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TANGENTIAL LIMITS AND EXCEPTIONAL SETS FOR
HOLOMORPHIC BESOV FUNCTIONS IN THE

UNIT BALL OF C

KARI E. SHAW

1. Introduction

Let B denote the unit ball in Cn with boundary S, the unit sphere. If f is
holomorphic in Bn with homogeneous expansion

f(z) E
k=O

define a radial fractional derivative of order/3 > 0 by

Rtf(z) E (k + 1)th(z).
k-O

Note that for/3 1, Rlf .f / f where is the usual radial derivative as
defined in [R]. Define the Besov space B(Bn), p > 1,/3 > 0, as

B(Bn) {f H(Bn) fBnlRl+laf(z)lP(1 IzI) p-1 dV(z) < oo},
so that

Ilfll,t f,,IRl+tf(z)ll(1 Izl) p-1 dV(z).

When /3 is a positive integer, this definition is equivalent to the analogous
space using instead (see [BB]), and we will occasionally use when it is
convenient.

For functions in this space we show the existence of limits in certain
non-isotropic tangential approach regions. The exceptional sets are shown to
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have singular measure zero. There is an explicit relationship among the
various parameters" /3, p, n, the order of tangency of the approach regions,
and the singularity of the measure of the exceptional sets.
There are many papers dealing with the existence of tangential limits.

Work has been done by Cargo [Ca], Kinney [K], Nagel, Rudin, and Shapiro
[NRS], and others. In [AN] Ahern and Nagel published results for the upper
half-space for both Besov and Sobolev spaces. In the setting of Cn, Gowda
[G] and Sueiro [S] have both studied tangential convergence for fractional
Cauchy integrals of Lp functions. In the second section of this paper we use
techniques from [AN] for Besov spaces in C".

In [Co] and in [AC] Cohn, and Ahern and Cohn develop and apply
techniques for completely characterizing exceptional sets of Sobolev func-
tions in terms of non-isotropic Hausdorff measures. In the third section we
apply these techniques to our Besov space setting. We show not only that
every exceptional set has Hausdorff measure zero, using a Frostman-type
result proved in [Co], but that every compact set of Hausdorff measure zero
is an exceptional set for some Besov function.

This work forms part of the author’s thesis. The author would like to thank
Patrick Ahern for his help and advice.

2. A strong Lp estimate

We need to define the approach regions that we will be using. Note that in
the following definitions, when we write z rr/ we intend for 0 < r < 1,
r/ S, so that rr/ B". Also, throughout this paper C will denote various
positive constants which depend only on allowable constants and parameters.
For g" S and 5 > 0 let

B(’, 8) {r/ S :11 (r/, ’)1 < 8}

be the Koranyi ball. Define approach regions at sr S by

D,(sr) {z rr/:11 (r/, sr)l < a(1 r)}.

Note that these are equivalent to the usual admissible approach regions

( z rr/"11 (z, sr)l < (1 r2)

Our definition of D,,()will simplify later computations. These approach
regions are tangential in some directions and non-tangential in others [R].
We next define approach regions at " S which are tangential in all
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directions. For z > 1 set

,(’) {z r? :11 (7, r)l < a(1 r)}.

Thus, " is the order of tangency of the approach regions.
A standard way to prove the existence of limits in approach regions is to

prove an Lp estimate on a maximal.function. Set Mf() SUpza,,()lf(z)l.
For 0 < m < n, let v be a singular measure on S with v(B(, 6)) < C m.
We will prove the following.

THEOREM 1. If m/" n 13P there is a constant C such that

fsMf(ff) p dv() CIIfll,.

