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ANTISTABLE CLASSES OF THIN SETS
IN HARMONIC ANALYSIS

SyLvAIN KAHANE

Introduction

The motivation for this study is a property of the class .#” of all sets of
absolute convergence (of a trigonometric series whose sum of coefficients is
infinite): an increasing countable union of compact (or %) #<sets is an
<set (Host-Méla-Parreau [8]). Is it still true for any increasing countable
union of .#<sets? This problem was posed by J. Arbault in [1]. It led me to
study in general the operation of increasing countable union, and to a precise
study of the class .#” and various related classes of thin sets. My Thése de
Doctorat [11], under the supervision of A. Louveau, contains some of the
ideas developed in this paper.

Stability under finite union or countable union of classes of thin sets
naturally introduced in harmonic analysis (e.g., sets of uniqueness [2] or
Helson sets [18]) are classical problems (most of them are collected in the
appendix of [17]). On the other hand, the stability of these classes under
increasing countable union, to my knowledge, has never been studied. This
paper can be considered as mixing harmonic analysis and descriptive set
theory, in the same vein as the work done, in the study of sets of uniqueness,
on o-ideals and the operation of countable union [13]. But contrary to the
operation of countable union, the operation of increasing countable union
has no good descriptive properties [3]. In particular this operation is not
idempotent, and w, iterations are needed in general to obtain the closure of
a class under this operation. The general study of the operation of increasing
countable union and of related operations is done, from a combinatorial
point of view, in [12].

The notion of a set of absolute convergence was introduced by P. Fatou in
1906 [7] and was successively studied by N. Lusin 1912 [19], V. V. Niemytzki
1926 [22], Marcinkiewicz 1938 [21], R. Salem 1941 [23], J. Arbault 1952 [1],
J. E. Bjork and R. Kaufman 1967 [18] and B. Host, J.-F. Méla and F. Parreau
1991 [8]. In the first section, we present the classical properties of the class A4
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ANTISTABLE CLASSES OF THIN SETS 187

of sets of absolute convergence and several classes linked to ./ it is a new
presentation which uses the operation of increasing countable union to
obtain known and new results.

In the second section, we show that the inclusions between classes proved
in the first section are strict. In particular, we prove the existence of a set of
resolution (even %, ;) which is not a set of absolute convergence (this should
be compared with the fact that all % sets of resolution are of absolute
convergence). This last problem was posed by N. Bary more than thirty years
ago.

In the third section, we study the properties of non stability of our classes
of thin sets. Increasing countable union and its iterates are examples of
Hausdorff operations. In [12] we have defined an order on Hausdorff opera-
tions which compares their respective power. Among the classes which lack
some properties of stability under Hausdorff operations (e.g., increasing
countable union or finite union), we have singled out the ones we call the
antistable classes which have no stability property whatsoever (except those
shared by all classes): a class is antistable only if the order of inclusion
between its images under the Hausdorff operations is equivalent to the order
of the Hausdorff operations. In fact we transform a negative property (not to
be stable under finite or increasing countable union) in a positive property (to
be antistable) which allows us to build many examples of sets. We prove that
the class of sets of absolute convergence and most of the other classes
considered in this paper are indeed antistable. This result, which can be
considered as very negative by harmonic analysts and which may explain why
so many related notions have been introduced to study .#/, can also be
viewed as a transfer theorem which gives a uniform way of building very
complicated (or exotic) thin sets in harmonic analysis. In particular it allows
us to solve the original problem of J. Arbault (and prove that w, iterations
are needed to obtain the closure of .#” under increasing countable union)
and also allows us to present some similar results for other classes of thin sets
in the fourth section (e.g., pseudo Dirichlet sets [2] or asymptotic H-sets
[20]. In that final part, we introduce the notion of asymptotic Dirichlet sets,
which provides examples of “large” weak Dirichlet sets.

1. Definitions and classical properties
1.1. Notations

Let o (resp. w,) be the first infinite (resp. uncountable) ordinal. We also
denoted by w the set of positive integers. We will identify the set P(w) of
subsets of w with 2° via the map 4 — 1. The natural topology on 2¢ is the
product topology for which it is a metrizable compact space.
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Let T be the torus R/T with its structure of compact topological group.
For all x € T, let ||x|| be the distance from x to 0. Note that

Ixll < Isin x| < #lix|l.

Every element x of T can be expressed in the form x = ¥, 1¢,(x)2~" with
g/(x) either 0 or 1 (¢(x)’s are set all equal to 0 for large enough i if x is
rational). This defines an injective map from T to 2“ which takes x to
(¢x));. 1. Most constructions in this article use this remark.

Let E be a Polish space (i.e., a complete metrizable separable space). For
each countable ordinal a > 1, let 32 (resp. I12, resp. A%) be the Borel

a?

additive (resp. multiplicative, resp. ambiguous) class of rank a:

) =open, 3)=¥, 3}=4,,,...

) =closed, M=y, Ni=F,,...
A% =30 N1, A} = clopen.

The class of all compact subsets of E is denoted by #(E). See [13] for more
details about Borel classes.

1.2. Definitions of various classes

Here are the classes of thin sets we are interested in:

A subset X of T is a set of absolute convergence if there is a sequence
(a,), <, of nonnegative reals such that £, ,a, = +® and £, ¢ ,a,llnx|l <
+ o for each x € X. The class of all sets of absolute convergence is denoted
by 7.

A subset X of T is called Dirichlet if there exists a strictly increasing
sequence (n;), <, of positive integers such that |ln, x|l — 0 uniformly in
x € X. The class of all compact Dirichlet sets is denoted by D.

A universally measurable subset X of T is called a weak Dirichlet set if

Vu e#*(T), Ve>0, 3KeD, u(X\K)<e,

where .#*(T) is the set of all positive Borel measures on T. The class of all
weak Dirichlet sets is denoted by ¥ 9.

A class € of subsets of a set E is hereditary if, for all subsets A and B of
E with B ¢ and A Cc B, we have A € €. If E is a metrizable compact
set, and ¢ is a hereditary subclass of ¥(E), one defines the class #% as the
class of all universally measurable subsets X of E such that

Vu € #*(E), Ve>0, IKe ¢, u(X\K) <e,

where .#*(E) is the set of all positive Borel measures of E.
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Many related notions have been introduced to study the class .7

A subset X of T is a set of type #, if there exists a strictly increasing
sequence (n,); <, Of integers such that £, o lIn, x|l < +o for each x € X.

A subset X of T is a set of resolution if there exist a sequence (c,),, of
non negative reals such that limsup, ., c, > 0 and a sequence «, of ele-
ments of T such that the series

Y c,cos(2mnx — a,)

converges for each x € X. The class of all sets of resolution is denoted by Z.

A subset X of T is an Arbault set if there exists a strictly increasing
sequence (n,), ., of integers such that [ln,x|| = 0 for each x € X. The
class of Arbault sets is denoted by 7.

We introduce a last series of classes which are related to the other
definitions.

A compact subset K of T is a set of type H if there exist a non empty
interval I of T and a strictly increasing sequence (n,), , of integers such
that n, K N I = @ for each k € w.

A compact subset K of T is a set of type L or a lacunary set if there exist a
sequence ¢, — 0%, a sequence a, = + and for each n € w a finite
sequence (I,) of intervals such that |I,| <, for each k, d(I;, I})) > a,¢,
for each k # k' and K ¢ U I,.

A compact subset K of T is a set of type L, if there exist a sequence
e, = 0%, a > 0 and for each n € w a finite sequence ([;) of intervals such
that |I,| < e, for each k, d(I, I,;) > ae, for each k #+ k' and K € U I.

As a matter of notation, we denote the classes of compact sets by capital
letters and the corresponding classes of general sets by the corresponding
calligraphic letters. Thus for example, N = #'N HF(T), N, = 45 N F(D),
etc.

We finish this part with a notation which will be used throughout the
paper: if € is a class of subsets of a set E, we denote by €' the hereditary
class of subsets of E consisting of those sets which can be covered by the
union of some increasing sequence of elements of ¢.

1.3. Properties of sets of absolute convergence and Dirichlet sets

The set ., (w) consists of all elements of the form ® = ¥, . ,a,5,, where
(a,), <. is a sequence of non negative reals with £, . a, = +» and §, is
the Dirac measure at the point n € w. Let O(f) = X, a,f(n) for all
sequences f. Let ®(I) = O(1,) = L, ;a, for all subset I of w.

Let f, be the sequence (|lnxl]), <, for each x € T. Fix a ©® € £} (w). So

®(fx) = Z anfx(n) = Z an"nx"

new neEw

Let Gg = {x € T; O(f,) < +}, which is clearly in /.
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Moreover .4 is the hereditary closure of the Gg’s where @ varies over
H,(0). As Gg is a K subgroup of T, it follows that .#" is the hereditary
class generated by its %, elements and A is closed under the operation of
generated subgroup.

