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ON A GENERALIZED ARTIN-SCHREIER,THEOREM
FOR REAL-MAXIMAL FIELDS

IDO EFRAT AND JOCHEN KOENIGSMANN

Introduction

A celebrated theorem of Artin and Schreier [AS] characterizes the real
closed fields as the fields K whose absolute Galois group G(K) consists of
precisely two elements. A natural generalization of the class of real closed
fields is the class of real-maximal fields, i.e., fields K which have no proper
separable algebraic extension to which all the orderings of K extend. Thus, a
real-maximal field with no orderings is nothing but a separably closed field,
and a real-maximal field with precisely one ordering is just a real closed field.
We prove:

THEOIZM A. Let 0 < e < 3. The following conditions on a field K are
equivalent"

(a) K is real-maximal with precisely e orderings;
(b) G(K) is isomorphic to the free pro-2 product De of e copies of Z/2Z.

For e 1 this is the Artin-Schreier theorem, while for e 2 it has been
proved by Bredikhin, Erov and Kal’nei using other methods [BEK]. For
e > 4, however, this equivalence is no longer true: Although (b) still implies
(a), one can construct real-maximal fields with e orderings whose absolute
Galois group is not De (Example 2.7). Nevertheless, one has the following
result due to Kal’nei, mentioned without proof in [El] and generalized in
Corollary 1.5 below:

TIJFOIZI B. Let K be a real-maximal field with precisely e orderings
P1,..., Pe and assume that P1,..., Pe induce distinct order topologies on K.
Then G(K) =- De.

As was shown by van den Dries [D, Ch. II] and in subsequent works by
Prestel [P1] and Jarden [J1], the real-maximal fields also arise naturally in
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model theory of fields. Namely, the first-order theory of e-fold ordered fields
has a model-companion whose models are the real-maximal fields with
precisely e orderings which are pseudo real closed (PRC): this latter property
means that any non-empty absolutely irreducible affine variety defined over
K has a K-rational point, provided that it has a simple rational point in each
real closure of K. It may be interesting to remark that by a recent result of
Pop [Po], any intersection of real closures of Q is PRC (see also [H, Cor.
6.3]). The counter examples mentioned above of real-maximal fields K with
e > 4 orderings and with G(K) De thus show that Pop’s result does not
extend to arbitrary intersections of real-closed fields (note that by [HJ1] and
Th. 1.1 below, if a real-maximal field with e orderings is PRC then its
absolute Galois group is De).

Nevertheless, one may still ask whether a weaker result holds, namely, that
a field with absolute Galois group De is necessarily PRC--as is indeed the
case for e 0, 1. For larger values of e this turns out to be false"

THEOREM C. Let K be a field such that any field E satisfying G(E) G(K)
is necessarily PRC. Then K is either separably closed or real closed.

In [D, p. 77] van den Dries also poses a related open question: Is a
real-maximal field K with finitely many orderings which induce distinct order
topologies on K (in this case one says that the orderings are independent)
necessarily PRC? In this connection we have the following result (actually, in
a somewhat more general situationmsee Theorem 1.6):

THEOREM D. Let K be a real-maximal field with finitely many orderings.
Then the following conditions are equivalent"

(a) The orderings on K are independent;
(b) Any Henselization of K with respect to a non-trivial valuation is either

separably closed or real closed.

It should be noted that a Henselization of a PRC field with respect to a
non-trivial valuation indeed must be either separably closed or real closed, by
results of Frey and Prestel [GJ2, Th. B]. One is therefore led to the following
equivalent version of van den Dries’ problem (compare also [FJ, Problem
10.16(b)]):

Let K be a real-maximal field with finitely many orderings and assume that all
the Henselizations ofK with respect to non-trivial valuations are either separably
closed or real closed. Is K necessarily PRC?

