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THE HELICAL TRANSFORM AND THE A.E.
CONVERGENCE OF FOURIER SERIES

I. Assant!

Introduction

Let (X, &, u, ¢) be a dynamical system, u being an invertible measure
preserving transformation on (X, &, u). The helical transform H,f(x) of
f € L'(uw) is the limit a.e. of

n k 2mik6
Hrf(x) = 3 LEX)TT

k=-—n

for each ¢ fixed. The existence of the limit is known from the results of A.
Calderén [3] and M. Cotlar [5]. (The notation ¥; means that we delete in the
sums the term corresponding to j = 0.)

DEerFiniTION 1. A measurable function f satisfies the Wiener-Wintner
property (with respect to the dynamical system (X, %, u, ¢) if there exists a
single null set N € X off which the limit H, f(x) exists for all ¢ € R.

DerFiNITION 2. A measurable function f satisfies the strong Wiener-
Wintner property (with respect to (X, %, u, ) if off a single null set
¢ = H_f(x) is a continuous function.

By taking an invariant function (i.e., f o ¢ = f) the discontinuity property
at 0 of

d eike

k

k= —o

shows easily that not all functions satisfy the strong Wiener-Wintner property
(S.W.W.). This property (S.W.W.) is more likely to hold when we are outside
the Kronecker factor of ¢ (i.e., the closure of the linear span of the
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124 1. ASSANI

eigenfunctions of ¢). In [2] we showed that the property S.W.W. for all

functions in (7 — ¢)(LP) for all 1 < p < = is equivalent to the strong (p, p)
property for the maximal operator

X —t

-

m pint
sup f e_fLQ_ dt
n

(Carleson-Hunt theorem [4], [6]). The space (I — ¢)(L?) is the closure in
L? of the set of functions f — f o ¢. The dynamical system in [1] was the shift
on [0, 1]%. We also proved in [1] that the Wiener-Wintner property fails in
L(LogLog L)P for any 0 < 8 < 1. One of the tools for these proofs is the
double maximal helical transform

‘Vn-“/ f(‘Pk(x))eiks

k=-n

.

H**f(x) = sup sup
n

€

Its discrete analog is H**a defined by

n . ike
5 ay_;e
k

k=-n

H**a(j) = sup sup
n &

One way to study H**a is to study first the maximal discrete helical
transform H*a

© ike

ak_je
Y ——|

k= —o

H*a(j) = sup

In [2] we proved the formal equivalence of the L? boundedness of the
maximal operators corresponding to the partial sums of Fourier series, the
range of a discrete helical walk, partial Fourier coefficients and the discrete
helical transform. In the same paper we proved that the maximal operator
associated to the partial Fourier coefficients I* is not strong (p, p) for
1<p<2

We are going to prove here the formal equivalence of the strong type
(p, p) estimate of H**f, H**a, H*a, the partial sums of Fourier series of
L? functions and the maximal operators used in the proofs of the main
results in [1] for 1 < p < . An estimate of the constant involved allows us to
“extrapolate” using a result of [8]. We show that H**f € L! if f € L(Log L)*,
and give an exponential estimate of H**f for f & L, and prove that
H**f < w a.e. if f€ L(Log L)* by a weak type inequality. This will allow us
to extend one of our previous results in [1]. We also prove that the property
S.W.W. in L Log L for the shift on [0, 1]% implies the a.e. convergence of
Fourier series of functions in L Log L.
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Let us say that the methods used to establish these equivalences are
certainly familiar to experts in harmonic analysis and Fourier series. As it
may not be the case for specialists in ergodic theory and dynamical systems
we give what we believe are self-contained proofs. At the same time we will
obtain an estimate of the constant (C(p®/(p — 1)*)in L?, 1 < p < ) which
will allow us to “extrapolate” in the Lorentz spaces L(Log L)*. It did not
seem to the author that these connections are direct when we are dealing
with Lorentz spaces of the type L(Log L)*(L(Log L)). More precisely, the
introduction of double supremum

i, f(¢kX)eikE

sup sup|H; f| = sup sup %

n € n €

k=-n
which in the case of the shift on Z translates to
ike

" ag.ge
R

k=—-n

H**(a)(j) = sup su

n €

seems to give a more restrictive class than the single supremum

ike

0
, Gyge
X T

k= —o

H**a(j) = sup
£

Knowing that the partial sums of the Fourier series of functions in one of the
spaces L(Log L)*(L Log L)” are bounded a.e., does this imply that H**(f)
is also bounded a.e. for f in L(Log L)*(L Log L)”. We have in mind here
the result of P. Sjolin [6] on the a.e. convergence of Fourier series in
Llog LLoglog L.

