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LARGE DEVIATIONS FOR NONSTATIONARY ARRAYS
AND SEQUENCES

J. R. BAXTER, N. C. JAIN AND T. O. SEPP,L,,INEN

1. Introduction

In the present paper we shall prove several results which apply to empirical
distributions and empirical processes for nonstationary sequences of random
variables. Our first result, Theorem 5.1, which deals with triangular arrays,
will be derived from a theorem of Kifer [8], which gives a criterion for the
large deviation principle to hold. Kifer’s result is stated below in a general
form as Theorem 3.5. A geometrical proof of Theorem 3.5 is given in [4].
Theorem 5.1 applies in particular to arrays of independent variables, as is
pointed out in Corollary 5.4. Another criterion for the large deviation
principle to hold is given in Theorem 6.5, which is a generalization of a result
proved in [4]. Applications of Theorem 6.5 are given in Corollaries 7.1 and
8.1. Corollary 8.1 implies a large deviation result in the nonstationary
hypermixing case, Theorem 9.13. In Section 10 it is shown that the results of
this paper can be applied to the case of an independent sequence whose
distributions are quasi-regular, in particular when the distributions are gener-
ated by a stationary random process.
A compactification argument will be used in the proofs of Theorems 5.1

and Corollaries 7.1 and 8.1. This step uses some simple compactification
results from [4], which are stated in Proposition 4.1 and Proposition 4.9.

2. The LDP

Throughout this paper, for any tr-algebra ’, we let /(’), /+(r), and
1(-) denote the space of all bounded signed measures on r, the space of
all bounded nonnegative measures on ’, and the space of all probability
measures on ’, respectively. By a scaling sequence (r(n)) we will mean a
sequence of positive integers such that r(n) as n ---, o. We will begin by
stating the large deviation principle in a suitable form.
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DEFINITION 2.1 (LARGE DEVIATION PRINCIPLE.) Let (Y, .) be any mea-
surable space. Let o" be any Hausdorff topology on Y. Let (/z,,) be a
sequence in 1(.’) and let (r(n)) be a scaling sequence. Let I: Y [0, ] be
a lower semicontinuous function. We will say that the large deviation princi-
ple holds for the sequences (/xn),(r(n)), with rate function I, using the
topology o-, if for any set A .4’ with closure A and interior A

1
lim sup r(n) log/xn(A) _< inf_I( y ), (2.2)
n y.A

lim inf r.(
1

n :n) log/Xn(A) > yinf.’t I(y). (2.3)

Condition (2.2) is called the upper bound, and condition (2.3) is called the
lower bound. By definition, a rate function in this paper is always lower
semicontinuous. If it happens that {I < c} is a compact set for all c R, then
we will say that I is a good rate function. If the scaling sequence is not
mentioned, we take it by default to be the sequence r(n) n.

We will use abstract spaces and topologies in our work, essentially because
our method involves a compactification of the original space under considera-
tion. In concrete examples we must then show that our topology agrees with
the standard one. For example, if our original space is the space of probabil-
ity measures on a Polish space, the topology we use on the compactification
should induce a topology on the original space that is consistent with the
Prohorov metric. The next proposition shows that for applications we need
only check that our abstract topology is at least as fine as the standard
topology, because a finer topology cannot give a weaker result. Indeed we
may obtain a stronger result in this way, but that is not the main motivation
of this approach.

PROPOSITION 2.4. Let (Y,.) be a measurable space. Let -, be
Hausdorff topologies on Y such that c c -and for every V cc and every
y V there exists a set U t3 , such that y U and the closure U of U is
a subset of V. Let (ixn) be a sequence in ’1(:) and let (r(n)) be a scaling
sequence. Suppose that the large deviation principle holds for the sequences
(tz,), (r(n)), using the topology .-, with good rate function J. Then J is lower
semicontinuous with respect to occ, and J is the unique rate function such that
the large deviation principle holds for the sequences (Ix,), (r(n)), using the
topology c.
The proposition is a straightforward consequence of the definitions, so the

proof is omitted.
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3. The Pressure

We will now recall some terminology and basic results from [4]. Our results
will always involve a locally convex topological space in some way, so we fix
the notations for this space in the next statement, which describes our
general setting. This setting is similar to that used in [1]. For other results
using topological vector spaces see [2].

SETTING 3.1. Assume that a real vector space YI and a convex subset of Y1,
called Y, are given. Let a linear space L of linear functionals on YI be given,
which separates the points of Y1. Let - be the weakest topology with respect
to which every functional in L is continuous. Let ’1 tr(L). Let -= A N Y:
A -}, = {A Y: A e }.

We note that with the topology 1, Yx becomes a locally convex linear
topological space, and its dual is simply L. Also, if it happens that there is a
countable collection L0 of functionals in L such that any functional in L can
be approximated uniformly on Y by members of L0, then is metrizable,
and
When working with the setting of Setting 3.1, we will usually be given a

sequence (/) in ’(’) and a scaling sequence (r(n)). In this case, for any
q L, we will define

1 logfe"d, (3.2)(p) lim sup r(n)n

1 f_(tp) limn__,inf r(n) log er(") dla,n. (3.3)

When =
_

on L we will say (following the terminology of [8]) that the
pressure exists, and we will define the pressure to be the common value of

and _. As in the statement of the large deviation principle, if the scaling
sequence (r(n)) is not mentioned, we will take it by default to be r(n) n.
When exists, we will define the Legendre transform J by

J(y) sup{ p(y) (tp)" p L}. (3.4)

An illustration of these general definitions is given in Setting 4.7.
An appropriate form of Kifer’s theorem for our purposes is the following

(cf. [4]).

