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ANTISTABLE CLASSES OF THIN SETS
IN HARMONIC ANALYSIS
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Introduction

The motivation for this study is a property of the class .///of all sets of
absolute convergence (of a trigonometric series whose sum of coefficients is
infinite): an increasing countable union of compact (or J) 4-sets is an
./g-set (Host-M61a-Parreau [8]). Is it still true for any increasing countable
union of ./g-sets? This problem was posed by J. Arbault in [1]. It led me to
study in general the operation of increasing countable union, and to a precise
study of the class /and various related classes of thin sets. My Th.se de
Doctorat [11], under the supervision of A. Louveau, contains some of the
ideas developed in this paper.

Stability under finite union or countable union of classes of thin sets
naturally introduced in harmonic analysis (e.g., sets of uniqueness [2] or
Helson sets [18]) are classical problems (most of them are collected in the
appendix of [17]). On the other hand, the stability of these classes under
increasing countable union, to my knowledge, has never been studied. This
paper can be considered as mixing harmonic analysis and descriptive set
theory, in the same vein as the work done, in the study of sets of uniqueness,
on tr-ideals and the operation of countable union [13]. But contrary to the
operation of countable union, the operation of increasing countable union
has no good descriptive properties [3]. In particular this operation is not
idempotent, and to iterations are needed in general to obtain the closure of
a class under this operation. The general study of the operation of increasing
countable union and of related operations is done, from a combinatorial
point of view, in [12].
The notion of a set of absolute convergence was introduced by P. Fatou in

1906 [7] and was successively studied by N. Lusin 1912 [19], V. V. Niemytzki
1926 [22], Marcinkiewicz 1938 [21], R. Salem 1941 [23], J. Arbault 1952 [1],
J. E. Bj6rk and R. Kaufman 1967 [18] and B. Host, J.-F. M61a and F Parreau
1991 [8]. In the first section, we present the classical properties of the class 4/
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of sets of absolute convergence and several classes linked to ,///: it is a new
presentation which uses the operation of increasing countable union to
obtain known and new results.

In the second section, we show that the inclusions between classes proved
in the first section are strict. In particular, we prove the existence of a set of
resolution (even d)which is not a set of absolute convergence (this should
be compared with the fact that all dC-d, sets of resolution are of absolute
convergence). This last problem was posed by N. Bary more than thirty years
ago.

In the third section, we study the properties of non stability of our classes
of thin sets. Increasing countable union and its iterates are examples of
Hausdorff operations. In [12] we have defined an order on Hausdorff opera-
tions which compares their respective power. Among the classes which lack
some properties of stability under Hausdorff operations (e.g., increasing
countable union or finite union), we have singled out the ones we call the
antistable classes which have no stability property whatsoever (except those
shared by all classes): a class is antistable only if the order of inclusion
between its images under the Hausdorff operations is equivalent to the order
of the Hausdorff operations. In fact we transform a negative property (not to
be stable under finite or increasing countable union) in a positive property (to
be antistable) which allows us to build many examples of sets. We prove that
the class of sets of absolute convergence and most of the other classes
considered in this paper are indeed antistable. This result, which can be
considered as very negative by harmonic analysts and which may explain why
so many related notions have been introduced to study M/, can also be
viewed as a transfer theorem which gives a uniform way of building very
complicated (or exotic) thin sets in harmonic analysis. In particular it allows
us to solve the original problem of J. Arbault (and prove that 0) iterations
are needed to obtain the closure of d//under increasing countable union)
and also allows us to present some similar results for other classes of thin sets
in the fourth section (e.g., pseudo Dirichlet sets [2] or asymptotic H-sets
[20]). In that final part, we introduce the notion of asymptotic Dirichlet sets,
which provides examples of "large" weak Dirichlet sets.

1. Definitions and classical properties

1.1. Notations

Let o (resp.. 0) 1) be the first infinite (resp. uncountable)ordinal. We also
denoted by o the set of positive integers. We will identify the set (o) of
subsets of o with 2 via the map A 1A. The natural topology on 2 is the
product topology for which it is a metrizable compact space.
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Let T be the torus R/T with its structure of compact topological group.
For all x T, let ][x[[ be the distance from x to 0. Note that

Ilxll sin xl < rllxll.

Every element x of T can be expressed in the form x ,ilei(x)2-i with
el(X) either 0 or 1 (ei(x)’s are set all equal to 0 for large enough if x is
rational). This defines an injective map from T to 2 which takes x to
(ei(x))i 1. Most constructions in this article use this remark.

Let E be a Polish space (i.e., a complete metrizable separable space). For
each countable ordinal a > 1, let 0 (resp. II, resp. A) be the Borel
additive (resp. multiplicative, resp. ambiguous) class of rank a:

X,1 open, Y_, =- , Y.,3 m 4’,,,...
IIl--closed, II--, IIm ,,...
AO, y_,o, t3 II Al clopen

The class of all compact subsets of E is denoted by deal(E). See [13] for more
details about Borel classes.

1.2. Definitions of various classes

Here are the classes of thin sets we are interested in:
A subset X of T is a set of absolute convergence if there is a sequence

(a),o of nonnegative reals such that Eo,a +oo and Y’.n,oallnxl[ <
+ oo for each x X. The class of all sets of absolute convergence is denoted
byd/.
A subset X of T is called Dirichlet if there exists a strictly increasing

sequence (nk)ko, Of positive integers such that Ilnkxll--* 0 uniformly in
x X. The class of all compact Dirichlet sets is denoted by D.
A universally measurable subset X of T is called a weak Dirichlet set if

V/x.d+(T), re>0, :iK D tz( X\ K) < e

where .+(T) is the set of all positive Borel measures on T. The class of all
weak Dirichlet sets is denoted by Yf..
A class of subsets of a set E is hereditary if, for all subsets A and B of

E with B ’ and A c B, we have A ’. If E is a metrizable compact
set, and ’ is a hereditary subclass of d(d’(E), one defines the class yf.a as the
class of all universally measurable subsets X of E such that

V/x .d+(E), Ve > O, :IK -d’, Iz( X \K) < e,

where d’+(E) is the set of all positive Borel measures of E.
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Many related notions have been introduced to study the class ,///.
A subset X of T is a set of type dl/o if there exists a strictly increasing

sequence (nk)ko, of integers such that Ekllnkxll < +oo for each x X.
A subset X of T is a set of resolution if there exist a sequence (cn)n of

non negative reals such that limsupn,o cn > 0 and a sequence an of ele-
ments of T such that the series

ECn cos(2,rrnx tXn)

converges for each x X. The class of all sets of resolution is denoted by
A subset X of T is an Arbault set if there exists a strictly increasing

sequence (nk)ko, Of integers such that Ilnkxll--’ 0 for each x X. The
class of Arbault sets is denoted by
We introduce a last series of classes which are related to the other

definitions.
A compact subset K of T is a set of type H if there exist a non empty

interval I of T and a strictly increasing sequence (nk)k of integers such
that nkK f3 I O for each k to.

A compact subset K of T is a set of type L or a lacunary set if there exist a
sequence en0+, a sequence an +oo and for each nto a finite
sequence (Ik) of intervals such that IIkl <-
for each k #: k’ and K __. U I,.
A compact subset K of T is a set of type Lo if there exist a sequence

en 0 /, a > 0 and for each n to a finite sequence (Ik) of intervals such
that Ilkl <-- en for each k, d(Ik, Ik,) >_ teen for each k #: k’ and K 13 Ik.
As a matter of notation, we denote the classes of compact sets by capital

letters and the corresponding classes of general sets by the corresponding
calligraphic letters. Thus for example, N ,///c3 dV(T), NO d//0 N deal(T),
etc.
We finish this part with a notation which will be used throughout the

paper: if ’ is a class of subsets of a set E, we denote by ’ the hereditary
class of subsets of E consisting of those sets which can be covered by the
union of some increasing sequence of elements of

1.3. Properties of sets of absolute convergence and Dirichlet sets

The set ’(to) consists of all elements of the form 19 Eno,anin, where
(a)o is a sequence of non negative reals with Eoa +oo and is
the Dirac measure at the point n to. Let @(f)= En,oanf(n) for all
sequences f. Let 19(1) 0(11) Enian for all subset I of to.