As pointed out by the referee, another interesting point about these
connections is their simplicity while each maximal inequality is so far difficult
to prove.

The results

THeEOREM 1. The following are equivalent for p real, 1 < p < o,
(i) Partial sums of Fourier series (Carleson-Hunt [4], [6]).
For f € L?[—w, 7] let

i f(ye

j=-n

S*f(x) = sup

n
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Then there is a constant C such that
WS*fllLog—m,m) < CliflliLoi—m,my forallf € LP[—m,m].

(ii) Maximal helical transform on I°.
For a € I1°(Z) and ¢ € R define

i(j—k)e
* e a;_i

Hea(j) = Z' k -

k=—o

and
H*a(j) = sup |H,a(j)|.
e€R

There exists a constant C such that
|H*all;» < Cllall;» foralla € 1P(Z).

(iii) Double maximal helical transform on 1*.
Fora €1°(Z) and ¢ € R define

z,,:, eili=heg.
k

k=-n

H**a(j) = sup sup
n E

Then there is a constant C such that for all a € 1°(Z)
|H**a|pzy < Clalirz,.

(iv) Double maximal helical transform for a measure preserving transforma-

tion.
There is a constant C such that for all dynamical systems (X, &, u, ¢) and
all f € LP(u) we have

n k
sup sup )./ i—f q;(x) etke
n

& k=-n

< CIfl,.
p

(v) Double maximal estimate for “the ergodic Fejer sums”.
There is a constant C such that for all dynamical systems (X, &, u, ¢) and
all f € LP(u) we have

< Clifll,-

p

' |k| ‘ka ike
sup sup 3. (1—n+1)f(k )e"
n & |kl<n
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(v) Double maximal estimate for a measure preserving flow.
Let {T,: —» < s < x} be a measuring preserving flow on a measure space
(X, B, n). For f € LP(X, B, u) define

e f(Tx)

H**f(x) = sup f 5
N<l|s|<1/N

N, e

There is a constant C such that for all measure preserving flow we have
1 #**fll» < Clifll,.

(vii) Carleson Hunt estimate.
For f e Lf_, ., define

P*f(x) = sup

nez

f ‘”‘f(t) arl.

—TT

There is a constant C such that for all f € L?[—r, 7]
IP*fll, < ClIfll,.

Proof. We will prove the following implications: (i) « (vii), (iii) = (iv),

@(iv) = ), (iv) = (vi), (vi) = (vii), Giil) = (i), (i) = (vii), and (vii) = (ii).

(i) « (vii) is certainly well known; (vii) = (i) is a consequence of classical
calculations involving the Dirichlet kernel and the Hilbert transform (see [7]
for instance). The implication (i) = (vii) can be proved by also using the fact
that for f € L?[—m, 7]

(=)

F = X e and fi(x) = L fe
J=—o j=0
are also L?[—1r, 7] functions (L?[—, 7] admits projection).
(iii) =>.(iv) can be obtained by a standard transference argument. For
a; = f(¢’x) we have positive integers N, L so that

n ei(j—k)ef(‘Pj——kx) P
)y x

(2N + l)f sup sup dx

Xn<L ¢

k=-n

= Z fsupsup

]——N Xn<L ¢

n i(j—k)ef((Pj——kx) P
k

dx

k=—-n

<C Z f|f(<p’x)| dx

j=—N-L
= C(2(N + L) + 1)IIfll,.
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The result follows by dividing by 2N + 1), and letting N and then L go to
infinity.

(iv) = (v). This is a consequence of the following equality and the well-
known strong ( p, p) estimate for the ergodic averages. We have

Z f(‘P x) eike — Y (1__ k| )_]_c(‘Pk_kx)eike

n+1

k=—n |kl <n
n

ike __ (f((P_kX)e_ike.

(iv) = (vi). We can approximate a flow by times § map of discrete measure
preserving transformation as we did in [2].

(vi) = (vii). It is enough to consider the particular case of the flow of
translation on the real line.

(iii) = (ii). Obvious (take a with finite support).