THEOREM 3.5. Let the assumptions of Setting 3.1 hold, and let Y be
compact. Let a sequence (lzn) in ,(.a) and a scaling sequence (r(n)) be
given. Suppose that 6= _= . Let J be defined by (3.4). Then J =- on
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Y1 Y, and for each tp L,

sup{ re(y) J( y): y Y}. (3.6)

Suppose that for each q L, there is a unique x Y such that

q(x) J(x) sup{ re(y) J( y): y Y}, (3.7)

or, equivalently, suppose that for each q L there is a unique x Y such
that x is tangent to at q. Then the large deviation principle holds for the
sequences (/x,,), (r(n)), with rate function J, using the topology ,.
For references to earlier results involving the pressure functional, see [8].

4. Compactification

Theorem 3.5 is stated for a compact space Y. This suggests that we should
examine the extent to which a noncompact space can be compactified by
adding ideal elements, so that a large deviation result on the compactification
can be inherited by the original space. The next result is straightforward. It is
proved in [4] as part of Theorem 1.21 of that paper.

PROPOSITION 4.1. Let (Y, 4’) be any measurable space. Let - be any
Hausdorff topology on Y, such that for every point y Y and every V -with y V, there exists a set U N with y U and U c V. Let Yo be a
subset of Y, let 0 {A q Yo: A c’}, and let 0 {A N Yo: A if-}.
Let a sequence (vn) in .1(’0) and a scaling sequence (r(n)) be given. Let tzn
be the measure on obtained from vn by setting

Ixn(A) vn(A c Yo) (4.2)

for every A . Suppose that the large deviation principle holds for the
sequences (IXn), (r(n)), using the topology ’, with good rate function I. If

I =- oo on Y Yo, (4.3)

then the large deviation principle holds for the sequences (v.), (r(n)), using the
topology -o, with good rate function Io, where Io is the restriction of I to Yo.

In applying Proposition 4.1 it is natural to consider when Equation (4.3)
will hold. First we consider the notion of exponential tightness.

DEFINITION 4.4. Let (Y, ’) be any measurable space. Let - be any
Hausdorff topology on Y. Let (/z,,) be a sequence in ’1(’) and let (r(n)) be
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a scaling sequence. We will say that exponential tightness holds for the
sequences (/xn), (r(n)), using the topology -, if for any real number c, there
exists a compact set K such that

1
lim sup

r ( n )
log tzn(Kc) < c. (4.5)

n

The next proposition is immediate from the definitions.

PROPOSITION 4.6. Under the assumptions of Proposition 4.1, if exponential
tightness holds for the sequences (Vn), (r(n)), using the topology o on Yo, then
condition (4.3) holds, and the large deviation principle holds for the sequence
(vn), (r(n)), using the topology ’o, with good rate function Io.

A slightly less trivial condition can also be given. First we shall formally
describe our basic setting for results concerning occupation measures.

SETTING 4.7. Let (, .) be a measurable space, and W be a vector space
of bounded .q-measurable functions on , containing the constant functions,
such that or(W)= .. We consider the uniform closure V of W as a Banach
space with the supremum norm, and let Y1 denote the dual space. For each
f W, let cpf be the functional on YI defined by cp,(y) y(f), and let L be
the space of such functionals. Let -1 be the topology on Y1 induced by L.
Then L is the dual of the linear topological space (Yl, ). Let Y be the set of
all members of Yx which are positive and have norm 1. Then the assumptions of
Setting 3.1 hold, if we define ,1, ’, and as in Setting 3.1. The topology -coincides with the weak*-topology on Y, so the space (Y, -) is compact by
Alaoglu’s Theorem. We identify a signed measure in (.) with the corre-
sponding functional in Yx. In this sense we regard ’1(.) as a subset Yo of Y.
Let

,-o= (A Yo: A I}, ,.o (A Yo: A I).

For brevity, we will often identify a function f W with the functional
p, L which it induces. For example, we will often write (q) as (f), and
so on. If is a measure in ’1(.), the notations qr(y), y(f), and ffdy will
all have the same meaning.

This setting is the natural specialization of Setting 3.1 to the case of
occupation measures. A similar setting is considered in [1].
The space Y0 of Setting 4.7 is the space of interest in most of the results of

this paper. We introduce the more abstract space Y as a convenient compact-
ification of Y0.
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Remark 4.8. When is a Polish space, it is easy to see that we may
choose W to be the span of a countable set of bounded continuous functions,
such that o0 is the topology induced by the Prohorov metric.

The next result gives a sufficient condition for Equation (4.3) to hold. It has
a straightforward proof, given in [4].

PROPOSITION 4.9. In Setting 4.7, assume that the uniform closure Vof W is
a lattice, that is, closed under finite sup and inf. Let (vn) be a sequence of
measures in /g1(o) and let (r(n)) be a scaling sequence. Assume that= _= holds in Setting 4.7, and that in addition

(fn) " 0 for all fn e Wsuch that fn 0 pointwise. (4.10)

In this case we have

J=onY- Yo,

where we define J as usual by (3.4).