Acknowledgement. This work was carried out while the first author en-
joyed the hospitality of the Faculty of Mathematics at Konstanz University.
We are indebted to Alexander Prestel for his remarks on the results of this
paper.
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I. Independence of valuations in real-maximal fields

Denote the space of orderings of a field K by X(K). It is equipped with
the Harrison topology defined by the subbasic sets H(a) {P X(K)[a
P}, a K><. This topology is Boolean, i.e., Hausdorff, compact and totally
disconnected [P2, Th. 6.5]. One says that K has the strong approximation
property (SAP) if the collection of sets H(a), a KX, is closed with respect
to intersections (see [P2, Th. 9.1] and [L, 10] for many other equivalent
definitions of this widely-studied property).
A profinite group G is said to be real-projective if its set of involutions

(elements of order precisely 2) is closed in G and if the following local-global
principle holds: If a" B - A is an epimorphism of finite groups, if/3" G A
is a continuous homomorphism, and if for each subgroup H < G of order 2
there is a continuous homomorphism YH" H B such that Res/_//3 a Yn,
then there exists a continuous homomorphism y: G B such that/3 a y.
As an important example we mention the real 2-free group L32(X) on a

Boolean space X considered in [J2, 4]. When X is a discrete space of e
elements, it is nothing but the free pro-2 product De of e copies of Z/2Z.
The properties of /2(X) can be derived just as in [HJ2], working in the
category of pro-2 groups instead of the category of profinite groups. In
particular, X is a closed system of representatives for the conjugacy classes of
the involutions in /)2(X) and /)2(X) is real-projective (see also [J2,
Prop. 13]).

THEOREM 1.1. The following conditions on a real-maximal fieM K are
equivalent:

(a) G(K) =/2(X(K));
(b) G(K) is real-projective;
(c) K has the SAP.

Proof (a) (b). By [J2, Lemma 92 and Prop. 13], G(K) is real-projective
if and only if it is of the form /2(X) for some Boolean space X. It follows
from Artin-Schreier’s theory and from the fact that X is a closed system of
representatives for the conjugacy classes of the involutions in /2(X) that
X X(K). (Alternatively, use [H, Prop. 4.2].)

(b) (c). [H, Prop. 3.3 and Remark 3.2].
(c) (a). As K is real-maximal, it is the intersection of its real closures,

hence it is pythagorean. By [J2, Lemma 9 and Lemma 11], G(K) is pro-2.
The assertion therefore follows from a result of Erov [E2, Th. 3] (see also
[El, Cor. 4.4]). []

2Note that the assumption that the field PRC is redundant in the formulation of that lemma.
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Proof of Theorem A. A field with at most 3 orderings has the SAP [L, p.
97], so by Theorem 1.1, (a) (b). The converse implication follows from [J2,
Lemma 9]. rq

Recall that an ordering P and a valuation v on a field K are compatible if
x P whenever v(x- 1)> 0 (see [P2, Lemma 7.2] for equivalent defini-
tions). We say that a second valuation w on K is coarser than v if for all
x Kx, v(x) > 0 implies w(x) > O. The following (quite well-known) facts
are used extensively in the sequel.

LEMMA 1.2. (a) An ordering on a field K is compatible with some non-
trivial valuation if and only if it is non-archimedian.

(b) Distinct orderings P1, P2 on a field K induce the same topology if and
only if there exists a non-trivial valuation w on K which is compatible with both
P1 and P2.

(c) An ordering P and a valuation v on a field K induce the same topology if
and only if there exists a non-trivial valuation w on K which is compatible with
P and is coarser than v.

(d) Two non-trivial valuations v 1, v 2 on a field K induce the same topology if
and only if there exists a non-trivial valuation w on K which is coarser than both
U and U2.

(e) The orderings on any Henselization of a field K with respect to a valuation
v are mapped bijectively via restriction onto the set of orderings on K compatible
with v. In particular, an ordering P is compatible with a valuation v on a field K
if and only ifsome Henselization ofK with respect to v is contained in some real
closure ofK with respect to P.

(f) A valuation w is coarser than a valuation v on a field K if and only if
some Henselization ofK with respect to w is contained in some Henselization of
K with respect to v.

Proof (a) [P2, Cor. 7.10 and Th. 7.14].
(b) From (a) and from the discussion in [L, p. 45] we get the assertion when

P1 and P2 are both archimedian or both non-archimedian. If P1, say, is
archimedian and P2 is not, then Q is dense in the Pa-topology but not in the
P2-topology, so these topologies are distinct, and the claimed equivalence
follows again from (a).