The proof will be quite similar to that of Theorem 7.1 in [AN]. First we will
need two technical lemmas. We define a non-isotropic polydisc in Bn as
follows. If z rr/ choose r/2, r/3,..., r/n so that {r/, r/2, r/3,..., r/n} is an
orthonormal basis for Cn. Set

P(Z;r,t) { n

w rr/ + At/ + Ajr/j "IAI < r(1 r),
j-’2

Ia l < t(1 r), j 2, 3,..., n}
This is a polydisc of radius r(1- r) in the radial direction and radius
t(1 r) in the n 1 tangential directions. Its size is proportional to the
distance 1 r from the center of the polydisc to the boundary of the ball in
the radial direction, and proportional to the square root of that distance in
the tangential directions. The constants r and t may be different. If
t 6 6 say that P(z; 6, t)= P(z;6). Note that the volume of this
polydisc is

C(r(1 r))2y/St(1 r)
2(n-1)

C ;-1 ar2(1 r) n+l.

LEMMA 2. For each a, 3’ with 1 < a < y there is a 6 6(a, y, n) such
that if S and z rq D((), 1 > r >-, then the polydisc P(z; 6)c
D,().

The proof, essentially that of Lemma 3.5 in [AB], is omitted.
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suffi-LEMMA 3. Let z > 1, 3’ > 0, and 0 < p, < 1. For and p-3
ciently small there is an e e(r, 7, P, , n) such that ifz I-I/A,,(), Izl > 1/2,
and a, A > O, but z Dv() then e(z; p, ) c fl,/A,,,().

Proof. The proof is similar to that of Lemma 7.1 in [AN]. Write z rr/.
Let w s P(z; p, ). It is easy to show that I1 (:, r/)l < C(1 r) and

s2=w2<r2+2rp(1-r) +p2(1-r)2+ (n- 1) 8(l-r)

SO

3 1 21-s2> (l-r) 2 -20- O -(

If 8 is small and p is close to we obtain

2

1 r < C < C(1 s).

Thus,

I1 (:, )1 _< (11 (:, r/)[ 1/2 + I1 (r/, sr)[1/2)2z

< (C1/2(1 r) 1/2 + !1 (’0, sr)l’/2)
2’

[C1/2 I1 (r/,)l
y/2 + I1 (n, )11/2)

< C-(1 r)

_< C-(1 s).

Let e be the reciprocal of this constant C. m

Proof of Theorem 1.
tion shows that

Suppose z 12,(sr) and Izl > . An easy calcula-

{f( Z ) CfO 1og-f (R + if( tz ) )dt.
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Apply the mean value property to R + lf(tz) on the polydisc P(tz; 8) defined
earlier, where 8 will be chosen later.

So

IR+’f(tz)l < Ie(tz;a)l-l f IRI3+lf(w)ldV(w)
(tz. )

<_ IR +f(w)]p dV(w) [e(tz; )1-1/p
(tz;’r)

by H61der’s inequality

C [R+lf(w)[p dV(w) (8(1 tr)) -(+)/p
(tz. )

(1 Sp(tz. a)lR + if( w)lP dV(w)If(z)l _< cf01[ log7 ( (1 tr)) -(n + 1)/p dt.

Use the estimate log(l/t) 1 t to get

If(z)l < Cfol(1 t) t3 IR+lf(w)]p dV(w)
(tz. a)

( (1 tr)) -(n + 1)/p dt.

Let to,0 < to < 1, be the number such that toZ OD(). That is, for
z rr/we have l1 (r/, ’)l a(1 rto). If z D,(sr) then let o 1.
We write

(f ) (f,If(z)l < C + f. (1 t) 3 IR+lf(w)lp dV(w)
(tz" )

( ( 1 tr) ) -(n + 1)/p dt
=A+B.

First look at part A.

where a + b =/3.
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Consider w P(tz; ). One can show that

1- Iw12 (1 -tr)(1- 8(n + 2)) and

For small values of 8 we obtain

1- Iwl 4(1- tr).

1 < 1 tr < 4(1 Iwl) 16(1 tr).