Let fx be the sequence (llnxll)o for each x I’. Fix a 19 ’(to). So

(R)(fx) E anfx(n)= E a, llnxll.
nto

Let GO {x T; (R)(fx) < + oo}, which is clearly in
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Moreover ,/// is the hereditary closure of the Go’s where O varies over
/g(to). As Go is a subgroup of T, it follows that 4/is the hereditary
class generated by its J/ elements and 4/ is closed under the operation of
generated subgroup.

It can be deduced from a theorem of Dirichlet that finite sets are Dirichlet.
We are going to give classical examples of uncountable Dirichlet sets [18]. A
subset A of to is called colacunary if it contains segments of consecutive
integers of unbounded length. It is easy to see that for a colacunary subset A
of to,

K,4 {x T; Vi A, Ei(X) 0}

belongs to D [18].
We can immediately deduce the Marcinkiewicz Theorem [21] which states

that there exists two Dirichlet sets whose union is not an g-set. Indeed, if A
and B are two disjoint colacunary subsets of to then Ka U Ks ,A/ because
KA + Ks T and ,A/is dosed under the operation of generated subgroup.

If ’ is a hereditary class of compact subsets of some metrizable compact
space, note that Y’ is closed under the operation of increasing countable
union (in Proposition 3.4, we give a stronger property of /’) and that each
measure concentrated on a 7/-set is in fact concentrated on a ’ r-set.
A measure concentrated on a Y-set is called a Dirichlet measure. For a

positive measure/z //(T), the following conditions are equivalent:

(1)
(2)
(3)

tz is concentrated on a D r-set
limsupll-,oo I/2(n)l f dlz (where fz(n) fe2i dtz(x))
liminfll-,oo fllnxll dlz(x) O.

Note that a subset X of T is a /.-set if and only if each measure
concentrated on X is a Dirichlet measure.

1.4. Relations between the classes J//and

The most important result is the following.

THEOREM 1.5. (1) 1/ is a subset of
(2) For each increasing sequence (Kn)n of compact weak Dirichlet sets,
,, a K,, belongs to 1/.

R. Salem introduced Dirichlet measures and proved (1) for compact sets
[23]. The converse was proved by J. E. Bj6rk and R. Kaufman independently
[17]. B. Host, J.-F. M61a and F. Parreau stated the theorem in the present
form [8] and noticed that most of the classical facts about ,///and /.-sets
can be easily deduced from it.
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COROLLARY 1.6. (1) // JU(T) /. JU(T).
(2) N //f3 JU(T) is closed under compact increasing union.
(3) //=N
(4) y/..r-- Nint, where Nint /s the interior extension of N, i.e., the class of

universally measurable sets all of whose compact subsets belong to N.
(5) ./I/is closed under translations.
(6) 1/ is equal to the class of all sets of absolute convergence of a

trigonometrical series

anCOS(2"rrnx- an) with lal +.

(7) For each X and Y a countable set, X

In his thesis, J. Arbault defined a -/ set in Y//. which is not an :-set
[1]. In particular, (1) cannot be improved. Prior to the BjSrk-Kaufman result,
he also asked the following question.

Question. Is the class //closed under increasing countable union?

We will answer negatively to this question in part 3.18. In view of result (2),
this is a curious phenomenon.

Proof of the corollary. Since //is the hereditary class generated by its
oY.( elements and each o, set is an increasing union of compact sets, the
five first propositions are straightforward consequences of the previous theo-
rem. Since D is closed under translations, Y//. is too, thus (5) holds.

In order to prove (6), let

E {x e T; E la, cos(27rnx a,,)l <
Since

ll2n(x x0)ll _< Isin 2rn(x x0)l
_< Icos(2rnx c,)l + Icos(2rnx0

for all (x, xo) T2, E- xo if xo E. Using (5), we obtain E //.
Conversely,

1
Ilnxll > 1/2112nxll > -lsin2rnxl

for all n, x; thus every /-set is a subset of a set of the form

{x T; lasin2zrnxl < +oo},
with Elal +oo.
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To prove (7), fix X //and x0 T. Using (5), X x0 ,///; thus

(x- x0) {0}

and

x { 01 (x- {01) + x0

Let Y {x; n to}, a countable set. As ,///= N , there exists an increasing
sequence (K) of compact /-sets such that X

___
13 K. Therefore

XWY I,.J (KnU {Xo,...,x}) N =,A/.
n

The following property of the class /. is due to G. Debs (andpublished
here for the first time).

PROPOSITION 1.7.
X is also a ’.-set.

IfX is an analytic Y//.-set, then the group generated by

Proof. Define ,.(T) --, (T) by (X) X X {x y; x, y e X}.
The group generated by X is the increasing union over n e to of )(X). So
it is enough to prove that if X is an analytic /-set, then X- X is also a
’-set.
Let/x be a positive measure in .’(T) and g* be the corresponding outer

measure. Define C (T) - R+ by C(X) tz*(X- X). One easily checks
that C is a capacity. By Choquet’s capacitability theorem, for every analytic
subset of" T,

/z(X-X) sup /z(K-K).
K ,P/(X

Thus if /z is concentrated on X- X, then for all e > 0 there exists a
K (X) such that/z is concentrated on K K within e. But K N, thus
K- K N. Therefore/z is a Dirichlet measure, t3

1.8. Other classes between D and

R. Salem introduced the class in order to simplify the definition of the
class .///. J. Arbault proved that the two classes are distinct and he intro-
duced the class s’ in order to prove this fact [1]. The class was
considered by N. Bary [2].



ANTISTABLE CLASSES OF THIN SETS 193

PROPOSITION 1.9. We have the following inclusions.

Proof In order to prove that c_ ’, let X {x T; Ecn cos(2zrnx
an) converges} where limsupno cn > 0. Thus there exists e > 0 and a
strictly increasing sequence (nk)k of integers such that cn, > e. Fix an
x X. Since cos(27rnkx an,) O, e4i(2rnkX--ank "’> 1. Without loss of gen-
erality, we can assume that nk+l nk + and an a by compactness
of T. Thus e8ri(nk+l-nDx 1, hence ll8(nk+ nk)xlk0and

Inclusion of D in is an immediate consequence of the following
characterization of the D V-sets. The other inclusions are trivial (see [1] or
[2]). D

PROPOSITION 1.10. Let X (T). The following statements are equivalent.
(1) XD.
(2) There exists a strictly increasing sequence (nk)k ofintegers and a

sequence ek 0 + such that

(3)

x_ U I’1 (x T; IInxll _< e}.
ito k>i

There exists a strictly increasing sequence (nk)k Of integers such that

x_ U f’) {x T; IInxll < 2-k}.
ito k>i

The proof is easy. The property (2) is studied and generalized in Section 4.
It was introduced by N. Bary in order to give examples of .///0-sets [2].
The connection between ’ and H was noted by Rajchman and can be

formulated in the following way: s’___ H 1.
Indeed, if (nk)k co, is a strictly increasing sequence of integers, then we

have

{x T; Ilnxll --, 0} c U f’) {x E T; nkXE , [}.
ja kj

Note that both H and L are supersets of D and subsets of L0.

To finish, let us indicate the descriptive complexity of the previous classes
of compact sets. In the space r’(T) of compact subsets of I’ (which is a
metrizable compact space), the classes D, L and N are subsets [10], H
and L0 are subsets, but N0, R and A are not Borel sets (they are in
fact E or PCA sets, but not better [3]).
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2. Noninclusions between classes

2.1. Introduction

In this section, we will study the converse inclusions between the classes
introduced in the first section. The problem each time is to define a set (of
the smallest Borel rank possible) of a certain class ’ and which is not
covered by a countable union of sets in another class . The schema of the
proof is the following. Suppose that such a set X of type ’ is proposed; for
each sequence (X)o, of sets in , we will find an x X which does not
belong to U Xn. We can view x as being a member of 2 by using its dyadic
decomposition x ilei2-i. We will need a lemma concerning the class
: imposing a limited number of values of eg, we can assume that x does not
belong to a certain set of type . Of course, the necessary number of values
increases with the size of the class .
For each class ’ of subsets of a set E, let be the class of all.subsets of

E which are covered by a countable union of sets in ’.
The diagrams show the relationships between the classes and between the

corresponding classes of compact sets. An arrow indicates an inclusion and a
crossed arrow a non-inclusion.

In the preprint version of this paper, the question whether was
asked. S. Konyagin has recently proved that [15]. Using the result of
S. Konyagin, the proofs of Theorems 2.6 and 2.11 can be simplified.