(i) = (vii). It is enough to show that there is a constant C such that

0

f sup

—®0<ex<1

f“’ e’“f(x - 1) dt

dx<C- fjw|f(t)|pdt

for step functions of the following type:

W] =

f= kZ A Y /N, k41N 0< N =

These functions are dense in L?(R):

fls‘:p f:w dt dx
= i fl/NSl:p kzwe,ksm[lfj;vlvewtf(x +t(_|{ k—//](v)/N ) p pdx
= p oofol/angp k_z_welkS/Nfljj:Nemf(x +t(4{' ]:/I;\?/N —t) dtrdx
+ 11//3ij E k_Z_melke/Nflfj;VNew‘f(x +t(-: ;//;?/N ) p pdx
+ 1’//2’;&:1) k;welkemflﬁl,emf(x +t(JZ I:/l;\])/N Dl .
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We will treat the first term and show how to get similar estimates for the
two others.

]_Z_mfl/msup k=-o wk/Nflfj:Nemf(x +t(4{ I-c—/l]c\l)/N D 4 pdx
<C Jém [01/3NSl:p k i e j’_lfj:"Ne’"f(x £ 1:/1;\/) b, f
+1_§_wf s kéwei“‘kﬂv :ll//zji"ei”f(x +t(+j1://]€V)/N L)) dtrdx
+,§wa sup kiw eiek/N 11//32NNe““f(x +t(-}{;/’;\7)/N t) dt‘ ]

Here again we will treat only the first term in detail; it is less than

. 14
C i [1/3Nsup i' 4—————ewk/N'aj-k fl/w e dt| dx (1)
j=— 0 £ k= —o0 k/N -1/3N
hd 1/3N 1/3N e'¢!
+ la;|” - dx 2
,_Z_mf f-—l/3N 4 [ﬂ S
1/3N 2 elk/N.g. 153N ety "’
' J
+J=Z_mf0 sup k;_m e i LT E/N| & G)
(1) is less than
o o iek P . 4
1 v e a |sin(e/3N) |,
L j=2—:oos‘:p kEoo k ) r lel”

1 o
<Cx T lal = ClfiE.
k= —o

For (2), a direct computation shows that

1/3N
[ s
0

O<exl1

p

1/3N e'!
[N | ax <

—138 ¢

210

dt

Notice that | /1y e’/tdt| is taken in the principal value sense: it is equal
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to
. 1/3N e'st — g~ist 1/3N sin et
lim ———dt|{=C " lim —dt].
50 f t ‘ 50 fs t
For (3) we have
1/3N o uke . 1/3N eiett i
su dt| dx
];_wfo Ep B k/N f1/3Nt+k/N
c la;_l
S —_— ’
NE X e

and

Z/ Ia;(—zk|'p % Z |ak|p ‘”f”f»

k= —o

The other two terms can be treated similarly (by the same splitting).
It remains to show how to estimate

1/2N ikesN (172N €°'f(x + (j —k)/N —t)
e dt| dx
'I;/SN e kgz_°° '[1/2N t+k/N
and
1/N gike/N [1/2N e'f(x+ (j—k)/N—1t) gl
/;/Zngp f 1/2N t+k/N '

The control of these terms is similar. Again picking the first we can split

[1/2N' e“'f(x+ (j —k)/N —

t)
dt
12N t+k/N

into two terms, [, ,5 and [}/?". Then we treat the corresponding terms as
we just did. For the first integral, x — ¢ is positive and we have a similar
situation; for the second integral, x — ¢ is negative and the resulting actions
is a shift of the sequence (a;) to (a;_,). This proves (ii) = (vii).
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(vii) = (iii). We need some notation. Let

1 (1) 1 f()
Hf(x) = _,,,tan(x — t) dt, an(x) B n<|x_,|<,,tan(x - t) dt,
N _ 1| ™ _e*'f(1) :
H() = s o[ fante =y

in fact, H*f(x) is equal to

17 _ef(e)
e ) angx =y

see Lemma 4. For f &€ L?[—m, 7] and H, f(x) = sup, ., , H,f(x) we
have (see [7], p. 120)

H,f(x) < C(Mf(x) + M(Hf)(x))
where M is the Hardy-Littlewood maximal function. So
(4) Hy(e™'f)(x) < C(M(If1)(x) + M(HI(e™'f)(x))
< C(M(If1)(x) + M(IH*fl)(x))

and

< Clifll,

p

sup H, (e*'f)
e€Q
because (vii) implies that H*f is strong type (p, p)

