinder-wise
convergence topology. An answer to this question is that the information rate
is continuous in the d-distance for finite-memory channels (Theorem 5.1).
Here, a stationary channel A from Az to Bz is said to have finite-memory, if
there exists an integer m >= 0 such that

(1) for any pair of integers =< j, any/3 B[i’] and any x, x’ Az,

xe=x,(i-m__<k__<j) implies h(x,/3) =h(x’,/3),

and
(2) for any integers n __< r __< s =< t,

s-r>m implies h(x,/3 (/3’) =h(x,/3)h(x,/3’)

for all x Az, all /3 B[n’r] and all /3’ B[s’t]. An example of a non-
finite-memory stationary channel for which the information rate is discontin-
uous in the d-distance will be given in {}6. In this section we prove the
following.

THEOREM 5.1. For a finite-memory stationary channel A, the information
rate [(. ;h) is uniformly continuous in the Ornstein d--distance.

Theorem 5.1 is essentially reduced to the continuity of the entropy rate
(/x) in the d--distance (Theorem 5.2) and to the d--continuity of the transfor-
mation of measures associated to a finite-memory stationary channel (Theo-
rem 5.4). The d-continuity of the entropy rate has been mentioned in [8, 11],
but its proof has not appeared yet. So we give a proof of the continuity of the
entropy rate in the d-distance for completeness.

THEOREM 5.2.
d-distance.

The entropy rate is uniformly continuous in the Ornstein

This theorem is a consequence of the following lemma 5.3. Let d(a, a’) be
the Hamming distance between two finite sequences a, a’ A[’n-1], i.e.,

n--1 { 0 (0 Oti),
d(oe, oe’) E d(oi, o;), d(oi, o;) 1 (o ::/= Oti)i=-0
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For a probability measure to on X X’ where X X’= An, denote by p
and p’ the marginals of to with respect to X and X’, respectively. For any
integer d >= 0, denote by Aa or A the set {(a, a’) X X’; d(a, a’) =< d}.

LEMMA 5.3. There exists an integer L >= 0 such that the inequality

s(p)
n n + 6h loglAI + (loglAI + 4)- + r/ -holds for any probability measure to on X X’, any integer d with L <= d <=

(n + 1)/2, and any real number h with to(A) =< h < 1/e.

To prove Lemma 5.3, we use the following fundamental inequalities (5.1)
and (5.2). Let Pa,... PN be positive real numbers such that 0 < E,=lPi 1.
Then the following hold:

(1) For E= Pi <= h <= l/e, we have

N

E T(19i) h log N + r/(h) (5.1)
i=1

(2) For P E.t= Pi, we have

N

(/91 PN) (1 P)log N + rl(P )

Proof of Lemma 5.3.
X X’ given by

Let A, B, C, D, E be finite families of subsets of

where {a} (resp. {(a, a’)}) is the set of single element a (resp. (a, a’).) Let
S(F, to) be a function of a finite family F of subsets of X X’ and a
probability measure to on X X’, given by

s(p,,o) E
GF
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Let be a probability measure on X X’ given by (a, a’) w(a, a’)/w(A)
for (a, a’) A and (a, a’) 0 for (a, a’) . Then we have an inequality

IS(p) S(oo)l Is(X, 0) s(, w)[ __< D + D2 + D3 + D4 + D5 + D6

(5.3)

where

D1 IS(, w )

D3 =lS(e,w) S(e, )
D5 =]S(b,) S(b, o)l,

D2 [S(, oJ)

D4 Is(e, ) s(, )l,
D6 IS(, oJ)

Let us evaluate each term D Of the inequality (5.3). Since

s(y, ) =< s(, ) s(y, 0) +

__< S(,w)+ 1,

E oo(G)S(w(GnA) (GnAc))ax (a) (a)

we have D < 1. Using (5.1)we have

D2= IS(B, oJ) -S(C,o)I E ’r/(c.o({ce} xA 0 AC))
aA

=< w(AC)loglAI + r/(w(Ac)) =< h loglAI + 1

and

06 Is( , o,> o,)I =< oj(AC)loglAI 2n + ’q(oj(AC)) =< h loglAI 2n + 1.

Using (5.2), we have

D3 S(, o) S(, -< o,(AC)log IA + r/(w(A)) _< h log IA n + 1

and

D5 =ls(,) o,)l <= w(AC)loglAI 2" + r/(o(A)) <=hloglAI 2n + 1.
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Let us evaluate the term D4. We have

for d _< (n + 1)/2. By the Stirling formula n! v/2rcn nne -n, there exists an
integer L such that

/2rrddde-d/d! < 2 (Vd >= L).
Then, for L =< d =< (n + 1)/2, we get

(n ) nd ( n ) d ed ( n )
d

<__ 2 ed. (5.6)d -< . --<2 7 v/2rrd 7

From (5.4), (5.5), (5.6), we get

{D4__<loglA(a)l _-<log 2(d+ 1)
n

=< 1 + (loglA[ +4)d+dlog.

aIA Ideal)

Combining each evaluation of Di, we get the desired inequality.