It can be deduced from a theorem of Dirichlet that finite sets are Dirichlet.
We are going to give classical examples of uncountable Dirichlet sets [18]. A
subset A of w is called colacunary if it contains segments of consecutive
integers of unbounded length. It is easy to see that for a colacunary subset A
of w,

K,={xeT;Vied,e(x)=0}

belongs to D [18].

We can immediately deduce the Marcinkiewicz Theorem [21] which states
that there exists two Dirichlet sets whose union is not an A<set. Indeed, if A
and B are two disjoint colacunary subsets of @ then K, U K & .#” because
K, + Ky =T and ./ is closed under the operation of generated subgroup.

If € is a hereditary class of compact subsets of some metrizable compact
space, note that #% is closed under the operation of increasing countable
union (in Proposition 3.4, we give a stronger property of #%’) and that each
measure concentrated on a #+¢=set is in fact concentrated on a ¢ T-set.

A measure concentrated on a #Z-set is called a Dirichlet measure. For a
positive measure u € #(T), the following conditions are equivalent:

(1) p is concentrated on a D "-set '
(2) limsupin| -« |A(n)| = [du (where i(n) = [e*™"* du(x))
(3) liminfin|-w [|lnx]l du(x) = 0.

Note that a subset X of T is a #9D-set if and only if each measure
concentrated on X is a Dirichlet measure.

1.4. Relations between the classes .7/ and #' 9
The most important result is the following.

THeEOREM 1.5. (1) # is a subset of #'D.
(2) For each increasing sequence (K,), <., of compact weak Dirichlet sets,
U,<coK, belongs to N

R. Salem introduced Dirichlet measures and proved (1) for compact sets
[23]. The converse was proved by J. E. Bjork and R. Kaufman independently
[17]. B. Host, J.-F. Méla and F. Parreau stated the theorem in the present
form [8] and noticed that most of the classical facts about .#” and #D-sets
can be easily deduced from it.
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CoroLLARY 1.6. (1) 4N ¥ (T) = #2 n K, (D).

2 N =N XD is closed under compact increasing union.

3) #=N".

@) ¥ = N™, where N™ is the interior extension of N, i.e., the class of
universally measurable sets all of whose compact subsets belong to N.

(5) A is closed under translations.

(6) A is equal to the class of all sets of absolute convergence of a
trigonometrical series

Y a,cos(2mnx — a,) with Y la,| = +.
(7) For each X € A4 and Y a countable set, X VY € N

In his thesis, J. Arbault defined a % ; set in #Z which is not an .#<set
[1]. In particular, (1) cannot be improved. Prior to the Bjork-Kaufman result,
he also asked the following question.

Question. Is the class .# closed under increasing countable union?

We will answer negatively to this question in part 3.18. In view of result (2),
this is a curious phenomenon.

Proof of the corollary. Since .# is the hereditary class generated by its
%, elements and each J% set is an increasing union of compact sets, the
five first propositions are straightforward consequences of the previous theo-
rem. Since D is closed under translations, #9 is too, thus (5) holds.

In order to prove (6), let

E={xeT; L|a,cos(2mnx - a,)| < }.
Since
|2n(x — x) || <|sin2mn(x — x,)|
<|cos(2mnx — a,)| +|cos(2mnx, — a,,) |

for all (x,x,) € T?, E — x, € A4 if x, € E. Using (5), we obtain E € ¥
Conversely,

1
1 L
lnxll = 3l12nx|l > 21_‘_|s1n21-rn.xl
for all n, x; thus every .#<set is a subset of a set of the form
{x €T; Y la,sin2mnx| < +oo},

with Tla,| = +oo.
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To prove (7), fix X € .# and x, € T. Using (5), X — x, € ./, thus
(X —xy)u {0} e
and
XU {xo} = (X —x9) U{0}) +x,€ A"

Let Y = {x,; n € w}, a countable set. As .#'= N T, there exists an increasing
sequence (K,), <, of compact .#“sets such that X ¢ U, <, K,. Therefore

Xuyc U (K,VU{xq....x,}))ENT'=#. O

nEew

The following property of the class #9 is due to G. Debs (and published
here for the first time).

Provosition 1.7. If X is an analytic ' D-set, then the group generated by
X is also a W' D-set.

Proof. Define ®: P(T) » PMby H(X)=X-X={x-y;x,y € X}.
The group generated by X is the increasing union over n € w of ®"™(X). So
it is enough to prove that if X is an analytic #%-set, then X — X is also a
W D-set.

Let u be a positive measure in #(T) and p* be the corresponding outer
measure. Define C: Z(T) » R* by C(X) = u*(X — X). One easily checks
that C is a capacity. By Choquet’s capacitability theorem, for every analytic
subset of T,

w(X—-X)= sup u(K-K).
Ke ¥ (X)

Thus if p is concentrated on X — X, then for all ¢ > 0 there exists a
K € %(X) such that u is concentrated on K — K within &. But K € N, thus
K — K € N. Therefore p is a Dirichlet measure. O

1.8. Other classes between D and ¥ 2

R. Salem introduced the class .#; in order to simplify the definition of the
class .#. J. Arbault proved that the two classes are distinct and he intro-
duced the class o7 in order to prove this fact [1]. The class # was
considered by N. Bary [2].
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ProrosiTioN 1.9. We have the following inclusions.
D'cAH  CcRCAC HD.

Proof. 1In order to prove that £C &, let X = {x € T; Lc, cosQmnx —
a,) converges} where limsup, ., c, > 0. Thus there exists ¢ >0 and a
strictly increasing sequence (n;), ., of integers such that ¢, > e. Fix an
x € X. Since cosQmn,x — a,,) = 0, e¥C™* =) — 1, Without loss of gen-
erality, we can assume that n, ; — n, = + and a, — a by compactness
of T. Thus e®™"+1="0* — 1; hence ||8(n;.,, — n)xll - 0 and X € .

Inclusion of D' in .#; is an immediate consequence of the following
characterization of the D '-sets. The other inclusions are trivial (see [1] or
[2D. o

ProposiTiON 1.10. Let X € F(T). The following statements are equivalent.

(1) XeD’'.

(2) There exists a strictly increasing sequence (ny), ., of integers and a
sequence &, — 0% such that

Xc U N{xeTlnxl <el.

i€w k=i

(3) There exists a strictly increasing sequence (n;); <, of integers such that

Xc U N{xeT lnxll <274.

i€ew k=i

The proof is easy. The property (2) is studied and generalized in Section 4.
It was introduced by N. Bary in order to give examples of .#;-sets [2].

The connection between & and H was noted by Rajchman and can be
formulated in the following way: &/C H'.

Indeed, if (n;); <, is a strictly increasing sequence of integers, then we
have

{x € T; lnxl >0} c U N {xeTsmexe] - 4,10}

JjE€w k=j

Note that both H and L are supersets of D and subsets of L.

To finish, let us indicate the descriptive complexity of the previous classes
of compact sets. In the space #(T) of compact subsets of T (which is a
metrizable compact space), the classes D, L and N are & subsets [10], H
and L, are ¥%,; subsets, but Ny, R and A4 are not Borel sets (they are in
fact 31 or PCA sets, but not better [3]).
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2. Noninclusions between classes

2.1. Introduction

In this section, we will study the converse inclusions between the classes
introduced in the first section. The problem each time is to define a set (of
the smallest Borel rank possible) of a certain class € and which is not
covered by a countable union of sets in another class #. The schema of the
proof is the following. Suppose that such a set X of type ¢ is proposed; for
each sequence (X,), ¢, of sets in &, we will find an x € X which does not
belong to U X,,. We can view x as being a member of 2 by using its dyadic
decomposition x = ¥,_;¢,27". We will need a lemma concerning the class
&#: imposing a limited number of values of ¢;, we can assume that x does not
belong to a certain set of type #. Of course, the necessary number of values
increases with the size of the class #.

For each class € of subsets of a set E, let €7 be the class of all subsets of
E which are covered by a countable union of sets in &.

The diagrams show the relationships between the classes and between the
corresponding classes of compact sets. An arrow indicates an inclusion and a
crossed arrow a non-inclusion.

In the preprint version of this paper, the question whether # = &7 was
asked. S. Konyagin has recently proved that # = & [15]. Using the result of
S. Konyagin, the proofs of Theorems 2.6 and 2.11 can be simplified.

(1) Finite sets are Dirichlet sets, so countable sets are D "-sets. But there
exists a countable compact set which is not a Dirichlet set, for example
{bu{2™™ n =1}

D@—,‘;’Dt <.+_:’No y N 'WD@—,,‘———’UO

LN T

7
> HT LoT

D —— D' 2 D Noe—— R=4A >N ——2 U,

1 DY 3 8
7k 8 9
HT Lot
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(2) There exists a compact .#;-set which is not a D?-set and therefore is
not a D T-set; see Theorem 2.3.