Condition 4.10 will hold, for example, if there is a probability measure p, a
continuous function G on R, and a continuous function G2 defined on an
interval containing the range of Gl, such that

6(f) <_ G2(fGl(f) dp) (4.11)

for all f W. In applications we will consider cases where

(f) _< c logfeclrl dp + c3. (4.12)

5. A large deviation theorem for arrays

We now can state our first large deviation result.

THEOREM 5.1. Let (, _q) be a measurable space, and let (r(n)) be a
sequence ofpositive integers with r(n) - oo as n - oo. For each n, assume that, j 1,..., r(n), -valued random variables, are defined on the same
probability space (fln, Cnn, Pn), and let

Sn 6e, + + 6"r<n).

Let Wbe an algebra of bounded measurable functions on which contains the
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constant functions, such that tr(W) .q. Let the notations of Setting 4.7 hold,
in particular the definition of the topology -o. Then Sn/r(n) is a random
variable taking values in the measurable space Yo ’x(-), with g-algebra o.
Let vn denote the distribution of Sn/r(n).
Assume that the pressure exists on W. Let Vdenote the uniform closure of

IV. For every f V, and every positive integer n, let

f[n] f + +f rn(n).

Then

1
(qf) ,9(f) lim log Eeftl

n--,r(n)

for each f V, where En denotes expectation with respect to the probability
measure Pn" Define J by (3.4). Let Jo be the restriction ofJ to Yo.
Assume either that exponential tightness holds for the sequences (vn), (r(n)),

using the topology -o, or else that (4.10) holds. Then Jo is a good rate function.
For every f V, and every positive integer n, let

ef[nle
n

Ene1’[n]

and let E[ denote the corresponding expectation. For any square-integrable
random variable q on f, let Varf(7) denote the variance of *1 using the
probability measure Pf. For f, g W, and real t, let

1
b(t) sup Var,(/+tg)(g[n]). (5.2). r(n)

For all f, g W, assume that b is a locally bounded function of t. Then the
sequences (v,), (r(n)) satisfy the large deviation principle with rate function Jo,
using the topology -o.
We will prove Theorem 5.1 shortly. First we note:

Remark 5.3. Since by Proposition 4.1 a finer topology gives a stronger
result, the strongest conclusion of the theorem holds when W is as large as
possible, namely when W is the space of all bounded measurable functions
on . However, the hypotheses may be easier to check when W is smaller,
for example when W is the span of a countable set of functions.
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Proof of Theorem 5.1. Fix f, g W. Let u(t) (f + tg) for any real t.
By H61der’s Inequality, u is convex. For every real t, let

1
Un( t ) log E,er+tg)t".

Condition (5.2) implies that there is a constant 174 such that

u’(t) < C4

for all n and all (-1, 1). Consider any real numbers tl, t2, t3, 4 with

-1 <t <t2<O<t3<t4<l

we see easily that

Un( t4) Un( t3) Un( t2) Un( tl)
4 t3 t2- t --< c4(t4 tl).

Letting n --, oo and allowing t4 and t to approach the origin shows that the
function u is differentiable at 0. Of course the same proof shows that u is
differentiable everywhere.

Let (/zn) be defined by (4.2). We will show that the sequences (/zn), (r(n))
satisfy the large deviation principle with rate J, using the topology on Y.
Indeed, let x Y, such that (3.7) holds, with o 0f. For any real number t,
let h f + tg. By the definition of J we have

By (3.7) we have

x(h) J(x) < (h).

x(f)

Thus for all real t,

(f + tg) (f) > tx(g).

It follows immediately that x(g) is equal to the derivative of u at 0, and so x
is unique. We can then use Theorem 3.5 to conclude that the large deviation
principle holds for (/z). If exponential tightness holds, then (4.3) holds, by
Proposition 4.6. Otherwise, since (4.10) holds, it follows from Proposition 4.9
that (4.3) holds. Thus Theorem 4.1 implies that the large deviation principle
also holds for (v), so the theorem is proved.
A useful consequence of Theorem 5.1 is the following.
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COROLLARY 5.4. Suppose that the random variables ’,..., rn(n) form an
independent sequence for each n. Let p be the distribution of the random
variable . Suppose the pressure

1 r(n)

(f) lim
n-,oo r(n) j=1

logfe" dp’

exists for each f W.
Suppose that there is a probability measure p on (, .q), and a real number

c3 such that for each f W,

1 r(n)

limsup
r(n) lffdP] < caflfl do.

Let v, Jo, o0 be defined as in Theorem 5.1. Then the large deviation
principle holds for the sequences (Vn), (r(n)), with rate function Jo, using the
topology -o.

Proof. In this case we see using the concavity of the log function that
(4.10) holds. Condition (5.2) is automatically satisfied, since the functions
g W are assumed to be bounded.

Remark 5.6. Let us take to be a Polish space, and let W denote the
space of bounded continuous functions on . If we consider Corollary 5.4 in
the special case that p pn for all j 1,..., r(n), then the existence of the
pressure is equivalent to the convergence of ffdp for all f W. In this case
p= converges weakly as n --, 0% to a limit p. The large deviation principle in
this situation was proved by different methods as Theorem 3 in [3].