By these calculations,

IZl _< f0(1- t)
a t -(n+l)/p

IRt+f(w)l"(1 Iwl)bp-- dg(w)
(tz; 8)

dt

as long as b > 0.
We have 0 < t < to so, applying Lemma 2 with tz D(’), we obtain

P(tz; ) c Dv() for 3’ > a and appropriate 8, independent of tz. Fix this .
Now

IAI _< cf/(1 t)
a t_(n + 1)/p

x +f(w)l"(1 Iwl) b"-"-I dV(w)

C(fo’(1- t)
a dt)-(n+l)/p

(fo )l/p[R+Xf(w)lP(1 [W[) bp-n-1 dg(w)
()

(fo()le )l/pC t3+Xf(w)[P(1 [w[) tw-n-x dV(w)

dt

ira> -1.
This last integral is now independent of z. Raise it to the pth power, take

the supremum over all z fl,(sr), and integrate over the sphere S with
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respect to the measure v to get

sup IA p dv(r)

<-- fsfBnXDv()(w)[R13+ lf(w)lP(1 Iwl) bp-n-1 dV(w) dv()_
fBnIR[+lf(w)IP(X IwI) bp-n-l f?D,()(W) dp() dV(w)

by Fubini. Note that

Dr(sr) {w + s’ll (:,’)1 < 3,(1 s)}

{w ssC’sr B(,3,(1 s))},

and so

Thus

fsXD()(W) dv() v(B(:,y(1 Iw])))

cym(1 [w[) m.

IZl" dv() <_ CfB,IRt+lf(w)IP(1- Iwl) bp-n-l+m dV(w)

CIIfll, if bp n 1 + m =p 1.

Easy calculations show that if bp-n- 1 + m =p- 1, a + b =/3, and
m/" n p, then

b= ( p + n m) and a --ff -1.

Thus, b>0sincem <n, anda > -lsincez> 1.
Now we turn to integral B. Break up the interval [t0, 1] as follows. There is

a positive integer N such that 1 tor > 2v(1 r) > 1/2(1 tor). Find to <
tl < < tv+ 1 so that 1 tjr 2N-j+ 1(1 r). For these choices of t.
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the distance from tz to the boundary of the ball is twice the distance from
tj+xZ to the boundary, toZ is on OD(), and tN+lZ Z.

We claim that P(tz; ) P(tz; , ) c P(tjz; (1 + t)/2, 8) if [t, t.+ 1].
Suppose w P(tz; , ). Then

w= rtq + hrl + AiI wherelh[ <8(1-tr),[hj[ < V/8(1-tr)
rtjl + (rt rtj + A)v/ + EAjj.

We must show that

[rt-rti+h[ <(l+8)(1-tir)and [hi[ <8(1-tir)2

Clearly [hjl < /t}(1 -tr) < /(1 -tlr) since > t1. Also,

rt-rt1+h[ _<rt-rt1+8(1-tr)
X-tjr-(1-tr) +8(1-tr)
1-tlr-(1-8)(1-tr)

<_ 1 tlr (1 8)(1 tj+lr )
1

<_ 1 tyr- -(1 8)(1 tlr)

=(l-tjr)(X 1-5
2 )

tjr)( 1 +(1

so we have proved the claim.
Write

1+P tz 2

We now have

since t <_ ty+
1
(1 tjr)since 1 tj+lr >_ -

0 t/+l( -(n+l)/p R.IB[ _< C 1 t)t(1 tr) lf(w)[P dV(w)
j= tY

dt

< E cf.t+’(1 t1 (1 -tl+lr ) fa,]RO+’f(w)[p dV(w)1=o ,
N

E C(tj+l
j=O

-ti)(1 tj)2(n+l)/p(1 -tyr)-(+l)/p

(f,lR )l/p+ if( w)[P dV(w)

dt
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We now apply Lemma 3 to P(tsz;(1 + 6)/2, 6). In the lemma take A
2N-S+ and tz in place of z. Note that we can take 6 small and (1 + ,3)/2
close to as the lemma requires. Then Lemma 3 says that A fl/A()
12(sr). From the proof of Lemma 3 and similarly to part A we obtain