(3) T. W. Korner proved the existence of a compact “#set which is not an
AHyset [16]. We will extend his result in Theorem 2.6.

(4) In Proposition 1.9 we proved the inclusion of % in 7. The converse
inclusion was recently proved by S. Konyagin [15].

(5) There exists a compact Fset which is not an .#"?-set. This is Theo-
rem 2.11.

(6) J. Arbault proved the existence of an .#<set which is not an Zset [1].
We will prove the existence of a compact .#“set which is not an L set in
Theorem 2.8.

(7) J. Arbault proved the existence of an H-set which is not a #2°-set [1].
Indeed, the triadic Cantor set K is an H-set and the standard measure on K
is not a Dirichlet measure. Moreover each open subset of K has a subset
which is homeomorphic to K, so, by the Baire category theorem, K cannot
be covered by a countable union of #Z-sets.

(8) %, is the class of all sets of extended uniqueness. Since %, is closed
under finite union [2], %, # ¥ 2.

(9) R. Kaufman proved the existence of a lacunary set which is not a
Z,-set [14].

2.2. A compact .#;-set which is not a D-set

Recall that there exists a countable compact set which is not a D-set.

THEOREM 2.3. There exists a compact A y-set which is not a D°-set.

More precisely, if (a)ie, IS a sequence of integers such that
lim, , {a;,; — a;) = 4+, then the set K ={x € T; L, N12%x|| < 1} is in
Ny\ D°.

In the proof of the theorem, we use the following basic lemma.

LEmMma 24. Letn,m € w,m > 2,p =|log,n|and ¢,,...,¢,,,, €{0,1}.
There exist €, 415 €prm+2s Ep+m+3 € (0,1} such that for each x € T,

(Visp+m+3,6(x)=¢)= (Inxll =27"77).

Proof. Let S =X, ,4m&27" If |InS|l > 27771, then let ¢,,,,,; =
Epsm+2 = Eprm+3 = 0. Otherwise let ¢, ,,.1 =€), =1. O

Proof of Theorem 2.3. It is clear that K is a compact .#{-set. Let (K)), c,,
be a sequence of D-sets. We will find x in K\ U, ,K; in its dyadic form
x =1X,;,&27" for a suitable choice of ¢;s, either 0 or 1.
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Clearly, it is enough to find, by induction on j, an integer k; and ¢; € {0, 1}
for each a; _, <i < a; such that:

(1) For each x € T, if &/(x) = ¢, for all i < a; then Lo oy I2%xl <
1-27and x €K, forall i <.

(@) For all k > kj, ayyy — a;, =2j + 8.

Let k;_, and ¢; (i < @, ) be given. Since K; € D, there exists n; > 2%
such that |ln;x|l < 27777 for every x € K;. Let p; = |log, n;].

Let k; be the least k such that @y > p; + 5 and a},; — @y = 2j + 8 for
all k' > k.

Using the previous lemma, we may impose three consecutive values of &;
(where p; +3 <i<p;+j+8) to insure |ln;xll =277 so that x € K.
The other values of ¢; (where o  <i< ak},) are set equal to 0.

We consider two cases.

First case. If a, _, <p;—j+2, we impose ¢; for i =p;+3,p; +4,
p; + 5. So we have

Y 2wxlls ¥ 2%m?<27

kj_1<k<k; kj_1sk<k;

Second Case. If p;—j+2<a, <p;+5, we impose ¢ for i =p; +
. . . =1 F, . ! J
j+6,p;+j+ 7, p;+j+ 8. Note that this is possible because o zap  +
2j-1D+8=p;—j+2+2j+6=p; +j+ 8 Sowe have

Y oRux|l< Y 2%mTST <27

kj_1Sk<kj kj_15k<kj

In both cases we are done. O
2.5. A compact Hset which is not an ./ -set

T. W. Korner proved the existence of a compact Fset which is not an
Ayset [16]. Using a different method, we extend his result and give an
explicit example.

THEOREM 2.6. There exists a compact J3set which is not a N -set.
More precisely, if (a;); <, is a sequence of integers such that a; ., — a; =
k + 9 for all k € w, then the set

K= {x eT; Y lI2%x||*> < 1and (%), foreachk € w}

k€ew
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is in R\ A, where for each k € w,

Y sinm2%x| < 27k,

i<k

(*)e: ( Y sinqu"‘ix) sin m2%x < 0 or

i<k

J. Arbault was the first to consider ./tfoz-sets, i.e., subsets of a set of the
form

{x eT; Y lngxl? < +oo}.

k€w

He proved that .#? ¢ .#, [1]. By straightforward means, we have /2 C &.
In order to obtain an H#set and to obtain a compact set, we must add
conditions (*), which cause extra complications in the definition of K.

Proof of Theorem 2.6. Since all maps considered in the definition of K
are continuous or lower semi-continuous, K is compact.

To see that K € &, fix x € K. We have u, = sin 72%x — 0 and (*), for
every k. This allows to prove simply that ¥, ., sin w2%x converge. Thus
Ke .

Now we prove that K & .#{’. Let (O )q <, b€ any sequence of elements of
4, (o) where O, = T, 8,0 (see part 13 for the notations). We will find x
in K\ U quGg in its dyadlc decomposition x = ¥, ,¢,27" for a suitable
choice of ¢; either 0 or 1.

Note that the condition on the «, implies that 2°%, . 4% %+ < 1
Consider a surjection f: w — o whose fibers are infinite. We will get, by
induction on j, an integer k; and ¢; € {0, 1} for o, < i< @, such that for
all x € T with ¢(x) = ¢, for alli < ay, we have:

(D Ty, cnsi 296517 < 27 4 5y g
(2) ®q(1[2“kj_1,2“k,~[‘fx) > 1 for q= f(])
(3 (#) forall k;_; <k <k;.

Clearly, this is enough to finish the proof: since f~{g} is infinite, 0,(f,)=
+o for all g € w, thus x & U quGeq. Moreover,

Yol2ux|? < Y27 + 26 ) 4% < 1,

k€ew j=2 kew

therefore x € K.

Let k; and ¢; (for tSak) be given. Let g = f(j) and p, = log, n¢ for
each / 2 2%;,

We consider two cases for k > k;.
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First case. There exists [, with a; —3 <p, < a;,; — 3. Using Lemma
2.4, we may impose three consecutive values of ¢; where p, tm+ 1<i<
py, + my + 3 to get the condition [Inf x|l = 272, where

mk = inf{j + 9, Qpiq _plk - 3}.

Note that m, > 0, p, +m; + 3 < a;,, and |Infx|l = 27/~
The other values of ¢; for @, —3 <i < a;,, — 3 are set equal to {,
where ¢, = 0 or 1 and the determination of {, depends on condition (*),.
Because the values of ¢; for @y +1<i <p, +m, are all equal and
ap,—a,<k+9<j+9, we have

l2%x|| < 2% Py~ < sup{23~U+9), 2ok n1*3) < 2706,

Second case. Otherwise all values of ¢; for ¢, — 3 <i < a;,{ — 3 are set
equal to ¢, where ¢, = 0 or 1. Thus ||2%x|| < 2%~ *k+1+3,
Let k;,, be the least value for which the set

{k € [kj,kjuil;3L, 0 =3 <p < ay,; — 3}
has cardinality 2/*1!. Clearly,

®q(1]2"’kj,2"‘kj+1] .fx) = Z “n;lkx" = 1.

kij<k<k;,.q
On the other hand, we have

I PR i B VN A |

kj<k<kj,q ki<k<kj,q

<2771+ Y 4%
kj<k<kj,,

The remaining task is to choose ¢, for each k; < k < k;,; to insure (»),.
Let S, =X, .. 362" We have |x — S| <27**3 thus

i<ap

Y sinm2%x — Y sinw2%S, | <7y, 2%|x — §, | <2771

i<k i<k i<k

Let ¢ =1 if X, ;sin72%S, > 0 and otherwise ¢, = 0. Thus, if
|X; < sin w2%S,| > 271 then XL, , sin w2%x has same sign as
Y, <, sin2%S, and therefore an opposite sign to sin w2%x. Conversely, if
|Z, < sin w248, | < 27%71 then |X, , sinm2%x| <27%°1 DO
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2.7. A compact .#<set which is not an L-set

J. Arbault proved the existence of an .#<set which is not an &set [1], [2].
We derive an even stronger (yet not more complicated) version of his result.

THEOREM 2.8. There exists a compact A-set which is not an Lg-set.
More precisely,

K= {x eT; T ~ll2nl < 1}

n€Ew
. -
is in N\ Lg.