(c) [L, Prop. 5.8].
(d) [PZ, Lemma 3.4].
(e) [P2, Th. 8.3].
(f) [J3, Cor. 14.4] or [Ri, p. 210, Cor. 1]. D

For a valuation v we denote its (precise)value group by Fv.
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PROPOSITION 1.3. The following conditions on a field K are equivalent"
(a) The orderings on K are independent;
(b) The Henselization Kho of any non-trivial valuation v on K satisfies

_< a;
(c) The residue _field Ko of any_non-trivial valuation v" K Fo u {}

satisfies ]X(Ko)] < 1, and ifK is formally real then Fo 2Fo.

Proof By Lemma 1.2(b)(e), (a) (b). Also, Baer-Krull’s theorem [L, Th.
5.3] yields a bijective correspondence between the orderings on K compatible
with v and X(Kv) Hom(Fv/2Fo,Z/2Z). Lemma 1.2(e) again yields a
bijective correspondence between the orderings on K compatible with v and
X(Kh). Combine these two bijections to obtain that (b) , (c). []

COROLLARY 1.4.
SAP.

If the orderings of a field are independent then it has the

Proof Use the fact that K has the SAP if and only if for every non-trivial
valuation v" K Fo t {} either X(/o) or Fo 2Fv or both IX(o)I

1 and (Fo" 2Fo) 2 [P2, Th. 9.1].
Alternatively, let A and B be disjoint finite subsets of X(K). Stone’s weak

approximation theorem for V-topologies [PZ, Th. 4.1] yields a K such
that A

_
H(a) and B N H(a) . This is again equivalent to the SAP [P2,

Th. 9.1]. rq

As a consequence from this and from Theorem 1.1 we get the following
generalization of Kal’nei’s result (Theorem B), which answers affirmatively a
weaker Galois-theoretic version of van den Dries’ problem:

COROLLARY 1.5. Let K be a real-maximal field whose orderings are inde-
pendent. Then G(K) 2(X(K)).

THEOREM 1.6. LetuP1,..., Pe, e >_ 1, be the distinct orderings on a fieM K
and assume that K K f) N Ke, where K1,..., Ke are the real closures
of K with respect to P1,..., Pe" Then the following conditions are equivalent"

(a) P1, Pe are independent;
(b) For every non-trivial valuation v on K, the Henselization K is either

algebraically closed or real closed;
(c) For every non-trivial valuation v" K - Fo {}, the residue field Ko is

either separably closed or real closed and the value group Fo is divisible.

Proof (a) = (b). Let v be a non-trivial valuation on K. If P1,..., Pe, v
induce on K distinct topologies then by [He, Prop. 1.3], any Henselization of
K with respect to v is algebracially closed. If the v-topology coincides with
the Pi-topology for some 1 _< _< e then Lemma 1.2 yields a non-trivial
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valuation w on K which induces on K the same topology as Pi and such that
for appropriate Henselizations Kh and Kh of K with respect to v and w,
Kwh -Kh, i. By [He, Th. 1.1], Kwh gi so gvh is either real closed or
algebraically closed.

(b) = (c): Let v: K Fv tA {} be a non-trivial valuation with an alge-
braically closed Henselization K. By general valuation theory, v is separa-
bly closed and F is divisible. If on the other hand K is real closed, then
[P2, Th. 8.6] gives that Kv is real closed and, again, F is divisible.

(c) (a): This follows from Proposition 1.3. D

1.7 Remark. Using this point of view, one can give the following alterna-
tive proof to a result of Prestel, according to which the orderings of a PRC
field are independent [P1, Prop. 1.6]. Indeed, if v" K F tA {oo} is a
non-trivial valuation then by [GJ2, Th. B], the Henselization Kh is either
separably closed or real closed, hence IS(Kh)l _< 1. This implies the asser-
tion by Proposition 1.3.

2. Absolute Galois groups of fields of generalized formal power series

For an ordered abelian group F and a field K let K((F)) be the field of all
formal power series Evrat, where av K for all 3’ F, such that
{y Flay :# 0} is well-ordered with respect to the ordering induced from F.
It is well known that K((F)) is Henselian with respect to the natural
valuation v" K((F)) F t {oo} defined by

[Ri, pp. 103, 112, 198]. Note that v is non-trivial whenever F :# 0.