(1) Finite sets are Dirichlet sets, so countable sets are D *-sets. But there
exists a countable compact set which is not a Dirichlet set, for example
{0} U {2-n; n >_ 1}.

D ..t:: D . .- ::No,(. ,’ ’ R=A N Uo

Lo
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(2) There exists a compact M/0-set which is not a D-set and therefore is
not a D V-set; see Theorem 2.3.

(3) T. W. K6rner proved the existence of a compact -set which is not an
M/0-set [16]. We will extend his result in Theorem 2.6.

(4) In Proposition 1.9 we proved the inclusion of , in a’. The converse
inclusion was recently proved by S. Konyagin [15].

(5) There exists a compact -set which is not an M/-set. This is Theo-
rem 2.11.

(6) J. Arbault proved the existence of an M-set which is not an set [1].
We will prove the existence of a compact d/Z-set which is not an L set in
Theorem 2.8.

(7) J. Arbault proved the existence of an H-set which is not a ;/.’-set [1].
Indeed, the triadic Cantor set K is an H-set and the standard measure on K
is not a Dirichlet measure. Moreover each open subset of K has a subset
which is homeomorphic to K, so, by the Baire category theorem, K cannot
be covered by a countable union of ;/-sets.

(8) ’0 is the class of all sets of extended uniqueness. Since 0 is closed
under finite union [2], 0 #: Y//-.

(9) R. Kaufman proved the existence of a lacunary set which is not a

0-set [14].

2.2. A compact //o-set which is not a D-set

Recall that there exists a countable compact set which is not a D-set.

THEOREM 2.3. There exists a compact M/o-set which is not a D-set.
More precisely, if (Otk)ko is a sequence of integers such that

limk_.oo(ak+ ak) +0% then the set K {x T; ,kooll2*xll <_ 1} is in
No\D%

In the proof of the theorem, we use the following basic lemma.

LEMMA 2.4. Let n, m to, m > 2, p [log 2 nJ and el,... ep+m {0, 1}.
There exist F,p+m+ 1, /p+m+2, 6p+m+3 {0, 1} such that for each x T,

(Vi < p + m + 3, ,i(x) i) == (llnxll 2-m-2).

Proof. Let S Y’.l<i<p+mei2-i. If IInSII >_ 2 -m-l, then let ep+m+
ep+m+2 ep+m+ 3 0. Otherwise let ep+m+ ep+m+2 1. I’-I

Proof of Theorem 2.3. It is clear that K is a compact M/0-set. Let (Kj).
be a sequence of D-sets. We will find x in K \ U j o,Ky in its dyadic form
x Eiz lei2-i for a suitable choice of el’s, either 0 or 1.
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Clearly, it is enough to find, by induction on j, an integer k and e {0, 1}
for each ak_ < < ak such that:

(1) For each x T, if el(x) ei for all < ak. then E0 k k II 2"x -<
1-2-and xKg for alli<j.

(2) For all k > k, ak+l ak > 2j + 8.
Let ky_ and e (i < Otk_) be given. Since Ky D, there exists n. > 2%

such that IInxll _< 2-j-7 for every x K. Let p. flog: n].
Let k be the least k such that ak > p. + 5 and ak,+l ak, > 2j + 8 for

all k’ > k.
Using the previous lemma, we may impose three consecutive values of e

(where p + 3 < < p. + j + 8) to insure IInxll >_ 2-j-7 SO that x K..
The other values of e (where ak_ < < ak) are set equal to 0.
We consider two cases.

First case. If Olkj_ < pj- j d- 2, we impose e for =p + 3, pi + 4,
+ 5. So we have

112xll < 2ak-t-2 _< 2--
kj_ <k <kj kj_ <k <kj

Second Case. If py -j + 2 _< ak < PJ + 5, we impose e for =p +
j + 6, p. + j + 7, p. + j + 8. Note ttit this is possible because ak. >_. ak_l d-

2(j- 1)+8>_p-j+2+2j+6=p+j+8. Sowehave

112xll < 2"-*’;-5-" _< 2-
kj_ <k <ky ky_ <k <kj

In both cases we are done.

2.5. A compact set which is not an /o%set

T. W. K6rner proved the existence of a compact o-set which is not an
F0-set [16]. Using a different method, we extend his result and give an
explicit example.

THEOREM 2.6. There exists a compact 2.set which is not a /o-set.
More precisely, if (ak)k is a sequence of integers such that ak + ak >-

k + 9 for all k to, then the set

K= {xT; 112xll2<land(.)kforeachkto}
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is in R \ I/o, where for each k oo,

( *)," ( sin’rr2’’x) sin r2’,x <0
i<k

Or

J. Arbault was the first to consider 02-sets, i.e., subsets of a set of the
form

xT; llnkxll2<
ko

He proved that 02 ,V]/( [1]. By straightforward means, we have 02 C ,..
In order to obtain an .,set and to obtain a compact set, we must add
conditions (*)k which cause extra complications in the definition of K.

Proof of Theorem 2.6. Since all maps considered in the definition of K
are continuous or lower semi-continuous, K is compact.
To see that K , fix x K. We have uk sin r2*x 0 and (*)k for

every k. This allows to prove simply that Ek,o sin zr2kx converge. Thus
K.
Now we prove that K .A/0’. Let (Oq)q ,o be any sequence of elements of

Z/(o)) where Oq I2t,oin. (see part 1.3 for the notations). We will find x
n" K\ O q Go.q in its dyalic decomposition x Eilei2-i for a suitable
choice of e ether 0 or 1.
Note that the condition on the a implies that 26],,o4ak-ak+l < 3.

Consider a surjection f: o o whose fibers are infinite. We will get, by
induction on j, an integer k and e {0, 1} for ak_ < < ak such that for
all x T with ei(x) e for all < akj, we have:

(1) Ek_<kkyll2kxll 2 < 2-y + Y’.ky_<k<k4ak-ak+
(2) O(ltz,_,2,jt.f) > 1 for q f(j)
(3) (.), for all ky_ < k < ky.

Clearly, this is enough to finish the proof: since f-a{q} is infinite, (R)(fx)
+ for all q o, thus x U qooGoq. Moreover,

< 2- + 26 4’’-’,+’ < 1;
j>2

therefore x K.
Let k and e (for < a) be given. Let q f(j) and 131 "-logz n for

each > 2%.
We consider two cases for k > k.
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First case. There exists k with ak 3 < Plk <- ak+l
2.4, we may impose three consecutive values of e where

Plk + mk + 3 to get the condition IInxll >_ 2 -rag-E, where

mk inf{j + 9, ak+ --pl
k 3}.

3. Using Lemma
+ink+ l<_i<_

Note that mk >. 0, Plk +mk + 3 < ak+ and [[nxl[ > 2-j-11.
The other values of e for ak 3 < <_ ak+ 3 are set equal to k,

where ’k 0 or 1 and the determination of ’k depends on condition (*)k.
Because the values of e for ak + 1 <_ <_ pt, + mk are all equal and

ak+l --ak k + 9 < j + 9, we have

II 2"*x II < 2ak-p’-mk "< SUp{23 -(j+ 9), 2"*-++3} < 2-J-6.

Second case. Otherwise all values of e for ok 3 < _< ok+
equal to k where k 0 or 1. Thus 112*xll _< 2ak-ak+l+3.

Let kj+ be the least value for which the set

{k - [kj, k+l[;Zll, ak 3 <Pl--< tXk+l 3}

3 are set

has cardinality 2 + 11. Clearly,

IInxll 1.
kj<kkj+

On the other hand, we have

112*xll 2 -< 2+11(2-J-6)2 + E
kj <k<k+ kj <k <kj+

(2ak--tk +3)

< 2-j- + . 4ak--ak+lo
k<k<kj+

The remaining task is to choose ’k for each kj < k _< k+ to insure (,)k"
Let Sk .,i<ak_3gi2-i. We have Ix Ski 2-ak+3, thus

sin "rt’2aix E sin ’rr2aiSk
i<k i<k

< r , 2’lx Sgl < 2-k-
i<k

Let Ck 1 if Ei<k sin "tr2aSk > 0 and otherwise ’k 0. Thus, if

IE<k sin r2’Skl > 2-k-l, then Y"g<k sin 7r2x has same sign as
Eg<k sin zr2Sk and therefore an opposite sign to sin zr2*x. Conversely, if
IZ,i<k sin r2’Skl <_ 2-k-l, then IZ,i<k sin zr2’xl <_ 2-k-1. V1
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2.7. A compact 4-set which is not an L-set
J. Arbault proved the existence of an -set which is not an aagset [1], [2].