S. Konyagin proved a best result: there exists a compact .#<set which is not
a o-porous set ([24] Theorem 5.1) and the L -sets are clearly porous. But the
present proof is more elementary and the following lemma is fundamental in
the next section.

LEmMMA 2.9. Let ¢ €]0,2[, m = —llog, ¢l, @ > 0, p = sup{—|log, a), 0},
(1) a finite sequence of intervals such that |I,| < ¢ for each k and d(I, I,,) >

ae foreach k + k'. Let ¢,,...,¢,,_, € {0,1}.
There exist €,,_1,€ps - > Epip+1 € 10,1} such that for each x € T,

(Vism+p+1,5(x)=¢)=(xe UL).
Proof. Let

S= Y 27" and A(r) = Y g27"

l<ism-2 m-1<ism+p+1
where 7 is a suitable choice of (¢,),,_1<; <m+p+1- Lt x € T with x =§ +
A(7) + R(x), where R(x) = L, ,,,,4+.6(x)27". Observe that R(x) belongs
to the interval [0,2 "7~ [ of T. We must choose 7. Recall that 27 < ¢ <
27m*! and 277 < a, therefore ag > 27™7P. Put I, = [a,, b,] for each k.
Consider two cases.
First case. There exists k such that
Sela,—2"mP 1 b, +27m P Y

then there exists 7 € {0, 1}?*2 such that

S+ A(r)€lby, b + 27?71,
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because the possible values of A(7) are 27" P~! apart and between 0 and
Yoi<ismeps12 1 =27m*2—27m"P~1 and because b, — @, < 27™*!. But
d(I, I;)) = 27™7P for each k' # k; thus x & U I,.

Second case. If S & Ula, —2"™?"1 b, +2 ™ 771] then let 7 =0,
ie, A(r)=0. O

Proof of Theorem 2.8. 1t is clear that K is a compact .#<set. Let (K)),; ,,
be a sequence of Ly-sets. We will find x in K\ U;,K; in its dyadic form
x = X,;,8;27" for a suitable choice of ¢;, either 0 or 1.

Let j € w. Since K; € L, there exist ¢; > 0, @; > 0 and a finite sequence
(1) of intervals such that |[,| <e¢; for each k, d([}, I})) = a;¢; for each
k+#k' and K;c UI,. Let m; = —llog,¢;] and p; = sup{—llog, «a;,0}.
Using the previous lemma, it is enough to impose values of ¢; for all
i€lm;—1,m; + p; + 1] to insure x & K;. The values of &, are set equal to
Oforalli¢& U,c,Im; —1,m; + p; + 1]. Since ¢; can be chosen as small as
desired (see definition of L), m; can be chosen as large as desired. Thus we

set (m,); <, such that m; , > m; + p; + 2 for each j € w and

p;+5
2(m; - 2) =

)y

JEw

1.

The values of ¢; for. every i € UjEw[mj - 1,m; +p; + 1] are imposed to
insure x = X, ,,¢62 " isnot in U ;K.
The remaining task is to prove that x € K. But for each j € w, we have

m;+p;
p;+3
Z ;1["2"36" < 2—}—2
n=m;—2 (mj_ )
and
mj.1—3 mj =3 —mjq+2
1 PASCES 1 1
Y =l X < < =,
n=m;+p;+1 n n=m;+p;+1 n m; +pj +1 m; 2
Thus
S Yomi« % Lamie x2S o
=|127x|| < =[12"x| < — <
new j€w n=m;—2 n jew 2(m]- - 2)

and we are done. O
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2.10. An %set which is not an .7 7-set

J. Arbault proved the existence of an &£set which is not an #<set [1]. We
extend his result in two ways. First, we construct an Jset which is not an
A<set (since Konyagin’s result it is not more an extension); this solves a
problem of N. Bary [2]. Second, we prove that such a set need not be an

7-set.

THEOREM 2.11.  There exists a %, 5 set in # which is not an AN "-set.
More precisely, if (a;); <, is a sequence of integers such that (o) — ) is
strictly increasing, then

X= {x eT, Z sin w2%x converges}

kew
is in B\ N

The following two lemmas will be the first step in all our results about
A=sets. For the notation concerning @, and f,, x € T, see 1.3.

Lemma 2.12. Let O € 4 (w), pm€w, m=2, I=[2727"" and
E1severEpym € {0,1}. There exist €, 1> €psm+20 Ep+m+3 € (0,1} such that
foreachx €T,

(Vi<p+m+3,6(x) =¢)=(0(1,.f,) =227"%0(])).
Proof. let S=X,_; ,+m&2”" and x € T, with x =S + R(x) where
R(x) = L, ,+me{x)27". Observe that R(x) belongs to the interval [0,2 77"

of T.
Consider J = {n € I; ||nS|l = 27" 1}.

First case. If ©(J) > 30(I), then let &, 41 = &pims2 = Eprmss = 0.

Let n €J and x € T with e((x) = ¢, for all i <p + m + 3. Thus R(x) €
[0,277=™~3[ and n < 2P*1; therefore nR(x) € [0,2~ 2], whence

lnx|l =|nS + nR(x)| = IInSll —||nR(x)|| = 27" 1 —27m"2=2"m"2,

It follows that ©(1,.f,) = O(1,.f,) = 27" "20(J) = 27" *0().

Second case. If ®(J) < 30(I), thenlet £, ,,,1 = £, 4 mss = L.
Let n € I\J and x € T with ¢(x) = ¢, for all i < p + m + 2. Thus

(1+3)277 " 1 <R(x) <277 ™and2” <n <2°%Y

therefore (1 + 3)27™"! < nR(x) < 27™*1,
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Moreover —2""" 1 < nS —z <27 ™! for some z € T. Because m > 2,
we have

27 M2y —z<2mtl L gm-l £ _pmm=2
Thus |lax|| = 27™"2

It follows that @(1,.f,) = @1, ,.f,) = 27" 720(I\J) = 27" ~*0(). O

Now let 24 = U, 42,2+ for each subset 4 of w. In particular,
2[2:61 = [24 2b6+][ for all integers a < b.

Lemma 2.13. Let ® € £ (), J=2"%), m>2 and €,,...,6,.p, €
{0, 1}). There exist €, 1155 Epsmss € (0,1} such that for each x € T,

(Vi<b+m+3,6(x) =¢) = (0(1,f,) = 327"730(J)).
Proof. Let

J, = U [27,27*]]

a<j<b, j=s(mod3)

for s = 0,1,2. Pick an s, € {0,1,2} such that @(J,) > 30(J). Using, by

induction on j €J,, the previous lemma for I=[2/,2/*", we will get
€a4m+1 - -»Ep+mss tO insure our condition. O

The next lemma is the fundamental step in the proof of the theorem.

Lemma 2.14. Let (0)),., be a sequence in 4 (w) and (a}),c, a
sequence of integers such that lim, _, (a, ., — a,) = +. There exists a con-
verging to infinity sequence (b, ) <, Of integers such that if B = U, [a; +

1, a; + b,] and (g;);c p is any sequence of O’s and 1’s, then there exists a
sequence (g;); < gc of O’s and 1’s such that

X = Z €i2_i & U G@q.

i€w gE€E®

Proof. For p € w, let

I= U [ —4,a +p]

k€ew
and

Q= {q € w;Vp €w,0,(2%) < +oo},
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Two kinds of q ’s are considered. If g & Q, then there exists an integer p,
such that © (2 rq) = +o0, We have easily both following results.

CrLaM. There exists an unbounded non decreasing sequence (a,), <, of
integers such that if

A= U [ak_4,ak+ak],

k€ew
then for all g € Q, ©,24) < +co.

CLamM. There exists an unbounded non decreasing sequence (my); ., of
integers such that for each q & Q,

¥ 27, (2o besrml) = b

kew

Now consider a surjection f:® — » whose fibers are infinite. There exists
an increasing sequence (k j)jE » Of integers such that for each j € w, we have:

(1) if q= f(.’) is in Q then Zk Sk<k +® (2[ak+ak+1 s Q41— 5]) > 1
2 1f g = f(j) is not in Q, then ¥, <k <k, 2@ 2l HtP) > 1 and
p, <

Let b, = infla, + 3, m; — 4, @, — ;) for each k € w. Plainly, (by); <.,
converge to infinity. Note that we can assume in the second claim that
2m, + 3 < @y, — a, for each k.

Let B= U, la; +1,a, + b,] and let (¢,),c 5 be any sequence of 0’s
and 1’s.

By induction on j, using the previous lemma for ®, where g = f(j), we get
g; for all i € B¢ n[“k; 4o, -~ 5] as follows. Consider two cases.