1 tyr <_ C(1 Iwl),

tj+ ty < 1 ty < 1 tyr < C(1 Iwl),
1 tyr > C(1 Iwl)

so that now

IBI < C IR+lf(w)lP(1- IwI) p+p-"-I dV(w)
j=O A

< Cs Rt3+lf(w)IP(1 Iwl) ttp+p-n-ldg(w)

Now if we take the supremum, integrate, and use Minkowski and Fubini
we obtain

fs sup IBIPdv(r)

< Cfs +lf(w)lP(1 Iwl) ’+’-"-1 MY(w) d(C)

[ ,: ( SsS,(.I.(.)’R )liP]
p

< C t+lf(w)lP(1 Iwl)’+’-"- dV(w) du()
j=O

x fa,(() a() av()

We know that

( )os() w s’ll (, )1" _< h-(1 s)
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and so

aj<c.)(w) dv() v B :, --(1 Iwl)

< C (1 Iwl)

Finally we have

N+I )Pcllfll, , 2-kin/
k=l

_< CIIfll, 2-kin/p
k=l

_< CIIfll,.

COROLLARY 4. Suppose that v is a positive measure on S and C is a
constant satisfying v(B(,)) < c m for S, > O. Then if .f
B(Bn),lim f(z) exists as z o, z 12,,(o), for all o with the exception

of a set E with v(E) O.

The proof is a standard one, which we omit.

3. Characterization using Hausdorff capacity

We now look more closely at the exceptional sets for these holomorphic
Besov functions. Define the exceptional set of a function f B(B) as

E(f) ( S" z-,lim f(z) doesnotedstforsome a}.
z,()

Then Corollary 4 states that v(E(f))= 0 for any m-dimensional posi-
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tive measure v. We will further characterize these exceptional sets using
Hausdorff capacity.
For m > 0 and E a compact subset of S, let Hm be the m-dimensional

Hausdorff capacity defined by

Hm(E) inf{ E 6n. E c [,.J B(srk, 6k)}"
This is non-isotropic because we are using the non-isotropic balls B(k, 6k)
on S. In [Co], Cohn proves a Frostman-type result which says that for a
compact set E c S, Hm(E) > 0 if and only if E contains the support of a
positive measure v satisfying v(B(’, 6))< C 6m. This yields the following
immediate extension of Corollary 4.

COROLLARY 5. /jr m/r n- tip and E is a compact subset of S with
E c E(f) for some f B(B), then Hm(E) O.

This corollary says that compact exceptional sets have Hausdorff capacity
0. We now show that the compact exceptional sets are precisely those with
Hausdorff capacity 0. We will prove the following.

THEOREM 6. Let m/z n p with z > 1, 0 < m < n, /3 > 0, p > 1,
and let E be a compact subset of S with Hm(E) O. Then there is a function
f B(Bn) such that E E(f).

The proof of Theorem 6 will follow that of Theorem 1.2 in [AC]. We
require a sequence of lemmas which construct the desired function f.
Lemma 7 is obtained by using Cauchy’s formula on a polydisc, so we omit the
proof. The proof of Lemma 9 is almost identical to that of Lemma 1.6 in
[AC]. The proof of Lemma 8 is included. The proof of Theorem 6 is included
for the sake of completeness.

LEMMA 7. Iff is holomorphic in Bn, z Bn, Izl 1/2, q > 1, k is a positive
integer, and P(z; 6) is a polydisc as defined earlier, then there is a constant
C C(k, n, , q) such that

I._kg( z)l a <
C fp Ig(w)la dV(w).