1 1 ®
(tan(x—t) Tx—t EL)‘

‘We have also

1 eiet t
sup sup —f —f_—(—tldt
n e€Q T In<lx—tl<m ¥ p
1 eiet t
=| sup sup — —fT(-)— dt|| < Clfll,.
) ceR T /n<lx—tix<e ¥ t p

This can now be extended to L?(R) (by change of variables and functions, for
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instance) to obtain

© 1 eistf(t) » »
- ———=dt| dx < C | dt.
[ spsw|zf 15!
As
1 oo eiet t
sup [~ AP e Lrw

e€Q
we deduce that

=]

f sup sup
—® n g€R

1 eietf(t) o ,
_fo<lx—tl<n x—t dt’ﬂdxscf_m'f(t” dr.

Now we take

£(t) = a, ifk—-1/8<t<k+1/8, kel
0  otherwise.
We get
>~ [ ef(1) .
Cllallf z = sup su VACO N e
1(Z) j;_mfo ep 17p j;<|j+x_”<nj a—

0

f sup sup

—w ¢ n

eistf( t) d [” dx

'/;)<|x—t|<17 x—t

eiel

i flsup sup

j=— 0 ¢ n

'[0<lj+x—tl<11

© 14
X Z akl[k—l/s,k+1/8](t) dt| dx
hd 1/8
ZZf/ sup sup Y g
j=—0"0 —1<e<l n ||k—j|<[n]
ke (1/8 e'et ’
. pike e —
e f_1/8j+x_k_tdt dx
© 1/8 a eiks
=¥ f / sup sup| Y jk__ %
j==0"0 —1<e<l 7 ||k—j| <[n]
18 . 1/8 e (x —t
% ,[/ e;kedt__f/ __S_k_)dt
-1/8 —1/8x TI—k-—t

L. 1/8 eiet
+e"sajf/ + 7 dt| dx.
..1/8x
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Because

-1<e<1

1/8 1/8 e'et
f / f / e_ de | dx
0 —18% ~ 1

is a finite absolute constant and [/} ¢e’** dt is bounded below by an absolute
constant the result follows from noting that for x € [0,1/8],

. e*eq 1/8 e*'(x —t i
Yy —Fk Ié‘[f B € 2l ) MY

- x+j—k—t
lk—jl <tn1 ? 1/8% +J

, la,| (178 1
D ey

; dt
lk=jl <[n] _1slx +i—k—tl

o

Y  sup sup

j=—o —1<e<l n

<C ) sup sup

j=—o —1<e<1 n

14 4

© a ot |a, |
<C Y sup| Y ,l "|2 <C Y swp| ¥ —
jm=o |1kl <tn) [ ~ Kl === n |kistm
o oo |alk+" P
<C Y | X —| = lalfg.
Pl il

CoroLLARY 2. For all p, 1 <p <o, and all dynamical systems
(X, &, u, ¢) we have

n,

supsup Y,
n &€ k=-n

k
f_(_";ci)eike < C———P——4||f||p

6
p (p-1)

forall f € LP(u).
(The constant C does not depend on p or any particular dynamical system.)
The same estimate holds for invertible measure preserving flow; we have

ef(Tx)

N #**fll, =
Flls st Is| <1/N s

6

14
< C———lIfllp.
, T (p-1D' T

for all f € LP(u) and all measure preserving flows T, on (X, &, p).

sup
N,e

Proof. In [6] Hunt proved that the maximal operator P*f(x) in (vii) of
the previous theorem satisfies a strong type (p, p) estimate with a constant
5
» < —p—3 - constant.
(p-1)

A look at the proof of Theorem 1 and keeping track of the constant shows
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that the constant in (iii) is the same as the one for H**f(x), the double
maximal helical transform. The constant in (iii) is less than

o

p-1)°
because of the Hardy Littlewood maximal function M (inequality (4) in the

proof of (vii) = (iii)). The same conclusion also holds for measure preserving
flow by again using discrete approximations of the flow by times § map.

constant -

THeOREM 3. (i) For all dynamical systems (X, %, ., ¢) (u(X) = 1), (resp.
all measure preserving flows), we have, for each fe L'w) such that
LIFGONIn*4|f(o)l du <+,

fsup sup ): f(q;cx) *eldu < C(l + flf(x)lln“lf(x)ldu)
n € k=—n
ict T
(resp. Sup sup f f——f—(;-—'—xldt d
n e |"l/nsltl<n

< c(1 ¥ Llf(x)|1n+4|f(x)ldu))-

(ii) There exist positive constants A, K, C such that for all dynamical systems
(X, F, p, ), (W(X) = 1) we have, forall f € L,

fexp(A sup sup Z, f((P x) e'ke )du <K
n £ °°
and
n, ky)eike A
u{x:supsup Y ﬂ?#)—- >/\} SCCXP(—C#;/—Z)'
n € k=—n ©

Proof. (i) and the first part of (ii) are direct consequences of Corollary 2
and the extrapolation result found in [8, vol. II, p. 119]. (The proof in [8]
works also for sublinear operators.)