First case. If q € Q, using the previous lemma for m =2 and J =
2lewtatlei=31 where k is successively equal to k;, ..., k;,; — 1, we impose
g; for all

ie U lar+tac+4,a+1]cB°N [ak 4,a
kj<k<k;,q

_5]

to insure

(12[%] ey fx) %2 5 Z 0 (2[¢¥k+ak+1 s 1~ 5]) > 1 .
kj<k<k;,
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Second case. If q € Q, using the previous lemma for J = 2l ~% kP,

and m = m,, where k is successively equal to k;,..., k;,; — 1, we impose &;
for all
le U [ak+mk_3,ak+pq+mk+3]
kisk<kj,q
Q U [ak+mk_3,ak+2mk+3]
kjsk<kjyq
c BN [ak]_ -4, T 5]
to insure
o.(1 . 1 2-2-mr@ (2lak—4 ax+p,] 1
o(Latesj-sni-91 " f) 2 3 x a( ) = 1
ky<k<kj,

Since f~{q} is infinite for all ¢ € w, we have

@q(fx) 2 Z ®q(12[°‘kj—4'“k1+1—5] 'fx) = +oo,
jefYa)

Therefore x = L, 627" & U;c,Go, O

Proof of Theorem 2.11. 1t is clear that X € Z.

In order to prove that X & .#77, let (@)q)qu be a sequence of elements of-
A} (w). We will find a x in X\ U,c,Go, in its dyadic form x = I, 6,27
for a suitable choice of ¢; either 0 or 1.

According to the previous lemma, there exists an unbounded non decreas-
ing sequence (b,), <, of integers such that if B = U, [a, + 1,a; + b;]
and (g;);cp is any sequence of 0’s and 1’s, then there exists a sequence
(¢;); e e of 0’s and 1’s such that

X = z 8,~2—i & U G@q.

iz1 =)

Therefore, the only problem is to choose (¢,); 5 to insure that x € X.
We will choose ¢, =0 or 1 for k € w and set ¢, = ¢, for i € [a; + 1,
a, + b, ]. Thus,

[sin m2%x| < ||2%x|| < w2~% for each k € w.
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The sequence ({;);c, is defined by induction on k. Fix a k € w and

consider S, = L, _,£2~". We have |x — S| < 27%; thus

Y sinm2%x — Y sin wZ“iSkl <y, 2%x = 8| = 0(2%-17%),
i<k i<k i<k

Let {, = 1if X, ., sin 7w2%S, > 0 and {, = 0 otherwise. Thus, if

Y sin wZ“iSk' > O(2%k-17%),

i<k

then L, _, sin72%x has same sign as X,_,sin 72%S, and therefore an
opposite sign to sin 7w2%x. Thus, for every p,q € w,

Y sinm2%x
p<k<gq

< sup (Isinm2%x|) + Y. O(2%-17%),
p<k<q p<k<q

So ¥y <, sin m2%x converges as desired. O

2.15. Extensions of .7

The class .#~ has three natural extensions closed under increasing count-
able unions: #92, #° N ¥ and the closure 4! of .# under increasing
countable unions.

TueoREM 2.16. The class 47 N W'D is not closed under the operation of
taking the generated subgroup, i.e., there exists a Borel set X € /' N WD
such that the group generated by X does not belong to 4 N\ ¥ D.

Since .#” is closed under the operation of taking the generated subgroup,
A" has the same property. Using Proposition 1.7, we then get:

COROLLARY 2.17. One has
NN CcH NADC HD
and all inclusions are strict.

Proof of Theorem 2.16. Let (a;), ., be a sequence of integers such that
limk__’w ak - ak+1 = 4+ and

Y = {x € T; lim sinw2%x = 0+}.

k-
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Clearly,
Ye wc ¥#9.

Let (A4, C) be a partition of w in two colacunary sets. Then X =Y N (K, U
K(o)isin #7 N ¥ 9. Note that Y is a subset of the group generated by X;
indeed, Y € X + X because K, + Kz =T.

It only remains to prove that Y does not belong to .#°. Let (0,), ., be a
sequence of elements of £ (w). We will find x in X\ U,c,Ge, With
dyadic decomposition x = ¥, ,¢,27" for a suitable choice of ¢; either 0 or 1.
According to Lemma 2.14, there exists a converging to infinity sequence
(by)k <, Of integers such that if B = U, la; + 1,a; + b, ] and (¢);c 5 is
any sequence of 0’s and 1’s, then there exists a sequence (g;); < gc of 0’s and
1’s such that

X = Z€i2_i & U G@q-

i1 d€w

But the ¢;’s are set equal to O for every i € B, whence x €Y. O

3. Antistability and further applications
3.1. Hausdorff operations
A subset & of 2 \ {0} is a monotone basis on » if & is non empty and is

monotone (or cohereditary), i.e., [4 € ¥ and A cB] = B € .
To each monotone basis &, we associate its dual basis

F={Ae€2% 4°c F°,
which is also a monotone basis on w. Note that &= %
If % is a monotone basis on w and (X,), ., a sequence of subsets of a set
E, we define Hg(X,) as the set of all x € E such that
{(new;xeX,} e .
Note that x & Hg(X,) « {n € w; x & X,} € . The operation Hg is
called the Hausdorff operation with basis &.

To each hereditary class € of subsets of E and monotone basis %, we
associate the class € defined by

{.9"= {Hf'(Xn)’ (Xn)nEw < {}

We say that ¢ is an Fclass (of subsets of E) if €% = €.
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3.2. Main examples

In this part, € is always a hereditary class of subsets of a set E.
(1) Let o = 22\ {0}.

&7 = {Xe P(E); IX,)en €€ X U X,,}

n€w

= the o-ideal generated by €.

(2) Let Zr be the Fréchet filter on w, i.e., the set of all cofinite subsets of
w. For each (X,), ¢, Hz(X,) = U e N X,,. Thus

nzm*“*n*

€T =¢"= {X € #(E); A(X,) e, increasing c €, X< U Xn}.

n€w

One has to be careful: in general, €' is not the 7-class (or Sr-class)
generated by €.

3) Let 2®W ={4€2° AN[0,n— 1]+ &} for each n>1. Let
U= YUP,

n—1
P {Xe P(E); I(X)ocicn-1S¢, XC 'UOX,.},

2" = ¢,

The % ™-classes are the ideals (i.c., the classes closed under finite union) for
all n > 2.

(4) For each n > 1, let P be the set of all subsets of w whose
complement has cardinality < n. Clearly ™ c Fr.

Let Z= PW, S0 Hup(X,) = U ew N pemX, for each sequence (X,), c -

ProrosiTioN 3.3. Let E be a metrisable compact space. For each sequence
(X,),c. Of compact subsets of E, the set X = Hgp(X,,) is compact. For each

sequence (X,),c. of elements of the multiplicative Borel class 11°, the set
X = Hg(X,) e I12.

Proof. For each x € E,
xeEXeoVmew(xeX,or[Vn+m,xeX,)]).

Thus X is in the same multiplicative Borel class as the X,’s. O
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(5) Let o7s be the set of all subsets of density one of w, i.e., all subsets A
of w such that

=1.

d(A) = lim card(A N [0,n — 1])

n—ow n

Note that #r c &s and &s is a ¥, ; subset of 2*. For each (X,), c >
1 n
H,(X,) = {x € E; lim — Yy Iy(x) = 1}.
e k=1

ProrosiTiON 3.4. Let E be a metrizable compact space. For each heredi-
tary class € of compact subsets of E, #€ is an &/s-class.

This proposition follows directly from the next lemma, due to R. Lyons
[20], and which will be used again in Proposition 4.5.

Lemma 3.5. Let E be a metrizable compact space. Let u be a finite positive
measure on E, (X)), ., be a sequence of universally measurable subsets of E
and X = H_,(X,). Then

m(X) = sup u(X N X,).
Proof.

n
X= {x € E; lim % Y 1x(x) = 1};
k=1

n—o

thus

1 n

n=e k=1
Using Lebesgue’s Theorem of dominated convergence, we have
1 n
w(X) < [ lim 2 ¥ 1(%) du(x)
Xn—o T p=1
1 n
< lim > [ 3 1,(%) du(x)
n—oo R Xp=1 n
1 n
< lim = Y w(XNX,).
now M 2y

For all ¢ > 0, there exists an integer n such that uw(X N X,) > u(X) —e.
O
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3.6. An order relation

ProrosiTioN 3.7. Let & and £ be two monotone bases on w. The
following conditions are equivalent:

1) €% c €7 for each hereditary class € or subsets of each set E.

2 Fo:w - o, go"Al«g"Q Z.

3 Fp:0 - 0, pfC S,

If the previous conditions occur, we shall say that & < &. The proposition
is proved in [12, Propositions 1.5 and 1.7]. .