Proof of Theorem 5.2.
such that

For any e > 0, there exists a natural number q

(1)log lAI + 4 + r/ < e
q -For a positive integer n, let d, r be a pair of intergers such that

n=d’q+r (0=<r_<q- 1).

Then, for sufficiently large n >_ No, we have d > L and 6/n <_ e, where L is
the same number as in Lemma 5.3. Let 6 > 0 be a sufficiently small number
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6 such that

6(q + 1)6 log[A[ __< e.

Let /,# be probability measures such that d(/z,#)< 6. Then, for any
n >= N0, there exists w n such that

1 n--1- d(ai, a’i)ca (a, a’) < 6.
(a, a’) i=0

For A {(a, a’) A An]d(a, a’) <= d}, we have

ln--1
(a, a’) i=0 d(a,a’)>d

d a’ d

and hence

n
ca(Ac) < -6__< (q+ 1)6.

By Lemma 5.3, we have

n
s( o)

+ 6(q + 1)6 log IAI + (log IAI + 4)- + r/ - =< Be,

and hence

S( l An) S( I’ An)
n n

and hence I(/x)- S’(#)[ =< 6e. This shows that the entropy rate (/x) is
uniformly continuous with respect to the d-distance. D

We next show the d-continuity of the transformation/z ,(/z).

THEOREM 5.4. For a finite-memory stationary channel h, the output mea-
sure h(tz) is a continuous function of an input measure tz in the d-distance.

For the proof of Theorem 5.4, we prepare the following Lemma 5.5. Let h
be a stationary channel from Az to Bz with finite memory length m. Then,
the channel h canonically induces a channel a (a) from a finite space
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A[-m’n-1] to a finite space B[0’n-l] such as

h(a)(fl) A(x)(/3) for a At-m’n-l], B[’n-1],x ZZ, x a.

LEMMA 5.5. Let A: a h(a) be a channel from A[-m’n-1] to B[0’n-1]

given above. Then, for any (a, a’) AI-re’n-l] x Ai-re’n-l] with d(a, a’) <= d,
there exists a probability measure o(]3,]3’[a, a’) on B[’n-U x B[’n-1] such
that h(a)() and h(a’)(’) are the marginals of o(,/3’[a, a’) and

1 n-1 d-, - E d( fl’i ) t ( fl fl’ a a’ ) <= -ff ( m + 1).
(/3,/3,) i=0

Proof Let I, J be the subsets of the interval [0, n 1] given by

I {t [0, n 1]la a’s,Vs [t m,t]},
J {t [0, n 1][a : a’,s [t- m, t]}.

Let to(fl, fl’la, a’) be a function of (/3,/3’) given by

where /3 (/3)i, /3+ (/3s)+, 6(/3z,/3) 1 for/31 =/3 and 6(/3,/3)
0 for fli [3’, A(a)(/3j]/3I) A(a)(fl)/A(a)(fli) and so on. The direct

calculation shows that E(,0,)to(/3,/3’la, a’) 1, i.e., to(fl,/3’la, a’) is a proba-
bility measure on Bt’n-ll Bt’"-ll. Let us show that A(a’)(fl’) is the
marginal of to(/3,/3’[a, a’). The set I is represented as a union of disjoint
intervals Ij aj, b] (1 =< j =< k) such that

a <__b <=a2<=b2< <__ai<_b<= <_ak<_bk and ai+l-bi>m.