We derive an even stronger (yet not more complicated)version of his result.

THEOREM 2.8.
More precisely,

There exists a compact ,/I/Z-set which is not an L-set.

K=(xT; nl--ll2xll _< 1)
is O N \ L.

S. Konyagin proved a best result: there exists a compact -set which is not
a tr-porous set ([24] Theorem 5.1) and the L0-sets are clearly porous. But the
present proof is more elementary and the following lemma is fundamental in
the next section.

LEMMA 2.9. Let e ]0, 81-[, m [log2 e], O > 0, p sup{ [log 2 a], 0},
(Ik) a finite sequence of intervals such that IIkl <-- e for each k and d(Ik, Ik,) >_
ae for each k k’. Let el,... em_ 2 {0, 1}.

There exist em_l, em,...,em+p+l {0,1} such that for each x T,

(/i < m + p + 1, ei(x ) Ei) = (X U Ik)"

Proof Let

S= E ei2-i and A(’r)= L, ,i2-i
1<i<m-2 m-li<m+p+

where z is a suitable choice of (F.i)m_l<i<m+p.+l. Let x T with x S +
A(r) + R(x), where R(x) Ei>m+p+lei(x)2-’. Observe that R(x) belongs
to the interval [0, 2-m-’- [ of T. We must choose r. Recall that 2-m < e <
2-m+l and 2- < a, therefore ae > 2-m-p. Put = [ak, bk] for each k.
Consider two cases.

First case. There exists k such that

S [ak- 2-m-E-I bk+ 2-m-p-l]

then there exists z {0, 1}+2 such that

S + A(’r) ]bk, bk + 2-m-p-I],
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because the possible values of A(z) are 2-m-p-1 apart and between 0 and
Y’.m_li<m+p+l2-i 2-m+2 2-m-p-l, and because bk ak < 2-m+l. But
d(Ik, Ik,) > 2-m-p for each k’ k; thus x U Ik.

Second case. If S U[ak
i.e., A(z) O.

2-’-P- 1, b + 2-"-- 1], then let r 0,

Proof of Theorem 2.8. It is clear that K is a compact M-set. Let (Kr)
be a sequence of L0-sets. We will find x in K \ U aKr in its dyadic form
x Eilei2-i for a suitable choice of ei, either 0 or 1.

Let j to. Since Ky L0, there exist ey > 0, ay > 0 and a finite sequence
(Ik) of intervals such that Ilkl <--ey for each k, d(Ik, Ik,) > aey for each
k k’ and Kr c U Ig. Let m flog2 e] and Pr sup{- [log2 ay], 0}.
Using the previous lemma, it is enough to impose values of e for all

[mr 1, my + py + 1] to insure x Kr. The values of ei are set equal to
0 for all U ,o[mr 1, my + Pr + 1]. Since er can be chosen as small as
desired (see definition of L0), m can be chosen as large as desired.. Thus we
set (mr) co, such that mr+ > mj. + Pr + 2 for each j to and

&+5
rZ-’,o 2(m 2)

The values of e for every U y ,o[mr- 1, m + Pr + 1] are imposed to
insure x Eilei2-i is not in UK.
The remaining task is to prove that x e K. But for each j to, we have

mj+pj
1 p + 3

E l12xll <
2(mr_ 2)n =mj- 2

and

mj+ -3

n =m.+&+

1
l12xll

mj+ -3

n=mj+pj+

2n -mj+ + 2 1 1
m + p + 1 -< m

Thus

mj+ -3
1
-112xll <

nto jto n=mj--2

1
-112nxll

+5
E 2(r_ 2)jto

<1

and we are done.
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2.10. An -set which is not an M/%set

J. Arbault proved the existence of an set which is not an MZ-set [1]. We
extend his result in two ways. First, we construct an -set which is not an
MZ-set (since Konyagin’s result it is not more an extension); this solves a
problem of N. Bary [2]. Second, we prove that such a set need not be an
M/-set.

THEOREM 2.11. There exists a o, set in o2 which is not an M/-set.
More precisely, if (ak)k isa sequence ofintegers such that (ak Olk + 1) is

strictly increasing, then

X (x T; sin Tr2kxconverges}
is in q2\K.
The following two lemmas will be the first step in all our results about

MZ-sets. For the notation concerning 19, and f, x T, see 1.3.

LEMMA 2.12. Let 0 ’+(to), p, m to, m > 2, I [2P, 2 p / 1[ and
el,...,ep+m {0,1}. There exist ep+m+l, ep+m+E, ep+m+ 3 {0,1} such that
for each x T,

(Vi < p + rn + 3, ei(x ) e,) ((R)(l,.fx) > 2-m-30(I)).

Proof. Let S Elip+mei2-i and x T, with x S + R(x) where
R(x) .i> p+mei(x)2-i" Observe that R(x) belongs to the interval [0, 2-P-"[
of T.

Consider J {n I; IInSII >_ 2-m-l}.

First case. If (R)(J) > 1/2(R)(I), then let ep+m+ ep+m+2 ep+m+ 3 0.
Let n J and x T with ei(x) e for all < p + rn + 3. Thus R(x)

[0, 2-p-m-3[ and n < 2/1; therefore nR(x) [0, 2-m-2], whence

Ilnxll -IInS + nR(x)II IInSII -IInR(x)II 2-m-1 2-m-2-. 2-m-2

It follows that (R)(1,.fx) >_ (R)(1j.fx) > 2-m-20(J) >_ 2-m-30(I).

Second case. If O(J) < 1/20(I), then let ep+m+ ep+m+2 1.
Let nI\Jand xl’withei(x)=eiforalli<p+rn+2. Thus

(1 + $1)2-p-m-1 _< R(x) _2-p-m< and 2p n < 2 p+I,"

therefore (1 + -)2-m- < nR(x) < 2-m+l.



202 SYLVAIN KAHANE

Moreover -2-m- < nS z < 2-m- for some z T. Because m > 2,
we have

2-m-2 < Z < 2-m+ _]_ 2-m-1 < 1 2-m-2.

Thus Ilnxll 2-m-2.
It follows that O(li.fx) >_ O(ll\y.fx) >_ 2-m-20(I\J) > 2-m-30(I).

Now let 2A= 13 iA[2i, 2i+l[ for each subset A of to. In particular,
2[a,b] [2a, 2b+X[ for all integers a < b.

LEMMA 2.13. Let 0 /oo+(to), J 2[a’b], m > 2 and el,... ea+m
{0, 1}. There exist ea+m+ 1,’’’, eb+m+3 {0, 1} such that for each x T,

(i < b + m + 3, ei(x ) 8i) = (O(ly.fx) > }2-m-30(J)).

Proof Let

a <j_<b, j--s(mod 3)

O(J). Using, byfor s 0, 1,2. Pick an so {0, 1,2} such that 0(40) >
induction on j Js0, the previous lemma for I [2J,2J+x[, we will get

Ea +m + 1,’" eb+m +3 to insure our condition, t

The next lemma is the fundamental step in the proof of the theorem.

LEMMA 2.14. Let (Oq)q,, be a sequence in ,O’S(to) and (Otk)ko a
sequence of integers such that limk_oo(ak/ --a)= +oo. There exists a con-
verging to infinity sequence (bk)ko, of integers such that if B U ko,[ak +
1, ak + bk] and (ei) B is any sequence of O’s and l’s, then there exists a
sequence (ei) Bc of O’s and l’s such that

X - ei2-i U G%.
to qto

Proof For p to, let

It,= U [a-4, aa+p]
ko

and

Q {q to; /p to, (R)q(2*) < +}.
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Two kinds of q’s are considered. If q Q, then there exists an integer
such that (R)q(2zpq) + . We have easily both following results.

CLAIM. There exists an unbounded non decreasing sequence (ak)kao of
integers such that if

A U [ak--4,k+ak],
kto

then for all q Q, Oq(2A) < +.

CLAIM. There exists an unbounded non decreasing sequence (mk)kto of
integers such that for each q Q,

E 2--mkOq(2t’k--4’ "+*’ql) +
kto

Now consider a surjection f’to --+ to whose fibers are infinite. There exists
an increasing sequence (k)i of integers such that for each j to, we have:

(1) if q f(j) is in Q, then Y"k k <k -{"(2[ak+ak+l’ak+l--5]) >- 1
j+l

mk [ol 40tk+Pq(2) if q f(j) is not n Q, then ,kj<k <ky+l2- ,(2 ) >_ 1 and
pq <_ inky.