In particular, F ¥ Lo Vo:w - 0w, 4 € £, ¢(A) € F. We will use
this equivalence in Part 3.10.

The relation = is a quasi-order (i.e., a reflexive and transitive relation) on
the set of all monotone bases on w. Let < be the associated strict
quasi-order defined by

F<Geo (FLand I F).
Let = be the relation of equivalence defined by
F=Go (FXLand 2 F)
and let L be the relation defined by
FlIe (F¥ fand X F).
Remarks. (1) 2V is the least element of =< modulo = and Y = {w}).

(2) & is the immediate and single successor of " for =< modulo =.
Indeed, for all monotone bases % on w, we have

F¥*t YV eoVnew,d4de F,ne A
eVnew,{neF

e PC F.

(3) o is the greatest element of =< modulo =.
@) P< Fr< s, Fr L % and s L %.
B) PP~V <™ and ™ 1 Y™ for each n > 2.

3.8. Iteration

To obtain the closure of a class under a Hausdorff operation, it is generally
necessary to iterate this operation.
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Let & be a monotone basis on w and ¢ a hereditary class of subsets of a
set E. The class €% is defined by induction on the ordinal a:

{09‘= _g’ {<a.9’= U_gﬁ&” .ga&"= ({<a.9’)‘7 and _gwy=,g<w19".

B<a

The height of %, written ht(%), is the supremum, over all hereditary
classes ¢, of the first a for which €*% = €=%. Note that ht(Z®) = 0,
ht(o) = 1 and ht(%) = w.

In most cases, we will see that €% can be obtained with the single
operation of a monotone basis on #.

Fix a one-to-one map { ):w? - w. Let 4, = {k € w;{n, k) € A} for
each A €2“ and n € w. Let & and # be two monotone bases on w.
Consider

FoI={4e€2*{ncw;4,€ I} € F}

which is a monotone basis on w such that

HF@J( Xn) = Hn - y[Hk —nf(X(”,k))]
for every sequence (X)), c,, of sets. In particular
{.9'®5= (g.f)y

for each hereditary class €.
Note that

n times

=€ F® -0 F foraln € w.

But the ideal €“% generated by € cannot be obtained with the single
operation of a monotone basis on . Nevertheless for = “r or s there
exists a monotone basis &%, such that €*% = ¢%* for each countable
ordinal a.

Here is one of the possible definitions of %,. For each countable ordinal
a, we can take a sequence ([a],), <, of ordinals such that [a], 7 a if @ is a
limit ordinal, and [a], = B if a« = B + 1. Define %, = {w} and

F={ae2;{new; 4, F,} e F}.

In particular, &, ., = ¥ ® %,
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The definition of %, depends a priori on the choice of ((a],),c.; for
example, we do not have unicity of &2, modulo = [12, Proposition 11] but
for = %r or &/s we have unicity of &, modulo = [12, Propositions 2.8
and 2.9].

Let us recall the main result about these bases [12, Theorem 4.1 and 5.1
and Proposition 5.4].

THEOREM 3.9. For all ordinals a and B with 1 < a < B < w, we have
Py ¥ Fr, and Frg ¥ s,

In particular ht(#) = ht(Fr) = ht(s) = w,. However P, = s for each
ordinal a < w;.

Let €%1 = €% = €%, The basis Fr, is called the a-iterated Fréchet
filter. Observe that €='" = €7 is the closure of ¢ under increasing
countable unions.

3.10. Antistable classes

Consider I, = {A € 2°; n € A} where n € w. Note that I, is a clopen
subset of 2¢ for the product topology. For each monotone basis &%, we have

F=Hg(l). Let = U ,.,%(1,). We deduce from Proposition 3.7 that
for all monotone bases % and ¢ we have

F¥t I= Hg(l,) ¢ S
So we give the next definition.
DEerFINITION 3.11. We say that a hereditary class € is antistable if there

exists a sequence (X)), ., of elements of € such that, for all monotone
bases % and ¢, we have

F¥ I=Hgz(X,) & €7

For an antistable class ¢, one has in particular = Z« €7 ¢ €%
Antistability is a very strong property of non-stability, as shown next.

PROPOSITION 3.12. There exists a class € such that €+ €7 for every
monotone basis F> %P but € is not antistable.

To see this, we will use the following lemma [12, Proposition 2.7}.
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Lemma 3.13. Let & be a monotone basis on w. For every ordinal
a < ht(F), there exists a hereditary class € C P(2®) such that € <*% +
€27 = ¢~

Proof of Proposition 3.12. By the previous lemma, let € be a hereditary
class such that € # €% = €*Z. Let & be a monotone basis > %Y. Since
& is the immediate and single successor of Z®, we have € # €% c €¢7.
But #, ¥ #and €= ¢ 2,50 € is not antistable. O

We note that if € is an antistable class, €' is antistable too. Since
€' = €7 the next lemma [12, Lemma 4.11] is enough to conclude.

LemMma 3.14. Let % and £ be two monotone bases on w. We have

Ft = F& PE I Fr.
3.15. Antistability of .#

THEOREM 3.16. Let (A,),, be a sequence of colacunary subsets of w
such that d(A,, A,,) = 3 foralln # m. Foreachn,letE, = U;c ,K4 i, +op
which is a %, setin D'. If & and & are two monotone bases on » such that
F¥ &, then X = Hg(E,) & N7.

As a consequence, N, D" and all hereditary classes € with D' c € c N
(like A,) are antistable.

In the proof of Theorem 3.16, we will use the following lemma, which is a
corollary of Lemma 2.13.

Lemma 3.17. Let (@), be a sequence in 4, (w) and A a subset of w
such that ©,(24) = +o foreach q € . Let B=A + [3,5] and (¢,);c c be a
sequence of 0’s and 1’s. Then there exists a sequence (g;);c g of 0’s and 1’s
such that

X = 28,2_" & U G@q.

i1 gE€Ew

Proof. Note that there exist sequences (a,),<, and (b,),., of integers
such that

B=A4+[3,51= U [a,,b,]and b, + 2 <a,,,

nEew

for all n. Thus 4 € U, ¢ la, — 3,b, — 5]. Consider a surjection f:w — o
whose fibers are infinite. Since ®q(2A) = +o for each g € w, there exists an
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increasing sequence (n,), <, of integers such that for each k,
®q(2 U ngsn <nk+1[an_3’ bn_sl) > 1 ,

where g = f(k). Let (g;); < ge. Using, by induction on k, Lemma 2.13 for @,
where g = f(k), J = 2l@n=3b.=5] = 2 and successively for n =
Rg,..., N — 1, we may impose the values g, forallie BN [a,,k, a, [to

. Rr+1
msure

1~—
®q(12Unksn<nk+1l“n_3,bn—5].fx) > 32 5.

Since f~Yq} is infinite for all ¢ € w, we have

0,(f)= L 6,1

kef~Yq)

fo) = 4o

n s apy L

forx=X,,,62 'andforall g €w. O

Proof of Theorem 3.16. Let (®,),., be any sequence of elements of
A (w). We will find x in X\ H(Gg ) with dyadic decomposition x =
T2 162" for a suitable choice of ¢;’s either 0 or 1.

Let B, = A, + [—5, —3] for each n € » and

Q= {q €Ew;Vn € w, ®q(23") < +oo}.
By the usual means, we can find a subset A4 of w such that:

(1) 4 N B, is finite for each n € w.
(2) ©,(2*) = + for each g € Q.

Let B = A + [3,5]. Observe that B N A, is finite for each n € w.

Now there exists a n, € @ such that @ (ZB"q) = +o for each g & Q.
Consider a map ¢: w —-> » which assocmtes n,to g&Q and anything to
g € Q. Since FF &, there exists a P € & such that o(P)° € &. Let
A =AU U,c,pB, and B' = A + [3,5]. The values of ¢; are set equal to
0 for all i & B'. ButB +[3,5] = A, + [—2,2], thus

(B, +[3,5])nA,=0 foralln+n'.
Therefore B' N A, = B N A, is finite for each n & ¢(P); thus

{(new;x€E} e Fand xeX=Hu(E,).
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Furthermore, ®q(2A') = +o for all g € P. According to the previous
lemma, there exists a sequence (¢,); < g of 0’s and 1’s such that

X = Z 8i2_i & U G@q.

i1 qeP
Since P € £, then{g € w; x & GeJ € Zand x & HyGe). DO
3.18. Solutions of the problem of Arbault and of other questions about .7~

We can now answer several problems including the question about the
stability of .#” under increasing countable unions (see Part 1.5). Note that
the following results are false if one considers only J¥ sets.