6. A convexity property

Let (Y, ’) be any measurable space. Let be any Hausdorff topology on
Y, such that for every point y Y and every V - with y V, there
exists a set U oq’t3 ,’ with y U and U c V. Let (/x) be a sequence in
.’1(’) and let (r(n)) be a scaling sequence. For any U -t3 ,, define

1
K(U) limsup

r(n) log/z(U), (6.1)
n

1
_K(U) liminfn__, r(n) log In(U). (6.2)
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For any point y Y, let

(y) inf{K’(U)" U ,..-c ,_, y U},
(y) inf{_K(U)" U ,.C ,.4’, y U}.

(6.3)
(6.4)

We will call and _x the upper and lower-size functions for the sequences
(tZn), (r(n)).
The next theorem is a generalization of a result in [4].

THEOREM 6.5. Under the assumptions of Setting 3.1, let Y be compact. Let
be a general index set. For each , suppose that a sequence (tZin) in

’1(’) and a scaling sequence (ri(n)) are given. Suppose that all the sequences
(txi), (ri(n)) induce the same pressure . Let J be defined by (3.4). Then J =- oo

on Y1 Y, and (3.6) holds.
For each r, let i, r_i be the upper and lower size functions for the

sequences (IXin), (ri(n)). Let

o inf /(i.

Suppose that -o is convex. Then for each , the large deviation principle
holds for the sequence (lXin), (ri(n)), with rate function J.

Proof The proof is almost the same as that given in [4] for the special
case in which consists of a single point. First we note that J oo on
Y1- Y and (3.6) hold by the usual formula for the inverse Legendre
transform, or by a standard direct argument (cf. [4], proof of Theorem 10.1 of
that paper). Also, as a simple consequence of the definitions of the upper
and lower size functions we have

elsewhere on Y, for each (cf. [4], Lemma 2.14).
Let be fixed. We consider a typical affine function which is below J.

That is, let qL, and let c be a real number, such that tC+c<J
everywhere on Y. Let g=q+c. Let A={g=J}. Suppose that A is
nonempty (notice that, by compactness, if A is empty we can increase c until
A is nonempty). Then A is convex since J g is convex, and A is compact
since J-g is lower semicontinuous and A {J-g < 0}. Let x be an
extreme point of A. By Theorem 4.8 and Lemma 4.9 of [4], we know that
J(x) -r_i(x). Since was arbitrary, we have shown that J(x) -r0(x). It
follows that

qL,cR,q+c_<Jc*pL,cR,q+c_< -Ko.



312 J.R. BAXTER, N.C. JAIN, T.O. SEPP,I.,INEN

Since both functions J and -K0 are convex and lower semicontinuous, they
are equal. Thus we have shown that for each

Since Y is compact, it is then a standard argument to verify that the large
deviation theorem holds for each i, so the theorem is proved.

7. Empirical distributions

COROLLARY 7.1. Let (*,.) be a measurable space, and let n, n
1, 2,..., be a sequence of *-valued random variables defined on a probability
space (f, , P). For nonnegative integer and every positive integer n, let

Sn(i) t,n+ + +

Let Wbe an algebra of bounded measurable functions on which contains the
constant functions, such that tr(W)= _. Let all the notations of Setting 4.7
hold. Then Sn(i)/n is a random variable taking values in the measurable space

Y0 ’1(-), with tr-algebra o. Let vi denote the distribution of Sn(i)/n.
Assume that for each sequence (vi), the pressure exists and does not

depend on i. Define J by (3.4). Let Jo be the restriction ofJ to Yo.
Assume either that exponential tightness holds for the sequence (v), or that

(4.10) holds. Then Jo is a good rate function on Yo.
Assume that for every nonnegative integer i, and every x, y Y,

K2i(x) K2i+l(y)
> 2 + 2 (7.2)

where x/2 + y/2.
Then for each i, the large deviation principle holds for the sequence (Vin), with

rate function Jo, using the topology -o.
Proof. Let , denote the set of nonnegative integers i. Define the

sequences (/z/) by

..’(A Yo) (7.3)

for all A c. The conditions of Theorem 6.5 are easily seen to be satisfied,
so the large deviation principle holds for each sequence (/x).
We can pass from the large deviation principle on Y to the large deviation

principle on Y0 just as in the proof of Theorem 5.1, so the corollary is
proved.
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We can apply this corollary to get a result for the empirical distributions of
an independent sequence, much as in Corollary 5.4 above. Incidentally, it is a
straightforward matter to show that in the independent case, if the pressure
90 exists for the sequence (v,,), then the pressure i also exists for every
sequence (Vn), and has the same value for all i. Indeed, if pj denotes the
distribution of ., we have

1 ni+a)

f l logfe’dplog e’dpy i- 1 ni
j=ln(i + 1) j-1

n1 1 logferdpni+k,i+ln
k--1

and the statement follows.

8. Empirical processes

We can also obtain a process level result from Theorem 6.5, which we now
state.

COROLLARY 8.1. Let (X, ) be a measurable subset of a Polish space,
together with its Borel tr-algebra. Let r/n, n 1,2,..., be an X-valued
sequence of random variables defined on a sample space (fl, -, P). Define
q X X

_
Let -qk be the tr-algebra generated by

the first k coordinates on . For each positive integer n, let

For each positive integer n and each nonnegative integer i, let

S,,( i) $.,+, + + @+1,,.