Since A has finite memory length m, we have
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So we have

This shows that A(a’)(fl’) is the marginal of w(/,/’]a, a’). In the same way,
A(a)(fl) is shown to be the marginal of w(/3, fl’la, or’). For fixed (/3,/3’) and
fixed I, we have d(i,/’i) 0 for/3 =/3’ and (/i, fl) 0 for/i 4:/3’i.
So we have

d([i, ;)(/(o)(/i))(i,/)(/(o)(j]/))(/(ot)(l/)) 0

for I. Hence we get

1 n--1

(/3,/3’) i=0

1 I11 dE -ff E d(i,[3i)to(fl, fl’la, a’) =< n < --(mn + 1).
(fl, fl’) J

Proof of Theorem 5.4. For any e > 0, let q > 0 be an integer with
(m + 1)/q < e, and d, r be integers with n dq + r (0 <__ r <= q 1). Let
6 > 0 be any real number such as q3 < e, and /,/’ be any stationary
probability measures on Az such that (,/z’) < 3. For each (a, a’)
A[-m’n-1]A[-m’n-a], let o(/3,/3’la, cr’) be a probability measure on
Bt’n-1] Bt’n-1] constructed as in Lemma 5.5. For any probability measure
(a, a’) on At-’’"-l] At-’’-l] having /(a) and /’(a’) as its marginals,

E -’)g(-,

is a probability measure on B[0’n-l] B[0’n-l] having (A(/))(/3) and



546 NAOHUMI MURAKI AND MASANORI OHYA

(A(#))(/3’) as its marginals. Then, for some , we have

ln--1E " E d(i, ri)(, ’)
(/3,/3’) i=0

(a, a’) (/3,/3’)
d(a, a’)<=d

ln-1
i=0

ln-1
(a,a’) (/3,/3’) i=0

d(a, a’) > d

d([3i, fl’i)og(fl, ’1o, a’)(a, a’)

d d n
_< -(mn + 1) +(AG)__< (m + 1) + 6__<

m+l + 2q6 =< 3e.

This shows that the transformation/z A(/z) is uniformly continuous in the
d-distance.

Proof of Theorem 5.1. It is easily verified that the channel 6 (R) A from Az

to Az Bz also has finite memory length m. By Theoreln 5.4, the conver-
gence/j -/ in the d-distance implies the convergence A(/z.) - A(/,) and
(6 (R) A)(/..) (6 (R) A)(/z) in the d--distance. Since the entropy rate (.) is
uniformly continuous in the d--distance, so is the information rate if(. ;A)=
(.) + ((.)) (( )(.)).

6. Discontinuity of information rate in the d-distance

In this section, we first show that (1) d-distance topology is weaker than
the set-wise convergence topology (Theorem 6.1) and that (2) d-distance
topology is stronger than the cylinder-wise convergence topology (Theorem
6.2). Then we construct a non-finite-memory channel for which the informa-
tion rate is discontinuous in the d-distance (Theorem 6.3). At the end of this
section, we remark some continuity properties of the information rate in the
case that the input and output alphabets A and B are standard Borel spaces.

THEOREM 6.1.
gence topology.

The d-distance topology is weaker than the set-wise conver-

To prove Theorem 6.1, we need the following second definition [11] of the
d-distance which is equivalent to the first one given in 3. The d-distance
d(/z, #) is the sup of the a satisfying the following: Given e > 0 there is an
integer N such that if K > N, then we can find two collections C and C2 of
sequences in A[0’K-1] such that/z(C1) > 1 e and/z’(C2) > 1 e, and any
sequence in C differs from any sequence in C2 in more than aK places.
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Proof of Theorem 6.1. Let {/zj} be a net of stationary probability measures
converging to a stationary probability measure/x in the set-wise convergence.
Suppose that {/x.} does not converge to/x in the d-distance._ Then there exist
a > 0 and a subsequence {/X(k_j of {/x} such that d(/z(g),/,) > a for all k. By
the second definition of the d-distance, for any e > 0 and each /x(g), there
exists a natural number N(g) such that, for any K > N(g), there exists subsets
C), C2(k) of AK and the following hold:

>(C{’)) > 1 e/2, #.(,)(C(2’)) > 1 e/2,
We have

([,.j c{2k)) =< _,(c2k)) __< e/2k= e.
k k k

Since {/x(k)} converges to/x in the set-wise convergence, we have

]j(k)(C2) -+ t(C2)

where C2 .Jk C(2k). So, for sufficiently large any k >= k0, we have

ij(k)(C2) 2e.

This_ contradicts txj()(C(2)) > 1- e/2. Hence {tzj} converges to /, in the
d-distance, rq

There exists a sequence {/xj} of stationary probability measures converging
to a stationary probability measure/x in the d-distance, but not converging in
the set-wise convergence, as follows: Let {x(J); j" 1, 2,... be a sequence of
doubly-infinite sequences x(j) {x(,,J); n e Z} in Az with A--{0, 1}, given
by

forn=-j- l(modj)
otherwise.