THEOREM 3.19. There exists an increasing sequence of %, sets of absolute
convergence whose the union is not a set of absolute convergence. More
generally, the inclusions

AN T cH e s cHN e s T

are strict, and in fact, for each countable ordinal a, there exists a %5 set in
D“" which is not in NP for any B < a.

Proof. Let (E,),., be as in Theorem 3.16 and a a countable ordinal.
Since &, ¥ Fry for each ordinals B <a, Hp(E,) & # <*". But Hg
(E,)) € DU*®" because # = Fr. Using Proposition 3.3, we deduce that
Hg(E,) is %,, because the E,’s are J¥,. Observe that if we use F,
rather than &, we obtain a XJ,,,., set. DO

THeOREM 3.20. For all n > 1, there exists a ¥, set in ¥'D (even in D*'
orin A1) which is a union of n + 1 #-sets and not of n.

Proof. Let (Ek()!c <, be asin Theorem 3.16 and n > 1. Since ™ ¥ 2™,

Hgaw(Ey) & 4 %", we know Hgpe(E,) is not a union of n #sets. But
P =2 Frand P™ 2 2"+, s0

Hgow(E) €D cH ' c 9

and Hgw(E;) is a union of n + 1 A<sets. O

THEOREM 3.21. There exists a Borel set in 4" which is not a finite union
of A-sets.
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Proof. Let (E\);<, be as in Theorem 3.16. Since Fr ¥ 2™ for all
n=1, Hg(E) & U,.,# %" thus Hg(E,) is not a finite union of
Asets.

O

THEOREM 3.22. There exists a Borel set in D° N ¥ which is not in 4 7.

Proof. Let (E,),, be as in Theorem 3.16. Since &/s ¥ Fr, for all
countable ordinals a, H_(E,) & #“'. But ¥ is an &s-class, so
H_(E,)) € #¥2. And clearly H ,(E,) € D°. O

In the previous theorem, note that H,,(E,) is a £2 set. We will see that a
%,s set with the same property can be found. The next result is not a
consequence of Theorem 3.16, but its proof follows the same way.

THeEOREM 3.23. Let (A,),, be a sequence of colacunary infinite subsets
of w such that d(A,, A,) =3 foralln # m. Then X = Hy (K, ) & #™".
In particular, there exists a ¥, 5 set in D N Y9 which is not in N "

Proof. Let (0,), ., be any sequence of elements of . (w) and let a be
a countable ordinal. We will find x in X\ Hg, (G ) with dyadic decomposi-
tion x = L,, ;27" for a suitable choice of ¢;’s, either 0 or 1.

Let B, = A, + [—5, —3] for each n € w and

0= {q €Ew;Vn € w, ®q(28") < +°°}.

It is easy to prove the following fact: let (u2),., be sequences of non
negative reals such that ¥, . . u? = + for each q € w; there exists a set C
of density zero (i.e., C° € &7s) such that ¥, -u? = + for each g € w.
Using this fact with ul = ®q(23"), we take a subset 4 of w such that
®q(1A) = +o for each g€ Q and 4 N B, = & for each n € C°, where
C¢ e 5. let B=A + [3,5]. Observe that B N A, = & for each n € C°.
There exists a n, € » such that ®q(23"q) = +oo for each g & Q. Consider
amap ¢: — o which associates n, to g  Q and anything to g € Q. Since

s ¥ Fr,, there exists a P € Fr, such that ¢(P)° € &s. Let A =AU
U,eomB, and B' = A’ +[3,5]. The ¢;’s are set equal to 0 for all i & B'.
But B, + [3,5] = A, + [—2,2]; thus

(B, +[3,5])nA, =02 foralln+n'.

Therefore B N A, =B NA, =@ for each n & ¢(P) U C. Since s is a
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filter, o(P)° N C° € s, then
{(n€w;x€E,) € osand x € X = Hy (K, ).

Furthermore, ®q(2“") = +o for all g € P. According to Lemma 3.17,
there exists a sequence (g;);c p of 0’s and 1’s such that x = L, 627" &
U,<pGe, Since P € Fr,, we have

{a€w;x &G} € Fr and x & Hg,(Ge,). D

3.24. Antistability of various classes of compact sets

THeorReM 3.25. Let (A,),., be a sequence of colacunary subsets of o
such that as k — + oo,

d(A4, N[k, +o[, 4, N[k, +o[) > +o

uniformly for all n # m. For each n, let E,, = K, which is a compact Dirichlet
set. If & and & are two monotone bases on w such that F3F ¥, then
X =Hg(E,) ¢ LY.

So D, L, and all hereditary classes € with D C € C L, (like H and L) are
antistable.

CoRrOLLARY 3.26. There exists a sequence (F,),.. of compact D" -sets
such that if & and & are two monotone bases on o such that ¥ &, then
Hg(F) & (L{)*.

So Ny, R, &, and their corresponding classes of compact sets, N,, R and
A, are antistable.

Proof. For each n € w, let F, = Hg(E, ;,) which is a compact D -set.
Let & and «# be two monotone bases on w such that ¥ #. According to
Lemma 3.14, we have ¥ ® £ ¥ £® Fr. Then Hy(F,) = Hgg45(E,) does
not belong to (L{)¥ = LI®**". O

Proof of Theorem 3.25. Let (K));, be any sequence of L,-sets. We will
find x in X\ Hy(K;) with dyadic decomposition x = ¥,,¢,27 for a
suitable choice of &;’s, either 0 or 1.

Let j € w. Since K; € L,, there exist a sequence £ — 0%, a; > 0 and for
each k a finite sequence (If) of intervals such that |I}| < &f for each [,
d(I}, IF) > a;ef for each I # I' and K; c U If. Let

p; = sup{—|log, &;|,0}, mf =~ [log2 "'Jkl
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and
k k _ k
JE=[mf = 1,mf +p; + 1]

for each k€ w. As k > +x, m — +o and d(A4, N[k, +=[, 4, N
[k,+ ) » + o uniformly for all n =# m, J; ¥ meets at most one A, for large
enough k. Thus for each j € w, there ex1sts an integer k; such that Jy=Jji kj
meet at most A, and the J;’s are pairwise disjoint.

Consider the map Qlw 5 o which takes j to n;. Since F ¥ &, there
exists a P € & such that o(P) € &. Using Lemma 2.9, by induction on
Jj € P, we choose ¢, for i € J; to insure

x= Y27 €K,

i1

The other ¢;’s are set equal to 0. Since Pe? {(jew; x GEK} € Z and
thus x & H,(K) Furthermore ¢(P)° € &; then {n € w; x € KA} € Z,
andso x € X = Hy(E ). O

3.27. Increasing countable compact unions of compact thin sets

We study the stability of various classes of compacts under increasing
countable compact union.

Let € be a hereditary class of compact subsets of a space E. The class
€3 is defined by induction on the ordinal a:

€L =¢"nX(E), €5 = | €87,

B<a

= (€51 and €3 = €50,

Note that €73 is the closure of ¢ under increasing countable compact
union.

According to Proposition 3.5, €2 c ¢ 5, whence we deduce the following
results.

THEOREM 3.28. There exists a compact set in DS} which is not in L§*"
for each countable ordinal a.

Consequently, the classes of compact sets D, H, L, L,, Ny, R and A are not
closed under increasing countable compact union.

Proof. Let (E)),, be as in Theorem 3.25 and a a countable ordinal.
Smce P, ¥ Frg for all ordinal B < a, Hp(E,) € L;*'. But Hgp(E,) €
! because .9” <X&r. O
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CoroLLARY 3.29. There exists a compact H-set which is not an fset.
More precisely, there exists a D2 -set, which is both an A-set and a set of
uniqueness, but is not an fset.

Note that the H-sets (and so the D2/ -sets) are sets of uniqueness [9], [2].
T. W. Korner proved the existence of a compact .#<set which is not a set of
uniqueness (and so which is not an &set) [17].

Let us recall that #/'=N".

CoroLLARY 3.30. (a) A C N, but Ny ¢ A,
b) 2 A and AT ¢ .

Proof. Each element of .#, is a subset of a ¥, set in .#; which is an
N,'-set. Conversely, D3} c N)' c A" and D! ¢ &, thus Ny ¢ 4, and
A" ¢ /. Moreover A C N, thus AT c N = #. In view of Theorem 2.11,
L N, thus L AT, O

THEOREM 3.31. For all n > 1, there exists a compact set in A, (even in
D) which is the union of n + 1 Dirichlet sets and is not a union of n L-sets.

Proof. Let (E;c)ke,,, be as in Theorem 3.25 and n > 1. Since ™ £ ™),
Hao(E,) & L¥”; thus Hpm(E,) is not a union of n L-sets. But 2™ < Fr
and P™ <X "+D, whence Hpw(E,) € D' c #, and Hzpw(E,) is a
union of n + 1 Dirichlet sets. O

TueoreM 3.32. For all n > 1, there exists a compact set which is the union
of n + 1 Dirichlet sets and is not a union of n LY -sets.