For each positive integer k, let Wk be an algebra of bounded functions on
such that tr(Wk) -qk and Wk contains the constant functions. Suppose that
Wk c Wk+ and let W be the union of the spaces Wk. Let the notations of
Setting 4.7 hold. Then Sn(i)/n is a random variable taking values in the
measurable space Yo ’1(-q), with tr-algebra o. Let Vin be the distribution of
S,(i)/n.
Assume that the pressure exists for each sequence (vi,,) and is the same for

all i. Define ) by (3.4). Let Jo be the restriction of] to Yo.
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Assume either that exponential tighmess holds for the sequence (v) or that
for each positive integer k

(fn) " 0 for all fn Wk such that fn 0 pointwise. (8.2)

Then Jo is a good rate function on Yo.
Assume that for every nonnegative integer i, and every x, y Y, condition

(7.2) holds.
Then for each i, the large deviation principle holds for the sequence (vi), with

rate function Jo, using the topology -o.
Proof. It follows at once from the theorem that the large deviation

principle holds for each sequence (/z/), with rate J, where (tz/) is defined by
(7.3). If exponential tightness holds we use Proposition 4.6 as usual. Other-
wise, we will follow the argument in [4], Section 4. Let x such that J(x)
is finite. By Proposition 4.9 there exists a probability measure 3’k on -k such
that

ffd3, =x(f)

for all f Wk. Kolmogorov’s theorem then ensures that there is a single
probability measure 3’ on which agrees with all the 3’k. Thus x 3’ Y0"
It follows that J oo on Y- Y0, and the corollary follows from Proposition
4.1.

9. The hypermixing case

Corollary 8.1 is phrased in a rather abstract form. To give a special case
more explicitly, we may assume that the process is hypermixing, in the sense
of the theorem of Chiyonobu and Kusuoka [5], but without assuming that it is
stationary. We will follow the notation of [6] in what follows. A process will
be said to be hypermixing if conditions (H-I) and (H-2) of Section 5.4 of [6]
hold. We will recall these conditions shortly. First we state some notations.
For any nonnegtive integers j, k with j < k, we define the r[j, k] to be the
g-algebra generated by r/j,..., r/k, and we let r[0, n].

For any positive integer 1, and any functions F1,..., F on f, we will say
that the functions F1,..., F are /-separated if there exist nonnegative
integers j(m), k(m), rn 1,..., n, with j(m) < k(m) for rn 1,..., n, such
that each of the intervals [j(m), k(m)] is separated by a gap of at least from
the other intervals, and such that each function F, is r[j(rn), k(rn)]-mea-
surable.
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We assume that there is a nonnegative integer/0, and three functions

a,/3" (1o, oo) - [1, oo) and y" (lo, oo) --, [0, 1]

such that

lima(1) 1, (9.3)

lim sup 1(/3(1) 1) < oo, (9.4)

and

lim y(l) O. (9.5)

Condition (H-I) in [6] will now be stated. All Lp spaces will be with respect
to (12, 9z-, P).

ASSUMPTION 9.6 (H-l). For any n >_ 2, let F1,... g
n be bounded l-sep-

arated functions on f. Then for all > lo,

n

IIFI... Fllx < I--I IIFmll<l"
m--1

Condition (H-2) in [6] is as follows.

ASSUMPTION 9.7 (H-2). For any bounded l-separated functions F and G on

f(F- if)GaP < y(l)llFIll)llGIll),

where F denotes fFdP.

LEMMA 9.8. Condition (H-2) implies (7.2).

Proof. This is essentially the proof of Lemma 5.4.22 in [6], but for the
convenience of the reader, we will sketch the argument. Let U oq-c3 ,
such that : U. Let e > 0 and fl,..., fs W be such that if

a-- {Z: z Y, IZ(fr) -(L)I < e,r= 1,...,s}

then G c U. We may assume that ILl 1 everywhere, for r 1,..., s. Fix i,



316 J.R. BAXTER, N.C. JAIN, T.O. SEPP_,INEN

and let

A {Sn(i)/n G}.

For each n, let rn re(n) be the greatest integer less than or equal to n/2.
It is easy to see that the quantity fr :2mi+1 + +fr :2m(i+1) can be
obtained from the quantity f :ni+l + +f :n(i+l) by adding at most
terms and subtracting at most + 1 terms. Hence

IL 2mi+1 q- q-L 2m(i+1) f ni+l f -<i+1) < 2i + 1.

It follows that if n > (4i + 2)/e we have A , where

{IL 2mi+l + +L 2mi+2m mx(L) my(L)l
< me, r 1,...,s},

and rn re(n).
In this case n Bm 0 Cm, where

Bm {IL 2mi+l + +L 2mi+m m(L)I < me r 1,...,s},
Cm {Ifr (2i+1)m+1 + +fr 2mi+2m my(fr)

< me/2, r 1,...,s}.
Let k be a positive integer such that every function fr is .k-measurable.

Suppose that n is large enough that m(n)e/32 > k. Then we can choose, for
each n, an integer l l(n)with

m(n)e m(n)e m(n)e
32 <l(n) < 16 k+l(n) < 8

For such n we have Bm D B,,, Bm, where

/= {Ifr :2mi+1 + +frO2mi+m_k_l--mx(f)l <me/4, r= 1,...,s},
/m {IL 2mi+l + +L 2mi+m m (L) < me/8, r 1,...,s}.