Let bk inf{ak + 3, mk 4, ak+ ak} for each k to. Plainly, (bk)k
converge to infinity. Note that we can assume in the second claim that
2mk + 3 <_ otk + 1- Olk for each k.

Let B LI ko[Otk 4r 1, Otk -I- bk] and let (ei)i B be any sequence of O’s
and l’s.
By induction on j, using the previous lemma for (R) where q f(j), we get

e for all B i")[ak. 4, aky+l 5] as follows. Consider two cases.

First case. If q Q, using the previous lemma for rn 2 and J
2t+ak+l’-51 where k is successively equal to ky,...,ky+ 1, we impose
ei for all

.J [ak + ak + 4,ak+ 11 c_C_B c tq [ak-- 4, akj/ 5]
kj<k<kj+l

to insure

1{q(12t",-4,’%’+l-51 "fx) >- 5 2-5 1E Oq(2tak+ak+l’ak+l-5]) >-- -"kj<k<kj+
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Second case. If q Q, using the previous lemma for J 2t’-4’’+pq1
and rn ink, where k is successively equal to ky,..., ky+ 1, we impose e
for all

i I,.J [ak+mk--3, ak+Pq+mk+3]
k]<k<ki+

C [tk + mk 3, ctk + 2mk + 3]

c_ BC CI otk 4, ot+ 5]
to insure

1
Oq(12[a*j-4’a*j+l-51 fx) >-" " E

kjk<kj+l

12-2-m*Oq(2[a*-4, a*+Pq]) > "-.

Since f-{q} is infinite for all q to, we have

>- E
jf-l(q)

Oq( 12[akj-4, akj+1-5]" fx

Therefore x Ei> ei2-i q I,J ,oG%.

Proof of Theorem 2.11. It is clear that X e .
In order to prove that X ,///’, let (O),o be a sequence of elements of-

’$(to). We will find a x in X\ U ,oGo in its dyadic form x Eilei2-i
for a suitable choice of e either 0 or 1.
According to the previous lemma, there exists an unbounded non decreas-

ing sequence (bk)k, Of integers such that if B U k,o[tk + 1, ak + bk]
and (e)n is any sequence of O’s and l’s, then there exists a sequence
(e) of O’s and l’s such that

X E ei2-i U G%.
i> qto

Therefore, the only problem is to choose (e)n to insure that x X.
We will choose Srk 0 or 1 for k to and set e k for [a, + 1,

ak + bk]. Thus,

Isin 7r2*xl _< 7rl12*xll _< "It’2 -b* for each k to.
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The sequence (’k)k,o is defined by induction on k. Fix a k to and
consider S Z,iei2-i. We have Ix SI < 2-; thus

sin r2x sin "tr2aiSk
i<k i<k

<_ zr E 2’1x SI O(2"--).
i<k

Let fk 1 if E < k sin "n’2aiSk > 0 and ’k 0 otherwise. Thus, if

sin 7r2aSk
i<k

> 0(2"’,-’-"’,),

then Y’-i < k sin 7r2’x has same sign as Ei < k sin "rr2aiSk and therefore an
opposite sign to sin zr2"kx. Thus, for every p, q to,

sin 7r2’kx
p<k<q

< sup ([sinzr2x[)+ E O(2"-’-)
p<k<q p<k<q

So Ek, sin 7r2’x converges as desired.

2.15. Extensions of ///

The class ,/// has three natural extensions closed under increasing count-
able unions: Y//, //’ n / and the closure //oo, of ,///under increasing
countable unions.

THEOREM 2.16. The class / n Y//. is not closed under the operation of
taking the generated subgroup, i.e., there exists a Borel set X
such that the group generated by X does not belong to 4/ n Y//..

Since .///is closed under the operation of taking the generated subgroup,
,///oo, has the same property. Using Proposition 1.7, we then get:

COROLLARY 2.17. One has

and all inclusions are strict.

Proof of Theorem 2.16. Let (Otk)ko be a sequence of integers such that
limk_o Olk Olk + -- oo and

Y= (x T; lim sinzr2x 0+).
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Clearly,

Yc

Let (A, C) be a partition of to in two colacunary sets. Then X Y n (KA t3
Kc) is in M/ 7.. Note that Y is a subset of the group generated by X;
indeed, Y c X + X because KA + Ks T.

It only remains to prove that Y does not belong to d//,. Let ((R)q) ,o be a
sequence of elements of ’(o). We will find x in X\ LI o,G% with
dyadic decomposition x Eze2-g for a suitable choice of eg either 0 or 1.
According to Lemma 2.14, there exists a converging to infinity sequence
(b,),,o of integers such that if B 13 ko,[trk + 1, ak + b] and (i)iB is
any sequence of O’s and l’s, then there exists a sequence (ei) Bc of O’s and
l’s such that

X Eei2-i q U Goq"
i> qto

But the ei’s are set equal to 0 for every B, whence x Y. r3

3. Antistability and further applications

3.1. Hausdorff operations

A subset 9- of 2 \ {0} is a monotone basis on to if o- is non empty and is
monotone (or cohereditary), i.e., [A and A c B] = B -.
To each monotone basis r, we associate its dual basis

ffr= A 2O’; AC grc},

which is also a monotone basis on to. Note that
If 9- is a monotone basis on to and (Xn)n a sequence of subsets of a set

E, we define H-(X,,) as the set of all x E such that

n to; x Xn} 9z-.

Note that x Ha(Xn) 0 (n to; x X,) fir. The operation H- is
called the Hausdorff operation with basis
To each hereditary class of subsets of E and monotone basis #r, we

associate the class - defined by

C_

We say that ’ is an -class (of subsets of E) if ’-=
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3.2. Main examples

In this part, is always a hereditary class of subsets of a set E.
(1) Let tr 2 \ {0}.

’= (X ,(E); 3(X,,),,o, , X_ [,3 X)
the g-ideal generated by -6’.

(2) Let -r be the Fr6chet filter on to, i.e., the set of all cofinite subsets of
to. For each (Xn)no,, Hr(X,,) 13 m,o f’l ,,mX,,. Thus

.,9"-r .’ (X ,.<E); 7l<Xn)nto increasing

___ , X
_

13 X}.
nto

One has to be careful: in general, ’ is not the ?-class (or Vr-class)
generated by

(3) Let (")={A 2’; A[0, n- 114.} for each n> 1. Let
0#= o(2).

/x c_ , x c_ [3oXi=

The ’(n)-classes are the ideals (i.e., the classes closed under finite union) for
all n > 2.

(4) For each n > 1, let ,.(n) be the set of all subsets of to whose
complement has cardinality < n. Clearly (,o c ,9-r.

Let = .(1). So Ha,(X,,) O mto 1’ nmSn for each sequence (X,,), o,.

PROPOSITION 3.3. Let E be a metrisable compact space. For each sequence
(Xn)n of compact subsets of E, the set X Ha,(Xn) is compact. For each
sequence (Xn)n of elements of the multiplicative Borel class II, the set
X H,(X,,) II

Proof For each x E,

x X, Vm to (x Xm or [vn : m, x Xn]).

Thus X is in the same multiplicative Borel class as the X’s. .D
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(5) Let ’s be the set of all subsets of density one of o, i.e., all subsets A
of o such that

d(A) lim card(A f3 [0, n 1])
n--. n

Note that -r c se’s and e’s is a J subset of 2‘. For each

x E; n-,oolim --nl
k=l

lx"(x) 1).
PROPOSITION 3.4. Let E be a metrizable compact space. For each heredi-

tary class of compact subsets of E, is an ’s-class.

This proposition follows directly from the next lemma, due to R. Lyons
[20], and which will be used again in Proposition 4.5.

LEMMA 3.5. Let E be a metrizable compact space. Let tz be a finite positive
measure on E, (X) be a sequence of universally measurable subsets of E
and X Hg(X). Then

sup x Xn).
n

Proof

thus

1 x)=l;
noo n

k=l

n

1x_< lim-1 lx.noo n
k=l

Using Lebesgue’s Theorem of dominated convergence, we have

n

i(X) < fx lim
1 E lx(X) dry(x)

noo n
k=l

1 n

< lim -fffx E lx.(X)dlz(x)
noo k=l

_< lim
1

g(xnx)
n---)oo n k--1

For all e > 0, there exists an integer n such that /z(X N Xn) >/z(X) e.
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3.6. An order relation

PROPOSITION 3.7. Let and be two monotone bases on to. The
following conditions are equivalent:

(1) c_ for each hereditary class or subsets of each set E.