For the second part of (ii) we use Corollary 2 and some ideas in [8, p. 119].
We have

sup sup
n &

Z tlsf(¢ )‘

|l <n

L < &2l
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for, say, p > 2. Then for k an integer, k > 2, we have

Nou{x : |[H**F(x)| > A} < [IH*f1* dp < IfIE - C* - k2
and
AKIfIZEC =2k (x| H**f(x)| > A} < 1.
As k72K > e72k . 22K((2k)1) L, we have

o ATKC e .
> (2k)! pl{x:|H**f(x)| > A} < ngz 2k

k=2
and

e —2k(“f”l°/2)—2ke_2k
y (2k)!

s

w{x:|[H**f(x) >} <1
k

The conclusion follows by noting that for A > A,

3 ‘/)TZk‘/_C__Zk f”io/z —Zke_Zk ~ 12y~ 1
kgz (gk)! ) = CCXD(\/X - (VCIIfIE?) )

and for 0 < A < A, the same type of inequality holds. O

The last proposition already allows us to improve one of our results [1] on
the shift on [0, 1]¢ for functions in L(Log L)* More exactly, we can show
that for this shift and f € L(Log L)* when f satisfies W.W. and f — [fdu®
satisfies S.W.W. We want to prove that these W.W. properties hold in fact
for functions in L(Log L)% To achieve this goal we need to extend Hunt’s
basic inequality. But before that, to avoid any measurability problem by
dealing with a supremum on an uncountable set of measurable functions we
will prove the following lemma:

Lemma 4. Forallp,1 <p < «, and all f € LP(R), there exists a single null
set of which

o0 eist

Hf(x) = f_wT:(‘il dt exists for all & € R.

(In other words, the flow of translation on the real line satisfies W.W.)



136 I. ASSANI

Proof. There are several ways to prove this lemma. One way is to exhibit
a dense set of functions where the property W.W. holds and then use the
strong (p, p) estimate of H**f. The dense set is easily provided by the
continuous differentiable functions with compact support. Now let us take g;
such that ||f — g,|l, = ,0, g; continuous differentiable with compact support.
We have

iet iet
x : sup | lim sup €I 4t timint e 1) 4
£ y—0 “lx—t|>y X y=0 Jx—ti>y ¥ t
eiet -g: t
C { x: sup|limsup ——(f—_——t’)—()—dt
& y—0 “lx—tl>y X
eiet —g.)(t
y=0 Jix—t|>y x—t

for each j

f ei“(f—gj)(t) dt

l x—t

C {x:2sup sup
e

|

f e (f - g)() dt'} _0

lx—tl>n x—t

x—t|>n

and

limu{ x : 2sup sup
j & n

because of the strong type property of H**., 0O
We can now extend Hunt’s inequality

ProrosiTiON 5. For A c[—, ] let

o plet t
f € 1A( ) dt
x—1t

H*1,(x) = sup

eeRI|” —»

Then there exists a constant C such that

2

pl{x € (—m,7); H*1,(x) > A} < (%pp_ 1) wu(A)

forall A c (—m, ).
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Proof. Hunt’s basic inequality says that