Clearly

1
lim inf log P(/) > KEi(x),
m--- m m iim inf --1 log P(Cm) >" I(

m--, rn 2i+( y). (9.9)

If either _K2i(x) oo or _K 2i + l(y) oo then (7.2) obviously holds. Thus we
may assume without loss of generality that there is some real number R such
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that

P(Jm) > emR, P(Cm) > emR (9.10)

for all m.
We consider n such that m(n)e/32 > max(k, l0) and n > (4i + 2)/e,

where 0 is defined prior to (9.3). Then l(n) > o and we can use Assumption
9.7 to conclude that

P(Jm ("1 Cm) > P(m)P(Cm) /(l)(P(Jm)P(Cm)) 1/[(1).

Thus

e(m CI Cm) > e(Jm)e(Cm)(1 T(l)t),

where

t (p(jm)P(Cm)) -l+l/fl(l,.

Because of (9.10), (9.4), and the fact that > me we see easily that t is
bounded in n. It follows that for large n,

e(Jm N Cm) > }e(Jm)e(fm).
We then can use the definition of _K(U) and (9.9) to conclude that

1. 2i+ 1(_K(U) >_ + y).

Taking the infimum on U proves the lemma.
If the process is stationary, Condition (H-I) easily implies that the pressure

exists (cf. the proof of Lemma 5.4.13 in [6]). However since we do not assume
that the process is stationary, we will make a separate assumption that the
pressure exists.

ASSUMPTION 9.11. The pressure 6go exists for the single sequence (Vn).

LEMMA 9.12. Assumption (9.11), together with Assumption (H-2), imply
that the pressure i exists for every sequence (Vin), and that i is the same for
all i.

Proof. This is a messier version of the argument sketched in Section 7.
Consider a function f Wk. Suppose that Ill -< c everywhere. Let e > 0 be
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given. For each n such that ne > 1 and n > 2k, choose l(n) such that

ne < l(n) < 2ne, l(n) + k <n.

Consider n such that ne > 1, n > 2k, and ne >/0, where 0 is defined prior
to (9.3). Let f(j) f i" We have

ef(1)+ +f(n(i+ 1)) dP > fef(x)+ +f(ni-k-l)-(k+l)c+f(ni+ 1)+ +f(n(i+ 1)) dP.

Also, by (H-2),

ef(1)+ +f(ni-k-1)+f(ni+ 1)+ +f(n(i+ 1)) dP

>_ f +f(ni-k-1) dPfeY<ni+ 1)+ +f(n(i+ 1))de ,(1)v,

where

V el3(IXf(1)+ +f(ni-k-l)) dP e13(lXf(ni+ 1)+ +f(n(i+l)) dP

Since

e(1Xf(1)+ +f(ni-k-l)) dP < fef(1)+ +f(ni-k-l) dPenic(13(l)- 1)

el3(l)(f(ni + 1)+ +f(n(i + 1)) dP < fef(’i + 1)+ +f(n(i + 1)) dP enc(13(l)- 1)

we see that we have

e/’(1)+ +f(n(i + 1)) dP

> e-<k +l)cfer,1)+ +f(ni-k-l)aPfer<i+ 1)+ +f(n(i+ 1))dP(1 y(l)t),

where the quantity is seen to be bounded in n because of (9.4) and the fact
that 1 > ne/8. Thus for large n we have

f(1)+ +f(n(i+ 1))dP >
e 2(k +l)c

eY(1)+ +f(ni) dPfef(ni + 1)+ +f(n(i + 1)) dP.
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The definition of 0 then shows that

1 fo(f) > -4ec + limsup log ef(’i+l)+ +f(,,i+l)) dP.
n--,

A very similar argument shows that

Po( f ) < 4ec + lim inf -1 logfe(ni+ 1)+ +f(n(i+ 1)) dP,
n n

so we see that i(f) exists and is equal to 0(f), proving the lemma.

THEOREM 9.13. (i) Suppose that Assumptions 9.7 and 9.11 hold. Let

= o, and let J be defined by (3.4), and let Jo be the restriction ofJ to Yo. If
exponential tightness holds for the sequence (v,,), using the topology -o, then
the large deviation principle holds for every sequence (vi), with rate function Jo,
using the topology -o.

(ii) IfX is a compact metric space, and if the functions in W are continuous
with respect to the product topology on , then Y Yo, and in particular
exponential tightness holds.

(iii) IfAssumptions 9.7, 9.11 and 8.2 hold, then the conclusion of (i) holds.
(iv) Assumption 8.2 will hold ifAssumption 9.6 holds and iffor each k there

exists a bounded measure [3k on .-k, such that for every f Wk,

flim sup -ff f dP < If[ dflk. (9.14)
n-oo j=l

Proof. Most of the statements in this theorem follow easily from Corol-
lary 8.1, or from the definitions. Only the final statement needs to be
checked. We can easily see from Assumption 9.6 and (9.14) that for any
positive integers k and l, with > 0, and for any function f Wk,

(f) <
1 log(ea(IXkj +l)f dflk"+ t)

(This is essentially Lemma 5.4.13 in [6].) Condition (8.2) then follows at once.

10. Independent sequences

We will next take a closer look at a particular case of hypermixing
processes, namely independent sequences. We will use the notation of
Sections 8 and 9 and apply the results of those sections. This gives a new
proof of a large deviation theorem obtained in [10]. We shall then identify
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the rate function as a generalized specific entropy, using the argument in [10].
It is convenient to consider the case in which the sample space fl is equal to
the canonical product sample space , and so the product tr-algebras -k
and k coincide. We will use r exclusively here. For the sake of clarity we
take X to be a Polish space, rather than just a Borel subset of a Polish space.
Then is also a Polish space with the usual product metric. The second-
countability of the topology guarantees that -coincides with the Borel
tr-algebra of . Let rb be the jth coordinate variable, so that is
generated by r/l,..., r/n. Let/9 denote the shift on the sequence space , so
that

’Oj 0 7j+1.