(3) ::lq-to to, qc_ -.
If the previous conditions occur, we shall say that r ,,. The proposition

is proved in [12, Propositions 1.5 and 1.7].
In particular, r: , V’to- to, 4 , q(A) r. We will use

this equivalence in Part 3.10.
The relation -< is a quasi-order (i.e., a reflexive and transitive relation) on

the set of all monotone bases on to. Let -< be the associated strict
quasi-order defined by

Let be the relation of equivalence defined by

and let +/- be the relation defined by

r+/- ,.’. (cgr: : and

Remarks. (1) O-(1) is the least element of

_
modulo and O’(1) {to}.

(2) is the immediate and single successor of if(i) for modulo --.
Indeed, for all monotone bases ,-on to, we have

Vn e to, { n} c e

(3) tr is the greatest element of

_
modulo =.

(4) -< -r -< se’s, rr +/- ff and ’s +/- ft.
(5) (n-1)

_
ff(n and 9(n +/- ff( for each n > 2.

3.8. Iteration

To obtain the closure of a class under a Hausdorff operation, it is generally
necessary to iterate this operation.
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Let ,9r be a monotone basis on to and a hereditary class of subsets of a
set E. The class ’"- is defined by induction on the ordinal a"

The height of r, written ht(,gr), is the supremum, over all hereditary
classes #’, of the first a for which ("-= #,oo. Note that ht((1) 0,
ht(tr) 1 and ht(2) to.

In most cases, we will see that ’"- can be obtained with the single
operation of a monotone basis on ’.

Fix a one-to-one map ( ) to2 ....> to. Let An {k to; (n, k) A} for
each A 2 and n to. Let - and ,’ be two monotone bases on to.

Consider

,gz-(R) ._’= {A 2‘0; {n to; An } c9r}

which is a monotone basis on to such that

I-I . Xn)

for every sequence (Sn)n‘0 of sets. In particular

for each hereditary class
Note that

times

n-= ’,gr(R) (R) ,9/- for all n to.

But the ideal ,‘0o generated by ’ cannot be obtained with the single
operation of a monotone basis on ’. Nevertheless for -= rr or ’s there
exists a monotone basis such that ’-= (-" for each countable
ordinal a.
Here is one of the possible definitions of #v. For each countable ordinal

a, we can take a sequence ([a]) of ordinals such that [a],/" a if a is a
limit ordinal, and [a]n =/3 if a =/3 + 1. Define o0 {to} and

{A 2‘0;{n

In particular, ,a+l o-(R) a"
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The definition of r depends a priori on the choice of ([ct]n)n0"; for
example, we do not have unicity of ,90" modulo [12, Proposition 11] but
for -= rr or gC’s we have unicity of r modulo [12, Propositions 2.8
and 2.9].

Let us recall the main result about these bases [12, Theorem 4.1 and 5.1
and Proposition 5.4].

THEOREM 3.9. For all ordinals a and fl with 1 a < fl < to1 we have

In particular ht()= ht(rr)= ht(aag’s)= to1. However
ordinal a < to l.

for each

Let ’ -ot’r -"rra, The basis c-r, is called the a-iterated Fr6chet
filter. Observe that oor ao-r is the closure of -ff under increasing
countable unions.

3.10. Antistable classes

Consider In {A 2’; n A} where n to. Note that In is a clopen
subset of 20" for the product topology. For each monotone basis -, we have-= H(I,). Let = U q(In). We deduce from Proposition 3.7 that
for all monotone bases r and we have

So we give the next definition.

DEFINITION 3.11. We say that a hereditary class ’ is antistable if there
exists a sequence (Xn)n0" of elements of ’ such that, for all monotone
bases and ’, we have

For an antistable class ’, one has in particular -’<
Antistability is a very strong property of non-stability, as shown next.

PROPOSITION 3.12. There exists a class ’ such that g’4 for every
monotone basis ->- O(1) but is not antistable.

To see this, we will use the following lemma [12, Proposition 2.7].
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LEMMA 3.13. Let - be a monotone basis on ,to. For every ordinal
a _< ht(r), there exists a hereditary class ’c (2’) such that

Proof of Proposition 3.12. By the previous lemma, let ( be a hereditary
class such that (#: ’= ,oo. Let - be a monotone basis >- (1). Since

is the immediate and single successor of (x), we have #= ’___ .
But 92 : and (= ,a:, so ’ is not antistable, t2

We note that if ’ is an antistable class, ’* is antistable too. Since
,-r the next lemma [12, Lemma 4.11] is enough to conclude.

LEMMA 3.14. Let c9z- and be two monotone bases on to. We have

3.15. Antistability of //

THEOREM 3.16. Let (A,),= be a sequence of colacunary subsets of
such that d(An, Am) >_ 3 for all n m. For each n, let En U e,oK.anc[i,
which is a Srd’ set in D . If cg-and ,. are two monotone bases on co such that- , then X H,(E,) 1/.
As a consequence, 1/,

_
and all hereditary classes with D c_C_ c_C_ 1/

(like ./i/o) are antistable.

In the proof of Theorem 3.16, we will use the following lemma, which is a
corollary of Lemma 2.13.

LEMMA 3.17. Let (Oq)q be a sequence in (to) and A a subset of to

such that (R)q(2A) +oo for each q to. Let B A + [3,5] and (ei)iB be a
sequence of O’s and l’s. Then there exists a sequence (ei)i of O’s and l’s
such that

X _.
ei2-i [J Goq.

i> qo

Proof Note that there exist sequences (an),, and (b),,, of integers
such that

B A + [3,5] I,.J [a,,, b,] and bn + 2 < an+
nto

for all n. Thus A _c U ,, ,o[a,, 3, b 5]. Consider a surjection f:to ---> to

whose fibers are infinite. Since O#(2") +oo for each q to, there exists an
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increasing sequence (nk)k of integers such that for each k,

Oq(2U""<"+[a"-3,b"-5]) >_ 1,

where q f(k). Let (ei)iB Using, by induction on k, Lemma 2.13 for
where q =f(k), J 2[a.-3,b.-5], m 2 and successively for n
nk,..., nk/ 1, we may impose the values e for all B N [ank, ank+l[ to
insure

Oq(lzu-*-<,+t",-3.e,-" fx) > 1/22-5.

Since f-l{q} is infinite for all q to, we have

Oq(fx) >-- E Oq(l[an,an,+,[.fx J-oo
kf-:{q}

for x Ei> ei2-i and for all q to. rq

Proof of Theorem 3.16. Let (Oq)qto be any sequence of elements of
."(to). We will find x in X\Hc(Go )with dyadic decomposition x--
Y’.iz 1el2-i for a suitable choice of ei’s ei(her 0 or 1.

Let B A + [-5, -3] for each n to and

Q {q to; Vn to, Oq(2"-) < +oo}.
By the usual means, we can find a subset A of to such that:

(1) A N Bn is finite for each n to.

(2) (R)(2A) +oo for each q Q.

Let B A + [3, 5]. Observe that B An is finite for each n to.

Now there exists a nq to such that Oq(2B"q)= q-oo for each q Q.
Consider a map p’to ---> to which associates nq to q Q and anything to
q Q. Since r: c’, there exists a P such that p(p)c -. Let
A’ A u U n e)Bn and B’ A’ + [3, 5]. The values of e are set equal to
0 for all B’. i3ut Bn + [3, 5] An + [-2, 2], thus

(Bn+ [3, 5]) OAn,= for alln4=n’.

Therefore B’ n A,, B A,, is finite for each n q(P); thus

n to; x En} -and x X H.(En).
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Furthermore, (R)q(2A’) +oo for all q P. According to the previous
lemma, there exists a sequence (e) n, of O’s and l’s such that

x ei2-iq U Goq.
i> qP

Since P ,, then {q to; x Goq} and x q Hc(Goq). ra

3.18. Solutions of the problem of Arbault and of other questions about

We can now answer several problems including the question about the
stability of 4/under increasing countable unions (see Part 1.5). Note that
the following results are false if one considers only J sets.

THEOREM 3.19. There exists an increasing sequence of d, sets of absolute
convergence whose the union is not a set of absolute convergence. More
generally, the inclusions

,/Cd/’1’ Cd/’21’ C C,yal’ C C,//

are strict, and in fact, for each countable ordinal a, there exists a dg’, set in
D" which is not in N for any fl < a.