2

} < (cp”_ l)p)r 1(A)

f lntlA(t) dt

ey X

,u{x € (—m,m): sup

nel

forall Ae(—m,m)and all p,1 <p < 2.
From this we deduce first that

. mtl
/ € A(t) dt

-

(1) p,{x € R: sup

nez

p* \
} < (Cp — 1) A7Pu(A)
This is because
u{x € R: H*1 (x) > A}

= Y ulx € (—m+2km,m+ 2km)  H*1,(x) > A)

k= —o0
A'}

. int
/ % dt >

Xt 2km—t

Z /,L{xe(—q-r ) sup

k= —o

and for |k| > 2 we have

™ e™1,(1) T e™1(1) ™ 1,
7 el My ey LA e el
SO
. eintl (t)
Y ,u{xe —ar,r): sup — A g >/\}
k| a2 ( ) nez /_Wx+2qu—t
T eintl (t) A
Y /.L{xE(—w,w):sup S gy >—}
Kla2 nez f 2k 2
1,(¢
+ Y u{xe(—w,w):c‘f A()dt‘ 2}
[kl =2
o mA (1Y P>\ u(4)
_C=Z_w G (”m' <\Co=1| Y
The case k=0 is clear. For k=1 or k= —1 we can use a periodic

extension of 1,. Hunt’s basic estimate holds for periodic functions. Now for
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any set B C [—k,m, ko], k, positive integer, we have

) (o) 2

'/_,n. elntlB(t) dt

x — p—1 AP

T

(2) u{x € R: sup

nelZ

As 15(kgt) is the characteristic function of a set included in (—r, 7), by (1)
we have

w e (kot _ p? P
u{xeR::gg j m—x'*—")—dt >A} <A P(cﬁ) f_wlB(kot) dt
and

© ein(t/ko)]_B(kOt) }
umix €R: sup ——dt| > A
{ nez f X — t/ko

2 p
- D 0
<A p(cp—_T) ,[_‘”]'B(kot) dt.
This implies that

o int/ko)] (k.t
f e B( 0 ) dt| >

x_t/ko

:

The conclusion in (2) follows by the change of variables x’ = k,x. Now the
conclusion of Proposition 5 follows easily. It is enough to show that for each
m positive integer

;u,{x € R: sup

nezZ|” —x

2 14
- 14 "
<A p(cm) f_wlB(kot)dt.

[w ei(k/z’”)tlA(t)
X —1

>)¢} (c ks )m(A)

But this is now an easy consequence of (1) and (2) (after changes of variable
u=t/2" x' = 2™x). We have the following corollary:

p,{x € R: sup
keZ

COROLLARY 6. There exists a constant C such that

fﬂ sup

—megeR

ar eistf(t)
[

& < 1+ [I£C) 1172 ()| du|

for all f € L(Log L)>.
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Proof. We can use the Lorentz spaces L(p,q) as R. Hunt did in his
remarks (p. 235-236). They are a modification of [8, p. 119].

THeOREM 7. Let (X, &, u, ) be a dynamical system on a probability
measure space. There exists a constant C such that for all f € L(Log L)* we
have

ples B ()] > 2) < fifld + 5 (14 176011072 £(6) )

g

for all A > 0. This, because of the following inequality we already used:

eietf( t) gt

j(;<|x—t| <7 x—t

Proof. Using Corollary 6 we can get the inequality

tetf(t) dt

x -1

(3) ,u.{xE(—w,w): sup supf

O<n<weeR|70<Ix—t|<n

< —f—fm dp + %(1 + [IfI(x)In*2Ifl(x)| d#)

sup Ssup
0<n<wme€R

< C(M(Ifl)(x) ; M(supj U] dt))

where M is the Hardy-Littlewood maximal function. We want to transfer (3')
to the ergodic setting.
Let (a)): |jl <J be a sequence of real numbers and

J

(=% a1 /874miy0,my8+miyny(t)-
j=—T

_ km jw | T w
V_{(Ix+_.f——7——t <n)n(_7_ 8_)}
By (3) we have

etet . eis'rr(j/l)aj
E fx+k1'r/J—j17'/J—t

7
Y ,u,{xe(O,%): sup sup dt

k=—J 0<n<me€H

:

>|Q

J
T C
Z g7t

1+ 8] Z la;| - ln+1|a|)

j==7J
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Now we have the following properties:

eiet . eie'rr(j/./)a .