Let p (pj) be a sequence of Borel probability measures on X. Define the
product measure PP on the product space by

pp =/91 (R)/92 (R)/92 (R)

Then (r/n) is a sequence of independent, X-valued random variables with
distributions Pn, defined on the sample space (, -, PP). Define srn as in
Section 8 by

In the present case 1 is the identity map, and :n 0n-1 for n > 1. The aim
of this section is to describe the position-level and process-level large
deviations of the process (r/n) under
The space ’l() of Borel probability measures on X is also a Polish

space under the weak topology generated by the bounded continuous func-
tions on X. Let us write F ’1() .1() for the corresponding
sequence space. Let a be the Borel or-algebra of F. The shift map on F is
denoted by T and defined by

T(pl, P2, P3,... ) (P2, P3,/94,’’’ )"

Clearly

ff o dPp ffdP

for any bounded measurable function f on .
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It will be useful to consider the empirical processes on F, which are maps
from F into ’1() defined by

ln-1
Rn(P) -ff E 8r.

k=O

Following the terminology of [9], let us call an element p of F quasi-regular
if R,(p) converges in the weak topology of ..gl(). Denote the limit
measure by rp. The set of quasi-regular elements is a shift-invariant Borel
subset of F, and on this set, p 7r is a shift-invariant, Borel measurable
map with values in the set of shift-invariant probability measures on F. The
large deviation behavior of sequences (r/,,) under PP turns out to be espe-
cially clear when P’ comes from a quasi-regular p. This provides a large class
of examples of nonstationary sequences for which the large deviation princi-
ple holds.
For the process level result, let S(i) be defined as in Corollary 8.1. We

choose Wk to be the collection of bounded, continuous, -measurable
functions on . The union W of the Wk generates the weak topology on
’1(’).

THEOREM 10.1. Let p be a quasi-regular sequence and f W. Then the
pressure fl defined by

.9(f) lim -1 logfelon.,/,+ +f o.(,/,
n n

exists for all i, and has a common value, independent of i, which we denote by
(f). The limit

lim -1 f logfe:o#l+ +:o# dPYro(dy)
n n (10.2)

exists and is equal to .9"(f). Define J"(Q) for any Q ,,’1(,) by

JP(Q) sup(ffdQ "(f)" f W}.
Then the large deviation principle holds for the sequence

of distributions on ’l(Z’), with rate J", using the weak topology on 1(,.").
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Proofi By independence, the hypermixing assumptions (H-l) and (H-2) of
Section 9 are trivially satisfied. In view of parts (i), (iii), and (iv) of Theorem
9.13, we only need to verify the existence of the pressure (f) for f W,
and Condition (9.14).

Condition (9.14) is immediate, for by the quasi-regularity of p,

lim --1 1n n
j__

dPp= lim
1 n-,

n--,o n ’--’0"--
(10.3)

Here we used the fact that, for f W, the function

is bounded and continuous on F.
To show the existence of the pressure, fix a function f W and an integer

r such that f is rr-measurable. Let c be the supremum norm of f. Let m, n
be any positive integers with rn > r and n > 2m. For fixed m, let k k(n)
be the largest positive integer k such that (k + 1)m < n. Let f(j) denote
f :j. Let g f(1) + +f(m r). Let g(l) g l. Fix a t with 1 < t <
m. It is easy to see that the quantity g(t)+ g(t + m)+ +g(t + (k-
1)m) is obtained from the quantity f(1) + +f(n) by subtracting at most
kr + 2m terms. Hence

f(1) + +f(n) > -krc 2mc + g(t) + g(t + m)
+ +g(t+ (k- 1)m).

For fixed t, the functions g(t + lm) depend on disjoint sets of coordinates
for distinct values of 1, and hence they are independent under PP. After
taking exponentials, integrating, and then taking logs, we have

logfe/’(1)+ +f(")dPp > -k(n)rc 2mc +
k(n)-., logfeg(t+lm) dpP.
1=0

Hence, averaging over t 1,..., m,

k(n)m

log e’0+ +f(,o dpp >_ -k(n)rc 2mc + - ]=1
logfeg(y) dPp.

Dividing by n, noting that k(n)/n 1/m as n 0% and using the quasi-
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regularity of p, we obtain

rc 1 fFm_(Y) > + aorn rn -r

where, for any y F and any positive integer m,

Fm(r) logfe e, + +to e. dp. (10.4)

In a very similar way we also have

rc 1
,.(f) < d- --JFm dTTp,m m

and the theorem follows.
The next question to address is the identification of the rate function JP.

Fix a quasi-regular element p of F, and a shift-invariant probability Q on .
For positive integers n, define

K(Q) =sup(ffdQ-Sr[logf,t.e-fdP’]Tr,(di)’fW,,},
and then let

k’(Q) sup nl-Kn(Q).
n

LEMMA 10.5. With p and Q as above, we have

k(Q) lim
1

n_oo -ffK(Q)

Proof. Let f Wm and g Wn. Then f and g 0m are independent
under every measure P+ for 3’ F, and f + g 0m is an element of Win+.
Using the shift-invariance of Q and rr,, we get

gm+n(a) > f(f + g oOm) dQ fr[logfe+gmde]o(dy)

+{fgdQ- fr[lgf.e’dP’l=.(d’) )
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Since f and g were arbitrary, we get the superadditivity property

Km+,,(Q) > Km(Q) + K(Q),

which implies the conclusion of the lemma.