Let (/zj) be a sequence of stationary measures given by

l J-1

7 E a(r x")1
k=O

and/xj be a stationary measure 6(x()), where x()_ (..., 0, 0, 0, ). Then
it is easily shown that {zj} converges to/x in the d-distance, but {/xj(E)} does
not converge to/x(E) for a set of single element E {x()}.
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THEOREM 6.2. The d-distance topology is stronger than the cylinder-wise
convergence topology.

Proof Let {/x.} be a net of stationary probability_ measures converging to
a stationary probability measure /x in the d-distance. By stationarity of /X.
and /, it suffices to show that /x.(a) /x(a) for cylinders a At’"-q in
order_to prove that {/x.} converges to/x in the cylinder-wise convergence. By
the_ d-convergence of {/xj} to /x, for any e > 0, there exists J0 such that
d(/x,/xj) =< e (j => J0). For/x. (j => J0) and any n there exists to ,_,n(/x,/Xj)
such that

fA[ __1 nl d( o/i, oti) do)( o/ o’) __.< E
n-1])<A[o,n-1 n

i=0

which implies to{(a, a’) A x Anla a’) <__ ne. We have_, to(a, a’) <= to(a, a) + ne.

In the same way, we have/x.(a) =< to(a, a) + ne, and hence

I/x(a) -/x(a)l =< 2ne (J >_-J0).

Therefore {/x.} converges to/x in the cylinder-wise convergence.

There exists a sequence {/xn of stationary probability measures converging
to a stationary probability measure /x in the cylinder-wise convergence, but
not converging in the d-distance, as follows" Let/X be a stationary probability
measure of positive entropy rate g(/x) > 0. There exists a sequence {/xn} of
stationary probability measures of entropy rate 0, which converge to/x in the
cylinder-wise convergence. Since the entropy rate is continuous in the d-dis-
tance, {/xn} does not converge to/x in the d-distance.

THEOREM 6.3. There exists a stationary channel for which the information
rate is discontinuous in the d-distance.

Proof. Put A B {0, 1, }. Let us construct stationary probability mea-
sures {/xp; p N} and/x on Az and a stationary channel , from Az to Bz

such that/Xz, converges to/X in the d-distance but I(/xp; A) does not converge
to /(/x; ,). Let fi(P: Az Az be a mapping defined by

,
Y =fi(P)(X) Yn Xn

for n (mod p),
otherwise,
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for x (Xn), y (Yn) AZ" Let/x be a probability measure on Az

the infinite direct product of an identical probability distribution
given as

1/2 1/2 0

on A, and be a probability measure on Az given by

lP-1
I.I,p -- iO fAzi(fi(p)(X ) ) dl,z( x )

Considering a probability measure tOp

on_ AZ Az, for which /x and /Zp are the_ marginals, one can prove that
d(Ix, tZp) <= 1/p and hence/zp /z in the d-distance. Let h be a stationary
channel from Az to Bz given by

fo, U x
i=0

otherwise.

After some calculation we get [(tZp; A) (p D/p.and [(/z; A) 0. Hence
the information rate/’(Xp; h) does not converge to I(x; h). rn

As a final remark, let us generalize our results in the finite alphabet
situation to those in the standard alphabet situation. Let A, B be standard
Borel spaces, namely, Borel subsets of complete separable metric spaces. We
call them standard alphabets. The concepts of entropy rate and information
rate can be suitably defined for communication processes with standard
alphabets (see [4] and [14]). We can naturally define the set-wise convergence
topology and the cylinder-wise convergence topology for the set of all
stationary probability measures on Az. As proved in [4] the ergodic decompo-
sition of the information rate still holds in the standard alphabet situation. So
we can prove the continuity of the information rate in the set-wise conver-
gence of input probability measures for a stationary channel h with finite
capacity, in the same way as in 3. We can also prove the that the set of zero
points of the information rate is dense in r(Az) in the cylinder-wise
convergence topology by the direct approximation of any measure /z

r(Az) with the measures of information rate 0.



550 NAOHUMI MURAKI AND MASANORI OHYA

We are now studying the continuity of the information rate in the -dis-
tance topology, where iS-distance is given in [6] and [7] as a generalization of
d-distance to the standard alphabet situation. We are also studying the
continuity of the information rate for asymptotically mean stationary proba-
bility measures [5], using the results of [1] and [2].
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