Proof Let (En)n be as in Theorem 3.16 and a a countable ordinal.
Since ,9, : ,gZ’rt for each ordinals fl < a, H(En) .A/ < . But H
(E,,) D(1+’) because ,9__. rr. Using Proposition 3.3, we deduce that
H(E,) is J because the E,,’s are Jf(,. Observe that if we use
rather than ,9 we obtain a E /2, / set.

THEOREM 3.20. For all n >_ 1, there exists a d/ set in Y’_ (even in D2

or in ./I/ ) which is a union of n + 1 .W-sets and not of n.

Proof. Let (Ek.!t , be as in Theorem 3.16 and n > 1. Since () : ’(),
Ha,(,(Ek) q ./i/’, we know Ha,(,(Ek) is not a union of n dAsets. But
() -_<_ ’r and (n) .< (+1), SO

and H((Ek) is a union of n + 1 d-sets. El

THEOREM 3.21.
of -sts.

There exists a Borel set in d/ which is not a finite union
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Proof Let (gk)koo be as in Theorem 3.16. Since rr (") for all
n >_ 1, H-r(Ek) q I,.J n>l,.///(n); thus H-r(Ek) is not a finite union of
MA-sets.

THEOREM 3.22. There exists a Borel set in D q ’_q which is not in M/1.

Proof. Let (En)n be as in Theorem 3.16. Since s : rr for all
countable ordinals a, H,s(En) M/ But Y//_q is an ’s-class, so
Hu,s(En) Yf.. And clearly H(En) D. D

In the previous theorem, note that Hu,(En) is a E set. We will see that a
set with the same property can be found. The next result is not a

consequence of Theorem 3.16, but its proof follows the same way.

THEOREM 3.23. Let (An)n be a sequence of colacunary infinite subsets
of to such that d(An, Am) > 3 for all n =/= m. Then X Hacs(KA,) M/’

In particular, there exists a Sg/ set in D N lt/. which is not in M/

Proof Let ((R)q)q, be any sequence of elements of .,’(to) and let a be
a countable ordinal. We will find x in X\Hr(Go )with dyadic decomposi-
tion x Y’-i 1el2-i for a suitable choice of el’S, eitaer 0 or 1.

Let Bn ---An + [-5, -3] for each n to and

Q {q to; Vn to, (R)q(2") < +}.

It is easy to prove the following fact: let (u)n, be sequences of non
negative reals such that Eno,u,q +oo for each q to; there exists a set C
of density zero (i.e., Cc age’s) such that Z,ncU +oo for each q to.

Using this fact with Un Oq(2Bn), we take a subset A of to such that
Oq(1A) +o for each q Q and A N Bn -- for each n Cc, where
Cc ag’s. let B A + [3, 5]. Observe that B An for each n Cc.
There exists a nq to such that (R)q(2n-) +oo for each q Q. Consider

a map p" to to which associates nq to q Q and anything to q Q. Since

aaC’s rr,,, there exists a P .-r such that q(p)c aC’s. Let A’ --A U
U n e)Bn and B’ A’ + [3, 5]. The ei’s are set equal to 0 for all B’.
But Bn + [3, 5] A, + [- 2, 2]; thus

(Bn+[3,5])nAn
,=E for allnn’.

Therefore B’ n A B n An for each n q(P) to C. Since ag’s is a



216 SYLVAIN KAHANE

filter, q(p)c N C oa/s, then

{n to; x E,} gC’s and x X Hs(KA,).

Furthermore, (R)q(2 A’) +oo for all q P. According to Lemma 3.17,
there exists a sequence (ei)i, of O’s and l’s such that x Eiaei2- q
U qeGoq. Since P grr,,, we have

{q to; x Goq) r’-- and x

3.24. Antistability of various classes of compact sets

THEOREM 3.25. Let (An)n
such that as k / 0%

be a sequence of colacunary subsets of to

d(Zn 0 [k, +oo[,hm CI [k, +oo[) ---) +oo

uniformly for all n m. For each n, let En KAn which is a compact Dirichlet
set. If &r and are two monotone bases on to such that c-7 , then
X H(E,) q Lo

So D, Lo, and all hereditary classes with D
_
f
_
Lo, (like H and L) are

antistable.

COROLLARY 3.26. There exists a sequence (F,)n of compact D r-sets
such that if -and are two monotone bases on to such that cz-r , then

(L
So 4/o, , .gt’, and their corresponding classes of compact sets, No, R and

A, are antistable.

Proof. For each n to, let F Ha(E(,k))which is a compact D V-set.
Let -and be two monotone bases on to such that - . According to
Lemma 3.14, we have q*-(R) (R) r. Then H-(Fn) H.(En) does
not belong to (L0 )J’ L0(R)-r. O

Proof of Theorem 3.25. Let (K.)., be any sequence of L0-sets. We will
find x in X\H(K)with dyadic decomposition x---Ezle2- for a
suitable choice of ei’s, either 0 or 1.

Let j to. Since Kj L0, there exist a sequence e --) 0 /, aj > 0 and for
each k a finite sequence (1/k) of intervals such that Ilf _< J’ for each l,
d(Iik, Ilk,) >_ otje for each l’ and K c U litk. Let

pj sup{-[log2
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and

k__ 1, k 1]J? m m + p +

for each kto. As k +oo, m---> +oo and d(A
[k, + oo[) + oo uniformly for all n m, jk meets at most one A for large
enough k. Thus for each j to, there exists an integer ky such that Jy jyk
meet at most Any and the Jy’s are pairwise disjoint.

Consider the map o’to to which takes j to nj. Since -$ , there
exists a P such that q(p)c gr. Using Lemma 2.9, by induction on
j P, we choose e for J. to insure

X E8i2-i Kj.
i>l

The other Ei’S are set equal to 0. Since P #, {j to; x K].} # and
thus x Ha,(Ky). Furthermore q(P)C 9-; -then {n
and so x X na,-(En).

3.27. Increasing countable compact unions of compact thin sets

We study the stability of various classes of compacts under increasing
countable compact union.

Let ’ be a hereditary class of compact subsets of a space E. The class
is defined by induction on the ordinal a:

Note that ’ is the closure of under increasing countable compact
union.

According to Proposition 3.5, ,a, c__ , whence we deduce the following
results.

THEOREM 3.28. There exists a compact set in D which is not in L
for each countable ordinal a.

Consequently, the classes of compact sets D, H, L, Lo, No, R andA are not
closed under increasing countable compact union.

Proof Let (E,,),o, be as in Theorem 3.25 and a a countable ordinal.
Since , : ra for all ordinal fl < a, na(En) . Zt’ But n,.oa(En)
D3 because -< r. rn
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COROLLARY 3.29. There exists a compact JZ-set which is not an -set.
More precisely, there exists a D-set, which is both an JZ-set and a set of
uniqueness, but is not an aagset.

Note that the H-sets (and so the Dff-sets) are sets of uniqueness [9], [2].
T. W. K6rner proved the existence of a compact /,C-set which is not a set of
uniqueness (and so which is not an g:set) [17].

Let us recall that ,///= N t.

COROLLARY 3.30. (a) J/o c No but No . ,A/o.
(b) ,- A and A ’.

Proof. Each element of ,///o is a subset of a 3’ set in which is an
Not-Set. Conversely, De c No c A t and D ,’, thus No J/0 and
A a’. Moreover A c N, thus A c N j/. In view of Theorem 2.11,
e’ J/, thus ’A . m

THEOREM 3.31. For all n >_ 1, there exists a compact set in ,/Yo (even in
D ) which is the union of n + 1 Dirichlet sets and is not a union of n Lo-sets.

Proof. Let ((En)k be as in Theorem 3.25 and n >_ 1. Since (n) : ,(n),
H(n(Ek) L thus H(n(Ek) is not a union of n L0-sets. But ,.qn

_
-r

and ("

___
a.(. + 1), whence Ha,(.(gk) D c J/o and H,(.(Ek) is a

union of n + 1 Dirichlet sets. n

THEOREM 3.32. For all n >_ 1, there exists a compact set which is the union

of n + 1 Dirichlet sets and is not a union of n Lot-sets.
Proof. Let (Ek)k to be as in Theorem 3.25, let n >_ 1 and let a be a

countable ordinal. Since ,(n+l) (n) (R) gZ-r,, He(/(Ek) (Lor,)(’o,
thus H(n/(Ek) is not a union of n Lt-sets for each a < to 1, therefore
Ht/(Ek) is not a union of n Lt-sets. [3

THEOREM 3.33. There exists a J set in DN _c (more precisely in
Dgs) which is not in (,/l/u Lo)t

Proof Let (Ek)kto be as in Theorem 3.25. Since ’s : rr,, for each
countable ordinal a, Hs(gk) q ISot. According to Theorem 3.23, Hs
(gk) q j]/oo t Moreover,

(J/U L0)=t

and Hgs(Ek) is a JC/n set.