LEMMA 2.1. Let K be a field and let F be an ordered abelian group. Then
the restriction homomorphism G(K((F))) G(K) is an epimorphism. If in
addition char K 0 and F is divisible then it is an isomorphism.

Proof.
tion that

Set E K((F)). To prove that K =/ E, assume by contradic-

., at _
( I E) K

/F

and let f irr(a, K). Taking formal derivative with respect to we get
f’(a)a’= (f(a))’ 0. If p char K 0 then f, being irreducible, is not a
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pth power, so in any case, f’ 0 and therefore f’(a) 4 O. But as a K, also
a’ 0contradiction.
Now assume that char K 0 and that F is divisible. Let v be the natural

valuation on E and let u and be the unique extensions of v to/?,E and to
/, respectively. Note that /v, hence also /u, is unramified. Since the
residue field K of u is algebraically closed and of characteristic 0, the residue
degree and the defect of /u are 1. By Henselianity, / =/, so Res:
G(E) G(K) is an isomorphism.

Proof of Theorem C. Let E K((Q)) and assume first that char K 0.
By Lemma 2.1, G(E) G(K). By assumption, E is PRC as well as (non-triv-
ially) Henselian. It follows from [GJ2, Th. B] that it is either separably closed
or real closed. Hence G(K)[ G(E)[ < 2. If char K 4= 0 then K is not
formally real. Since it is PRC, a theorem of Ax [FJ, Th. 10.17] implies that
G(K) is projective. In particular the epimorphism Res: G(E) - G(K)
(Lemma 2.1) splits; i.e., there is a separable algebraic extension E of E such
that Res: G(E1) G(K) is an isomorphism. By assumption, E is PRC, as
well as Henselian and non-formally real. As before, this implies that G(K)[

[G(E1)[ 1. rn

2.2 Remarks. (i) For a related construction see [GJ1, 4].
(ii) A certain p-adic analogue of Theorem C also holds: Let K be a field

with the property that any field E satisfying G(E) G(K) is pseudo
p-adically closed (PpC) in the sense of [HJ3] for instance. Then K is either
separably closed or p-adically closed. Indeed, just as in the above proof, if
char K 0 then E K((Q)) is PpC and G(E) G(K). As E is Henselian,
[GJ2, Th. C] implies that E is either algebraically closed or p-adically closed.
Use [HJ3, Cor. 6.6] to conclude that either G(K) 1 or G(K) G(Qp). In
the first case K is of course separably closed. In the second case, since K is
PpC, [HJ3, Cor. 15.2] implies that it is p-adically closed. If on the other hand
char K 4: 0, then K admits no p-adic valuations, so the proof can be carried
out as in Theorem C.

(iii) There exist real-maximal fields, even with absolute Galois group De, e
arbitrary, all of whose orderings are dependent. For example, let K be a field
with G(K) De, e > 1. Thus, K is real-maximal with precisely e orderings.
By Lemma 2.1, G(K((Q))) -= G(K). Since real-maximality and the number of
orderings are coded inside the absolute Galois group [J2, Lemma 9], K((Q))
too is real-maximal with e orderings. However, it is Henselian with respect to
the natural (non-trivial)valuation v, so by Lemma 1.2(b)(e), these orderings
are all dependent.

We now turn to modify the above construction of generalized power series
fields in order to construct the counterexamples to the equivalence of
Theorem A for e > 4 mentioned in the introduction (Example 2.7).
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PROPOSITION 2.3. Let K be a field of characteristic 0, let p be a prime
number, and let F be an ordered abelian group such that F qF for all primes
q4=p.

(i) IlL is an algebraic extension ofK with G(L) pro-p, then G(L K((F)))
is pro-p;

(ii) If (F: pF) =p then G(I. K((F))) Zp.

Proof Let E K((F)), let v be the natural valuation on E and let be
the unique extension of v to/.

(i) Let u be the restriction of t5 to LE. Since F is q-divisible for every
prime q 4: p, the ramification index e(O/v), hence also e(O/u), is a power of
p (as a supernatural number). By assumption, the residue degree f(g)/u)
[/" L] is also a power of p. Finally, since char L 0, f;/u is defectless.
Therefore G(LE) is pro-p.