E .[x+k77'/J—-j’n'/J}—t

j==J

ict

f e’'f(t) dt Sl
0<lx—t|l<n x—t

(4) u{xe(O,—g—TJ—): sup sup

0<n<wle|<J

dt

:

su{xe(o,w/J): sup sup

0<n<wmeeR

- etet . eierr(j/J)a.
) I e e e L
_,n,/gjx+ T/ jm/ t
/8] eiet
= —F——dt
_ﬂ,/sjqu/] —jm/J
iet —t
_fﬂ/sj km — & )kw' — jr dt
B B
and
(6) inf fﬂ/w et dt| =y f”/w e (x 1) dt
lel <J |’ —m/8J - —w/SJ(k”'J_J’”)(k‘"';J’"' +x—t)
—t 2
sC/"/gl Al L AR
—mw/8J

(k'rrj—j‘rr)z I* (k=-j)

for k # j and x € (0, w/8J). Finally

J - ie’ja.
(A) Y ou xE(O,W):sup sup | Y | > ek
j==7J n<J || <1||k—j|sn J
cl| < T C T _
< T(}_E}Ia,l ' W) + 7((1 + 37 =E_ la;| In 2|a,~|)
J le’] la;|
(B) + Y u{x e( _g*n'_) sup| Y’ > BA
k=—J n=<J||k—jl<n (k —])
(D) » (0. 57): i
+ X € . sup sup — t| >
k=-J 87 O<n<miel<1172¥ !

where Z = {(Ix — ¢t| <) N (—=w/8J,m/8J)} and a and B are constants
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independent of J, k, j and A. We have

T |aj|
(B) —card{ke( -J,J):| Y ——|>BA
8/ o <s (k—=i)?
and
c i +2
(D) ZI 7+ 7|1 —7Za|1n la,l |.
j=—J
Then by (3) and the equality
(D) = XJ: " Jce(jz M) sup sup feie,taj dt| > BA
Bl J J . 0<n < o'| <1 Wx -t
where
- —rymom Gt D
_{(Ix t|<n)n(8J+J,8J+ 7 )}
we have
J . . let
jm (J+ D= f(t)
Y ;u,{xe(——,—): sup sup =2 dt| > BA
k=—-J T J 0<n<w || <1 [x—tl<n * 4
ie't
=M{xe(—rr,7r): sup sup f fxi—(tt)dt >BA}
o<n<w|e|<1]| lx—tl<n
where
J - amj Tj
f(t) = k;]ajl(—gj— + T 8’7 + T)(t)
So
ie'j
(B) %card ke(=J,J): sup sup | Y € %S an
O<n<mw|e|<1||k—j| <J —J

™ la;l

d{k
<2(A) +3 car{ e(-J,J): ;k_,|51(k—1)

> /3/\}
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Now suppose (X, &, u, ¢) is a dynamical system and f € L(Log L)?. If

a; = f(¢'x) forljl <J,
=0 otherwise,
then

Z 1e’lf(¢l+k 2

n<N|¢|<1||l| <n

8] {ke( —J,J): sup sup

> aA}

( z |f(¢’(x)|) (1+ 37 » |f(¢’(x)ln+2|f(¢’x)|)

j=-=J j=-J

+%card{k e(-J,J):

for each fixed integer N < J.
By integrating both sides of the inequality with respect to u we get

ynx card{(x, k) : HYf (x) > a)
flfldu + = (1 + 4f|f(x)|1n+2|f(x)|d”)
l+k
Af Z If(¢ ld w(x);

]=—o

because ¢ is measure preserving (card is the counting measure on Z),

tel l+k
HYf(x) = sup sup f ¢
nsN|e'|<1||l| <n
As
J
p X card{(x, k) : HYf(x) 2 aA} > ¥ p{x HYf(x) > A}
k=—J

= (27 + Dufx: HYf(x) > A)

the conclusion of Theorem 6 now follows easily.

As an application of Theorem 6 we can improve one of our results in[1] on
the shift on [0, 1]2.
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CorOLLARY 8. Let ¢ be the shift on ([0,1]%, Bl0,1]%), u%). For any
f € L\(u?) such that

JIf () ln*2 f(x) | dp < o0

we have the following :
() f satisfies WW.;
(i) f— [fduZ satisfies SW.W.

Proof. (i) We know by [1, Theorem 7] that any f € L?(u%) satisfies W.W.
and f — [fdu? then satisfies SSW.W. Let f, € L?(u%) be such that f — f,
— ,0 a.e. For each positive integer k we have

sup(]lm Y Lxl e _ lim Z f(<P x) ,ke)

n k=-n n k=-n

<2supsup| ¥ M‘l ke
e |1
So
{x:sup(lim LI W g ) ,ke) >0}
e\ n k=-n it
“ {x:ZSﬂPSgP 12 M ike }foreachk
But
{x:ZSup ap| £ (U M}

2§af|f—fk|du + %(1 + [alf = fil ln+2a|f—fk|dp,)

for each a > 0 fixed.
Letting k go to infinity, for p = A /a we get

fl (f_fl;)(‘Plx)eile >p

I=—-n

li]lcl‘ll.l,{x :2sup sup

n &
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Now letting a go to infinity we obtain

£ =1

I=—-n

lillcnu{x:2sup sup

n €

> p} =0.
This proves that

{x:sup[ﬁ i’ ﬁ%ll)-eiksli_m \2“/ f("?(kxzeike]}
e k=-n k=-—n

is a null set and f satisfies W.W.