/= uZ
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4. Pseudo and asymptotic classes

4.1. -uniform convergence

Let - be a free filter on to, i.e., a monotone basis -containing -r and
closed under finite intersection. Let (f),o be a sequence of real valued
maps on a set E. We shall say that (f)o, converges -uniformly to f if
there exists a sequence e --, 0 / such that for each x E,

{n w; f (x) f( x )1 < en} r.

With = {to}, we obtain the usual uniform convergence. The -r-uniform
convergence was introduced by A. Denjoy [6, p. 183] under the name of
pseudo-uniform convergence and was also studied under the name of quasi-
normal convergence or equal convergence [5]. The pseudo-uniform conver-
gence was considered in the present context by N. Bary [2], J. Arbault [1] and
Z. Bukovskfi [4].
A subset X of I’ is a set of type D - if there exists a strictly increasing

sequence (nk)ko, of integers such that IIn.ll converge -uniformly to 0,
i.e., if there exists a strictly increasing sequence (nk)k co, of integers and a
sequence ek 0+ such that for each x X,

{k o; Ilnkxll < ek} -.
A subset X of T is a set of type H 9r if there exist an interval I of T and

a strictly increasing sequence (nk)k of integers such that for each x X,

k to; nkX I} c-.

A subset X of T is a set of type Lo - if there exist a sequence en 0 +,
a > 0 and for each n to, a finite sequence (Iff) of intervals such that

Ilffl -< e for each k and d(I,, Ikn,) > ae for each k 4: k’, such that for each
xX,

n e to; x (.J Ik) ,9z-.
k

Note the inclusions between these classes.

PROPOSITION 4.2.
free filter " on to.

We have D
_
D ,.’c_ H ,.-c_ Lo -for each

For each class = D, H or L0, a set of type - -r will be called
pseudo ’-set and a set of type ’- ,’s an asymptotic a-set. The pseudo
Dirichlet sets were considered by N. Bary who proved they are in d//0. Z.
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Bukovski noted that the pseudo Dirichlet sets are exactly the D V-sets. We
can complete this result.

PROPOSITION 4.3. We have D rr D for each countable ordinal

Proof We have just to prove that D Z-r,, __. D"* for each countable
ordinal a. In the case a 1, consider the set X of all x T such that
{k to; Ilnkxll < ek} ’r. Then X c_ U ito{k to; Ilnkxll < ek for each
k > i}, which is an increasing union of Dirichlet sets. Let a be a countable
ordinal > 1. Consider the set X of all x T such that {k

’r,. Using the definition of -r in Part 3.8, we have that

(j to; {k to; IIn<j.k>xll < e<y.k>} c-rta]j) . Z-r

for each x X. Therefore X Hr(Xj)where Xj is the set of all x T
such that

{k (o; IIn<.k>xll < e<.k>} ’r[.b.

which is clearly a set of type D-
induction on a.

So we conclude the proof by

4.4. Asymptotic Dirichlet sets

The asymptotic H-sets were considered by R. Lyons because they are
annihilated by the same measures as the H-sets [20]. We are interested in the
class of all asymptotic Dirichlet sets which provides examples of "large" weak
Dirichlet sets.

PROPOSITION 4.5. All asymptotic Dirichlet sets are weak Dirichlet sets.

Proof Let X be an asymptotic Dirichlet set and let (nk)k and (ek)k to

be sequences witnessing that. Then X c Hs(Xk) with Xk {x T; IInkxll
<Ek}. By Lemma 3.5 we have /x(X)= SUPk(XNXk)= SUP(ki)(Xr’)

iXki) and fq iXki D for each sequence (ki) cto.
[:]

THEOREM 4.6. There exists an asymptotic Dirichlet set which is not covered
by a countable union of I/ and Lo-sets.
More precisely, if (ak)k and (bk)k are two sequences of integers such

that

bk ak .-> +o and ak+ bk --> +oo

as k --, +0% then X H,e,s(K[ak, bk]) is in (D ’s) and not in (I/LJ Lo).
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Proof Since bk -ak --. +oo as k, X clearly belongs to D- .s. Let
(Oq)q ,o be a sequence of elements of /+(to) and let (K.)j be a sequence
of elements of L0. We will find x in

qo jto

with dyadic decomposition x Ei>lei2-i for a suitable choice of ei’s either
0or 1.

Let

A [,.J [ak-5,bk-3] and
kto

Q {q to; (R),(2a) +}.

Let uT, Oq(2[ak-5’bk-3]) for each q Q and k to. Recall an argument
used in the proof of Theorem 3.23: let (u)n be sequences of non negative
reals such that En o,uq + oo for each q Q; there exists a set C .of density
zero (i.e., C.c gCs) such that Ecuqn + oo for each q Q. Let

( )cA’ [,.J ak 5, bk 31 and B’=A’+ [3, 51
kC

Note that {)q(2A’) -boo for each q Q, and B’c U kC[ak, bk].
Let j to. Since Kj L0, there exist a sequence e] 0 +, a. > 0 and for

each n a finite sequence (If) of intervals such that Ilfl <_ e] for each l,
d(Il, Ii’) >- ae’ for each 4: l’ and Ki c LI lI]’. Let pi sup{-[log2 aj], 0},
m7 [log2 e] and

jn= [m7_ 1, m’+p+ 1] for eachn to.

Since ak+ bk -boo ask, J meets at most one interval [ak, bk] for large
enough n. Therefore, there exists an integer n for each j to such that the
Ji’s, where J.--Jf, are pairwise disjoint and the set C’ of all k such that
[ak,bk] meets at most one interval, J., is a set of density zero.

Since azcCs is a filter, C" C u C’ is a set of density zero. The values of e
are set equal to 0 for all I.JkC,,C[ak, bk] =B". Thus x X=
Hcs(K[ak, bk]). Furthermore, simultaneously using Lemma 3.17 and 2.9, we
can choose a sequence (ei)iB,,c of O’s and l’s such that x ..ilei2-i q
U e,oGoq U UjeooKj. I’-1

4.7. Another result of antistability

We prove that classes of type ’- -do not have properties of stability. In
particular, there exists a D2 r-set which is not an asymptotic Dirichlet set.



222 SYLVAIN KAHANE

THEOREM 4.8. Let r be a monotone basis on to and let . be a free filter
on to with ,. There exists a set in D- which is not in Lo .
More precisely, if (An)n is a sequence of colacunary subsets of to such

that as k - +,
d(A,, [k, +oo[,.4,,, [k, +oo[) -,

uniformly for all n m, then

x (I o

Proof Consider a sequence ek "-> 0 +, a > 0 and for each k to, a finite
sequence (1/k) of intervals such that II/1 < k for each 1 and d(I, Irk,) > aek
for each 1’. We will find x X with dyadic decomposition x Eiz 1el2-i
for a suitable choice of ei’s either 0 or 1 and such that {k to; x U lI}

Let p sup{ flog 2 a 1, 0}, m flog z e and Jk [mk 1, mk + P +
1] for each k to. Since as k ---> +, mk ---> + and d(An n [k, +oo[, Am
n [k, +oo[) +o uniformly for all n m, Jk meet at most one An for
large enough k, i.e., k > k0. Thus for each k > k0, there exists an integer nk
such that Jk meets at most A and the Jk’S are pairwise disjoint.

Consider the map q:to--, to which takes k to nk. Since gz-: .P’, there
exists a P such that q(P) r. Since ’ is a free filter, P’ ---P
[k0, + oo[ belongs to .. Using Lemma 2.9, by induction on k P’, we pick ei
for Jk to insure that x Eiei2-i is not in Ulllk. The other ei’s are set
equal to 0. Since P’ , {k to; x U lI} , whence

k ; x UI/}.
Furthermore, q(p,)c -, whence {n to; x KA,} ’, so that x X
H-(K.,). D
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