(1- Izl) ak+"+

LEMMA 8. Suppose {B(i, i)} is a finite collection ofpairwise disjoint balls
in S, with <_ . Set z1 (1 6i)’i and

F(z) E7+P(k-13)+I<zj, Zj>-I<z, Zj>I(I <Z, Zj>) -(n+p(k-13)+l)

J

where k is an integer greater than fl and I > O. Then IIFII, C Ey 6-OP.
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Proof.
is

It is well known that an equivalent formulation of the Besov norm

IIFIl,t fa,,IRkFl’(1- Izl)(-a)-I dY(z)

where k is any integer greater than/3. We use this with in place of R. We
must show that kF LP((1 Izl)<-a)p- dV)with the correct bound on
the norm. We will use a duality argument. Let

g Lq((1 IzI)(k-)p-1 dV) 1 1
where-- + 1,

P q

and the norm of g is < 1.
Compute that

fsfl( Z),.;kF( z)(1 Izl)(k-)p-’ dV( z)

fBnF(Z),.kg(z)(1- Izl)<’-t)p-1 dV(z)

n+(,-a)p+llzj1-21
Y

< Zj, Z >l2kg(Z) (k-/3)p-

n(1 z>)n+(k_#)p+l(1 Izl) dV(z)

C--6’+(-13)p+llzJl-21fB <ZJ’
-x’i’t-1 dV(z)

j (1 zj, z2)

C 6]’+(k-t3)P+llzjl-2l,+kg(Zj).
J

It follows that

IIFIIp, < C +(k--t3)P+/l..l+kg( Zj)I
J
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so, by H61der and Lemma 7,

where a is chosen so that {P(zj; a)} are disjoint. Since 6j -" 1 Iwl we have

II,-,Fll,,t < C k( Es,.n-aP!_] [g(w)[g(1 dV(w)
j (zj’a)

< CE}’- Ig(w)l(1 Iwl)(k-tp-’ dr(w)

since the {P(zj; a)} are disjoint. Finally we see that

since Ilgll < 1. m

LEMMA 9. For N > n + p(k [3) there exist constants C, > 0 such that
function F H(Bn)for a disjoint collection {B(k, 6k)} k 5’ there is a

with
(i) [[fl[, <_ C 5-p,
(ii) F((1 kt-x)’k) >_ 1/4, and
(iii) [F(z)[ < C(1- [z[)-NE-p.

Proof of Theorem 6. We are given a compact set E c S with Hm(E) O.
Inductively define numbers mk > 0 and families {B(kl, tkl)} SO that for each
fixed k the balls {B(kl, tkl)} are disjoint, and E c UI B(kl, C .l/r). If Fk isOkl
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associated with {B(kl, kl)} as in Lemma 9 and Zkl (1 tklt-1)(kl, then
we further require

(i) mk >_ ink_ + 1,

(ii) mk > 8 mllF.ll,
j<k

(iii) mkllFkllp, < mkCEt-13P < 2-k

1
(iv) mglFk(Zyl)l < .10() for j < k.

If this has been done k 1 times, first choose mk so that (i) and (ii) hold.
Then, using Lemma 9(ii) and (iii) and the fact that Hm(E)--0 where
m/z n tip, we can choose {B(kl, 8kl)} SO that (iii) and (iv) hold.

Let F E rakEk. From (iii), F B(B").
Suppose " E. Since, for each k, E c Ul B(kl, C ’klR1/’), there is an

with

That is,

B(kl C t’kl )"

I1 <sr kl)l < C 1/, Ctl/, )1/,Vkl (1- IZkll
I1 <if, ’k,>l _< Ct(1 IZk, I),

SO Zkl ’,.ot() with a C’t. But

IF(Zkl)l mklFk( Zkl)l E m.llF.ll=
j<k

mk mk 1
> 4 8 10
mk> "1-0- oo ask.

m.lF.(Zk,)l
j>k

So MF() =- for E.
Suppose z B \ E. Then

NIFk(Z)l CI1 <Z, Zkl)l -N EEkl

where C depends only on fixed constants and the distance from z to E. But
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from (iii) we have

mkC _,[-P < C2-k,

so the series for F converges uniformly on compact subsets of B \ E. Thus
E(F) E. m
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