(ii) The function g: f — [fdu? belongs to

(I — ¢)(L'(n*) (closure in L' of the set (I — ¢)(L'(u?)))
={g-g°p;8 € Ll(p")}.

As (I — ¢)(LP(u*)) is dense in L' norm in (I — ¢)(L'(u?)) we can find
functions g, € (I — X LP(u?%)) such that g — g, — a.e. As g satisfies W.W.,
for each n and 6 > 0 we can make sense of the following inequality:

sup IHsg(x) —Hs’g(x)l

le—¢'| <&
= | SuF (‘He(g - gn(x)| +|Hs'(g - gn)(x)l +|(He - Hs’)gn(x)|)‘
e—¢'| <8
We have
m, g-g, kx ;
|H(g - 8.(0)| | Ho(8 - 8,)(0)| < 2sup sup| T+ LEZEEE) o]
m € (k=-m

Using analogous arguments as in (i), we get that off a single null set

lim sup [|H,(g— g.(x)| +|H.(g —g,)(x)|] =0.

n je—¢'l <6
For the last we use the continuity of ¢ = H,(g,)X(x). Finally we have

lim sup |H,g(x)—-H,g(x)|<0(1)+0
-0 ¢ <s

which proves. (ii).
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Remark 9. We do not know if the partial sums of the Fourier series of
L Log L functions converge a.e.

ProrposiTION 10. Let .2 be the space L Log L and ([0, 1]%, B[O, 11%), u%, ¢)
the dynamical system where ¢ is the shift on [0,11% If for fe £, g =
f — [fdu® satisfies S.W.W. then the partial sums of the Fourier series of
functions in £ converges a.e.

Proof. As in [1], S.W.W. holds for functions g = f — [fdu? where f € £
implies that

Xn:/ h(¢kx) eike

sup sup %

n €

<w ae.forallh €. Z.

k=—-n

This follows from the uniform convergence of the “ergodic Féjer sums” and
the Wiener-Wintner property for the Cesaro averages. They are related to
the helical transform by the formula

n/ h((ka) ike ’ Ik| f((ka) ike
Y —ge —Z(l—n+1) k€
k=—n |kl <n
1 nl k ike
T n+i )y fletx)et™.
k=-n
On .= L Log L we can define a norm || ||, where

_ [lex Y o (YL s
i, = ['f (t)log(t)dt—fo(tfof (s)ds)dt
where f*(¢) is the decreasing rearrangement of f defined on [0, «]. We have
() =inf{A:pn,(A) <t}, 1= Owith p,(A) = p{lf(x)| > A}.

By Banach’s principle there exists a decreasing function C(A) defined on
[0, ], C(A) = 0, A = =, such that

i/ f(q;:x) eike

/.cz{x : sup sup

n & |k=-n

> AlIfl *} <C(A).

The shift y being aperiodic by the well-known conjugacy lemma, the conju-
gate @S ! of ¢ are dense in the weak topology. Since [IfS; !l = IIfS, Il «
= |Ifll «, for all dynamical systems on a probability (Q, a,,v) measure
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space isomorphic to ([0, 112, B[0, 1]%), u%) this gives

ir fg‘Pkkx) eiks

n £ k=—n

v{w:sup sup >/\|Ifll*} < C(A).

Approximating again a flow by times & map gives the same type of inequality
for any measure preserving flow. In the particular case of the flow of
translation on the real line this implies that

f e“'f(x —t) &t
1

v{x € [—m,m]: sup sup ;
/m<ltl<n

n €

> Alfll *} <C'(1)
and then

fe

>A”f"*} Sé()&).

v{x e[-m,m]:sup
n

This gives the a.e. convergence of the partial sums S, f.

Remarks 11. (a) Another consequence of Proposition 5 is an improve-
ment of (i) in Theorem 3. We can prove that H**f € L' if f € L(Log L)*.

(b) At the present time we do not know if H**f <o if fe
LlogLlogloglL.
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