THEOREM 10.6. Let p be a quasi-regular element of F. The rate JP is given

kP(Q)J(Q)
oo

if Q is shift-invariant
otherwise.

Proof. That the rate is identically infinite off the shift-invariant measures
follows easily from the observation that ,9(g g 0) 0 for any g W.
The precise argument can be found in [4] or [6].
For the remainder of the proof, fix a shift-invariant probability Q on .

Let f Wr, SO that the function f 1 " "{-f m is an element of Wm+r,
Recalling the definition (10.4) of Fm, and using the shift-invariance of Q, we
have

KPm+r(Q) >, mffdQ fFm()ro(d).

Dividing by m and letting m ’ gives, by Theorem 10.1 and Lemma 10.5,
that

kt’(Q) >_ ffdQ "(f).

Since r and f W were arbitrary, this shows that kt’(Q) jt,(Q).
Let us again consider any f Wr. By H61der’s inequality and the indepen-

dence structure of P, we have

(mr )1
logf exp E f :kmr

k--

mr

dP < log erdeTk
mr2k__l

from which, by quasi-regularity, we see that

1
logferdP](dy).
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From the definition of J we then get

,[a) >_ ffda 7 f f dP ’ "trT’( dT)

Since f W was arbitrary, we get

1
J(Q) >- 7Kr(Q),

and letting r vary gives J’(Q)> k’(Q). This completes the proof of the
theorem.

Example 10.7. Let p be a probability measure on X, and let tr

(p, p, p,... ) be the corresponding constant sequence. It is clear that k’(Q)
reduces to the familiar specific relative entropy h(QIP") against the i.i.d.
measure

p--p@p(R)p@

in case 7rp 6,. Any p (Pl, P2, P3,’’" ) satisfying

lim Ps P,

in the weak topology of ’1(), is an example of a quasi-regular p such that
zrp 6,. (For a detailed account of specific relative entropy, see [6].)

Consider a model where the sequence (p) of distributions is generated by
a stationary, /l()-valued stochastic process. Let V be the distribution of
this process on F, so that we can think of the process as given by the
coordinate projections p p under the shift-invariant probability V. By the
ergodic theorem, the set of quasi-regular elements is of V-measure 1, and in
fact the stochastic kernel 7r gives the ergodic decomposition of V: For any
Borel subset A of F,

V(A) f’,(A)V(do).
We may then conclude that the large deviation principle holds for V-almost
every p, with rate J.
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A fundamental property of the ergodic decomposition kernel is that a
shift-invariant probability measure V is ergodic if and only if

(For a proof, see [9] or [7].) For an ergodic V, the set {p F: 7r-- V} is
called the quasi-ergodic set of V. Pick any p in this set, and then define

jV( Q) ( kt’( Q) if Q is shift-invariant;
otherwise.

These remarks suffice to make the following theorem an immediate corollary
of Theorem 10.6.

THEOREM 10.8. Let V be a shift-invariant, ergodic probability measure on
F. For V-almost all p F, the large deviation principle holds for the sequence

of distributions on -’1(), with rate J v.
This and other related results for processes with nonstationary or randomly

generated distributions can be found in [10] and [11]. Once the existence of
the pressure has been established, there are a number of ways to complete
the proof of a large deviation principle. Instead of using convexity and
compactness as is done here, [10] proves the upper bound for Theorem 10.8
by an explicit verification of exponential tightness, and the lower bound by a
Shannon-McMillan-type argument. These results extend also to independent
variables indexed by an arbitrary lattice Zd, and to Markov chains with
randomly generated transition probabilities.

Let us now proceed to the corresponding position-level result. The random
measures of interest are now the ’l()-valued empirical distributions

1 n

Ln(i) "ff E 8n,,,+,"
j--i

Let W be the space of bounded continuous functions on X.

THEOREM 10.9. Let p F be such that the empirical distributions

n

n
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converge in the weak topology of ./1(.1()), as n--, 0% to some Borel
probability measure 7r on .’1(). Define KP: ’1() [0, oo] by

K"(q) sup ffdq
Then, for all i, the large deviation principle holds for the sequence

(PP{Ln(i) "})

of distributions on ,"1(,.), with rate K.
The proof is similar but easier than the one given above for the process

level result, so we shall omit it. The requirement that the occupation
measures

n

n
j--1

converge is genuinely weaker than quasi-regularity. To give an easy example,
construct p by repeating two sequences (a, a,/3,/3) and (a,/3, a,/3) in such a
way that the relative frequency of the pair (a, a) does not converge. This
violates quasi-regularity, but the relative frequencies of a and /3 each
converge to 1/2, so

Since Theorem 10.9 thus holds for a wider class of p’s than Theorem 10.1, we
cannot deduce the former from the latter by the usual contraction mapping,
or push-forward, principle.

In case zr is a point mass 8p, the functional K reduces to relative
entropy against p. The above remarks and Theorem 10.8 about randomly
generated sequences extend in an obvious way to position level. It is interest-
ing to note that the position-level rate of the randomly generated sequence
depends on the background measure V only through the marginal distribu-
tion of Pl.
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