Proof. Let (E;);c, be as in Theorem 3.25, let n > 1 and let a be a
countable ordinal. Since Z"*V ¥ 2™ ® Fr,, Hyu(E,) & (LT=)2",
thus Hyw+o(E,) is not a union of n L%'-sets for each a < w,, therefore
Hgm+v(E,) is not a union of n L -sets. O

THEOREM 3.33. There exists a %, 5 set in D° N D (more precisely in
D) which is not in (#'U Ly)™".

Proof. Let (E;);c, be as in Theorem 3.25. Since &s ¥ Fr, for each
countable ordinal «, H_(E,) & L3'. According to Theorem 3.23, H,
(E,) & #™". Moreover,

(SUL)™T ==t uLY

and H(E,)isa %4,; set. O
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4. Pseudo and asymptotic classes
4.1. Suniform convergence

Let & be a free filter on w, i.e., a monotone basis & containing &r and
closed under finite intersection. Let (f,),, be a sequence of real valued
maps on a set E. We shall say that (f,), ., converges Funiformly to f if
there exists a sequence &, — 0" such that for each x € E,

{n€w;|fu(x) - f(x)| <&} € 7.

With % = {w}, we obtain the usual uniform convergence. The Fr-uniform
convergence was introduced by A. Denjoy [6, p. 183] under the name of
pseudo-uniform convergence and was also studied under the name of quasi-
normal convergence or equal convergence [5]. The pseudo-uniform conver-
gence was considered in the present context by N. Bary [2], J. Arbault [1] and
Z. Bukovska [4].

A subset X of T is a set of type D — F if there exists a strictly increasing
sequence (n,), o, of integers such that ||n,. || converge Funiformly to 0,
i.e., if there exists a strictly increasing sequence (n,), o, of integers and a
sequence ¢, — 0" such that for each x € X,

{k € w; lIn,xll <¢,} € F.

A subset X of T is a set of type H — & if there exist an interval I of T and
a strictly increasing sequence (n;), <, of integers such that for each x € X,

{(kew;nx&l} € &F.

A subset X of T is a set of type L, — & if there exist a sequence &, = 07,
a > 0 and for each n € w, a finite sequence (I}') of intervals such that
17| < e, for each k and d(I}, I}') > a¢, for each k # k', such that for each
xeX,

{nEw;xE UI,:‘}e?.
k

Note the inclusions between these classes.

ProposITION 4.2. We have DY cD — FCH— FCLy,— F for each
free filter & on w.

For each class €= D, H or L, a set of type € — Fr will be called
pseudo #-set and a set of type € — &s an asymptotic €-set. The pseudo
Dirichlet sets were considered by N. Bary who proved they are in 4. Z.
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Bukovské noted that the pseudo Dirichlet sets are exactly the D "-sets. We
can complete this result.

ProrosiTiON 4.3.  We have D — Fr, = D*" for each countable ordinal a.

Proof. We have just to prove that D — &r, < D*' for each countable
ordinal a. In the case a = 1, consider the set X of all x € T such that
{k € w; lIngxll <ée) € Fr. Then X C U, fk € o; lIn x|l < e, for each
k > i}, which is an increasing union of Dirichlet sets. Let @ be a countable
ordinal > 1. Consider the set X of all x € T such that {k € w; lln; x|l < e}
€ Fr,. Using the definition of Fr, in Part 3.8, we have that

{j € w;{k€w;lng yxll <eg )€ Fr[a]j} e Fr

for each x € X. Therefore X = Hg,(X;) where X; is the set of all x € T
such that

{k € w;lngxll <eg; i) e Ty,

which is clearly a set of type D — Fr[a]i. So we conclude the proof by
induction on «. 0O

4.4. Asymptotic Dirichlet sets

The asymptotic H-sets were considered by R. Lyons because they are
annihilated by the same measures as the H-sets [20]. We are interested in the
class of all asymptotic Dirichlet sets which provides examples of “large” weak
Dirichlet sets.

ProrosiTiON 4.5. All asymptotic Dirichlet sets are weak Dirichlet sets.

Proof. Let X be an asymptotic Dirichlet set and let (n,), <, and (&) ¢,
be sequences witnessing that. Then X ¢ H_,(X,) with X, = {x € T; [ln, x|l
<égc). By Lemma 3.5 we have u(X) = sup, (X N X,) = sup,,u(X N
N;X;) and N;X,, € D for each sequence (k;);c,,. O

THEOREM 4.6. There exists an asymptotic Dirichlet set which is not covered
by a countable union of ¥ and L jsets.

More precisely, if (a), <, and (by), <, are two sequences of integers such
that

bk - ak d +°°andak+1 _bk d +®

as k —> +o, then X = Hy (K, , ) isin (D — &s) and not in (#'U Ly)°.
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Proof. Since b, —a, —» +» as k, X clearly belongs to D — &7s. Let
(®,), <, be a sequence of elements of .#; (w) and let (K;), <, be a sequence
of elements of L,. We will find x in

X\( U Ge, U UKj)

gEw Jj€w

with dyadic decomposition x = ¥, ;27" for a suitable choice of &,s either
Oor 1
Let

A= U[ak_s,bk“S] and Q={qew;®q(2A)=+°°}.

kew

Let uf = ©,(2!%~>53]) for each g € Q and k € w. Recall an argument
used in the proof of Theorem 3.23: let (1), ., be sequences of non negative
reals such that ¥, . ,u = + for each g € Q; there exists a set C of density
zero (i.e., C¢ € &fs) such that L, . -u? = + for each g € Q. Let

A’=( U [ak“5,bk"3]) and B =4 +[3,5].
kecC*

Note that ©,(24) = + for each g € Q, and B = U, < la;, bl

Let j € w. Since K; € L, there exist a sequence &; — 0+, a; > 0 and for
each n a finite sequence (1) of intervals such that |I'| <&} for each I,
dUp, I) = a;e} for each [ # I and K; c U, I/". Let p; = sup{—|log, ;], 0},
m} = —|log, €| and

I = [m,'-'— 1,m} +p, + 1] for each n € w.

Since a; ., — b, = + as k, J' meets at most one interval [a,, b, ] for large
enough n. Therefore, there exists an integer n; for each j € w such that the
J;’s, where J; = J, are pairwise disjoint and the set C" of all k such that
[a,,b;] meets at most one interval, J;, is a set of density zero.

Since s is a filter, C” = C U C’ is a set of density zero. The values of ¢;
are set equal to 0 for all i € U,ccnlay, byl =B". Thus x € X =
H (K, »,p- Furthermore, simultaneously using Lemma 3.17 and 2.9, we
can choose a sequence (g,);c g of 0’s and 1’s such that x = L,, 627" &

UquG@)qU UjEij‘ D
4.7. Another result of antistability

We prove that classes of type € — % do not have properties of stability. In
particular, there exists a D?"-set which is not an asymptotic Dirichlet set.
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THEOREM 4.8. Let % be a monotone basis on w and let % be a free filter
on w with % £. There exists a set in D¥ which is not in L, — <.

More precisely, if (A,),c, is a sequence of colacunary subsets of w such
that as k = +,

d(A, N[k, +o[, A, N[k, +o[) > +o
uniformly for all n + m, then
X=Hg(K, )€ D?\ (L, - #).

Proof. Consider a sequence ¢, = 0%, a > 0 and for each k € w, a finite
sequence (If) of intervals such that |If| < ¢, for each I/ and d(If, If) = ae,
for each / # I'. We will find x € X with dyadic decomposition x = L, &,27*
for a suitable choice of &,’s either 0 or 1 and such that {k € w; x € U,I}}
& g

Let p = sup{—llog, a],0}, m; = —|log, ¢, ) and J, = [m, — 1,m, +p +
1] for each k € w. Since as k = +», m;, = +» and d(A4, N [k, +[, 4,
N [k, +[) > +c uniformly for all n # m, J, meet at most one A4, for
large enough k, i.e., k = k. Thus for each k > k, there exists an integer n,;
such that J, meets at most 4, and the J,’s are pairwise disjoint.

Consider the map ¢: @ — o which takes k to n,. Since ¥ &, there
exists a P € & such that ¢(P)° € &. Since  is a free filter, P"=P N
[ky, + o belongs to . Using Lemma 2.9, by induction on k € P’, we pick ¢,
for i € J, to insure that x = T;»182 " is not in U ,If. The other &;’s are set
equal to 0. Since P’ € £, {k € w; x & U ,If} € &, whence

{kew;xe UI,k}GEf.
]

Furthermore, p(P')° € &, whence{n € w; x €K, } € F,sothat x € X =
Hg(K,). O
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