(ii) Put F =/. By (i), G(F) is a pro-p group. Each element a in F can
be written as

with ar /. Hensel’s lemma in F, applied with respect to the polynomial
Xp -1a(.)t (")a, implies that

a a(.)t(") mod(F)p.

Since a0()/, it is a p-power in Fx. Hence a =-to()mod(F)p. It
follows that for any a, a’ Fx we have a =-a’ mod(F)p if and only if
5(a) tS(a’) mod pF, i.e., F/(FX)p =- F/pF. Since F contains all roots of
unity, Kummer’s theory gives

Hi( G(F), Z/pZ) =- F/(F)p.

Conclude from this and from [R, Ch. IV, Th. 6.8] that

rank G(F) dimFp F/(F)
p

dimFp r/pr 1.

But F contains / and is therefore not formally real. It follows that G(F) =-
Zp. ffl

Now fix F {n/m Q I2 4" m}. Then (F: 2F)= 2 and F qF for all
odd primes q. The following result describes the absolute Galois group
G(K((F))) for K real-maximal by means of generators and relations.
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PROPOSITION 2.4. Assume that

G(K) ( {o--i} i, (r/2 1 Vi I, rj((r) 1 j J}

(as a pro-2 group), with I 4 and with rj((r), j J, relations in the ri’s. Then:
(i) G(K((F)))= ({ri}ii, ’12= (ri’)z= 1 i I, rj((r)= 1 ’j J);
(ii) If K is real-maximal then so is K((F)).

Proof (i) First observe that since G(K) contains an involution, char K
0. Let E K((F)), F K((Q)), E ---/ ci F and Ez =/?,.E. Then Res: G(F)
---> G(E1) is surjective and Res: .(E2/E) --) G(K) is injective. By Lemma
2.1 the composition of the restriction homomorphisms

G(F) -) G(E1) -) ’( E2/E) --* G(K)

is an isomorphism. It follows that all three restriction maps are in fact
isomorphisms. We therefore get a split exact sequence

1 - G(Ez) --> G(E) --> G(K) ---> 1

with Res -x" G(K)--)G(E1) being a section. For simplicity we identify (ri,
e I, with generators of G(El) via this section. Also, by Proposition 2.3(ii),
G(E2) <-> -= Z2. We show that G(El) acts on G(E2).according to the
rule (rirr -1, I. Both (riv(r and --x are trivial on K, hence on E2. It
therefore suffices to show that they coincide on r for each , e Q. Indeed,
(r/(t v) t and since 2n’ F for some n > 0, -(tr) sct r for some primi-
tive root of unity sc. As tr/(s) -1, we get (O’i’l’O’i)(t y) o’i(t) -ltv
’-a(t), as required.

(ii) Use (i) and the fact that a field is real-maximal if and only if its
absolute Galois group is pro-2 and is generated by involutions [J2, Lemma 9
and Lemma 11]. []

LEMMA 2.5. Let P1,’", Pn, Q be distinct orderings on a field K and suppose
that Q is archimedian. Then there exists an element a such that a P1
0"" OPn, a Q.

Proof Let ’l,...,’m be the distinct order topologies induced by
P1,..., en on K. Without loss of generality, Pit/l,..., Pit+, induce ’l,
0,...,m, where 0=i0< <i,+x=n. For each 0<l<m, the set
P n Pi is open in ’t and is non-empty, since it contains 1. Byit+l t+l

Lemma 1.2(a)(b), the Q-topology does not coincide with any ’t, 1 < < m.
Use the weak approximation theorem [PZ, Th. 4.1] to obtain a K as
required, rq
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Denote the Frattini subgroup of a profinite group G by (G) [FJ, 20.1].

LEMMA 2.6. Let K be a field such that G(K) is a pro-2 group. Then:
(a) G(K)/O(G(K)) is an elementary abelian 2-group;
(b) O(G(K)) contains no involutions;
(c) If e a, ez are non-conjugate involutions in G(K) then eaez f O(G(K));
(d) If El, e2, e 3 are involutions in G(K) then ee2e3 dp(G(K)).

Proof (a) This is contained in [FJ, Lemma 20.36].
(b) Use Artin-Schreier’s theory and the fact that for K formally real,

O(G(K)) < G(K(v 1 )).
(c) By Artin-Schreier’s theory, the non-conjugate involutions e 1, ez induce

distinct orderings P1, P2, respectively, on K. Take a P1- P2. Then e
fixes fa-- but e2 does not. Furthermore, fa-- is fixed by d(G(K)), since the
latter group is contained in G(K(v/-)). Conclude that eae2 O(G(K)).

(d) We may assume that ea, ez, e 3 are non-conjugate--otherwise use
(a) and (b). So let P, P2, P3, respectively, be the distinct orderings induced
by them on K. There exists a K such that a PlCP2 and a P3.
Then x/a- is fixed by el, ez and O(G(K)) but not by e3. Conclude that
ele2e3 (G(K)). 3

Example 2.7. We now construct examples as mentioned in the introduc-
tion. We begin with the case e 4. Let K be a field with G(K) =- D2 (in
particular [X(K)[ 2). Actually, we may take K to be an algebraic exten-
sion of Q [J2]. Put E K((F)). By Proposition 2.4, E is real-maximal and

G(E) <0-i, 0-2, ,/- [0} 0-} (Cl-) 2 (0.2,/- i>.

By Baer-Krull’s correspondence [L, Th. 5.3], IX(E)[ [X(K)I
1Hom(F/2F, Z/2Z)I 4, and the distinct orderings P1,..., P4 on E are
determined by the sign of the formal variable and by their restriction to K.
Yet G(E) D4, since rank G(E) 3 and rank D4 4. Note also that the
involutions e 0"1, e2 0"2, e3 O’l’r and e4 0"27" are non-conjugate in
G(E). Hence, without loss, their fixed fields induce Pa,..., P4, respectively,
on E.

In a similar way one obtains examples as required with an arbitrary even
finite number e of orderings.
To construct examples in the general case, where the number of orderings

is n / 4, n >_ 1, we argue as follows: Choose a transcendence base T for
ElK containing t, where K and E are as above. We have IT[ < [E[
tr. deg. R/K so K(T) K (R) Q(T) embeds in R, giving rise to an archime-
dian ordering on K(T). Permuting T we even get infinitely many such
orderings. Let gl,... g

n be real closures of K(T)with respect to distinct
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archimedian orderings. Since G(E), G(K1),... G(Kn) are closed pro-2 sub-
groups of G(K(T)), we may use Sylow’s theorems [FJ, Prop. 20.43] to assume
without loss that they generate a pro-2 subgroup of G(K(T)). According to
[J2, Lemma 9 and Lemma 11] this means that F E N K g

n is
real-maximal. Note that since G(E) is by construction not real-projective
(Theorem 1.1), G(F) is not real-projective either, by [HJ1, Cor. 10.5]. In light
of Theorem 1.1 again, we have to show that IX(F)I n + 4. As E is
Henselian, P1,..., P4 are non-archimedian (Lemma 1.2(a)(e)). Since K(T)
contains t, the restrictions of P1,..., P4 to K(T) (which we keep denoting by
P1,..., e4) are distinct. Also_ let Q1-..., Qn be the (distinct) archimedian
orderings on F induced by K1,..., Kn, respectively. We, thus, have to show
that X(F) contains no other orderings beside P1,..., P4, Q1,..., Qn.
To this end let P be an ordering on F and assume that P

el,"’, e4,. Q1,..., Qn. Choose involutions e, tl,... tn in G(F)whose fixed
fields in F induce P, Q1,..., Qn, respectively. We have

e G(F) (el,..., e4, 1’’’’’ tn>,

so Lemma 2.6(a) yields 1 < < < < 4 1 < Jl < < Js n and
q (G(F)) such that

e eil eirtyl tjsqg.

For each 1 _< j _< n we obtain from Lemma 2.5 an element aj F such that

a is fixed by E, E1,...,E4,I,...,tj_I,tj+I,...,t but not by 8j. Since

(G(F)) <_ G(F(d )), is also fixed by q. Conclude that no Jt can equal
j. But 1 _<j _< n was arbitrary, so e eil’"eir. Using the fact that

81838284 1 and the commutativity of G(F)/(G(F))(Lemma 2.6(a))we
may in fact assume that r _< 2. However the cases r 0, 1, 2 are all impossi-
ble by parts (b), (c) and (d), respectively, of Lemma 2.6. This yields the
desired contradiction.
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