FUNDAMENTAL SOLUTIONS FOR POWERS OF THE HEISENBERG SUB-LAPLACIAN

Chal Benson, A.H. Dooley and Gail Ratcliff

1. Introduction and statement of results

The Heisenberg group H_{n} of dimension $2 n+1$ is given by

$$
\begin{equation*}
H_{n}:=\mathbf{C}^{n} \times \mathbf{R} \tag{1.1}
\end{equation*}
$$

with product

$$
\begin{equation*}
(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}-\frac{1}{2} \operatorname{Im}\left(z \cdot \overline{z^{\prime}}\right)\right) \tag{1.2}
\end{equation*}
$$

for $z, z^{\prime} \in \mathbf{C}^{n}, t, t^{\prime} \in \mathbf{R}$. Differentiation along the one-parameter subgroups

$$
\left\{x_{j}(s)=\left(s e_{j}, 0\right)\right\} \quad \text { and } \quad\left\{y_{j}(s)=\left(\sqrt{-1} s e_{j}, 0\right)\right\}
$$

where $\left\{e_{j}\right\}$ is the standard basis for \mathbf{C}^{n}, yields left invariant vector fields X_{j} and Y_{j} respectively. Letting $Z_{j}:=X_{j}+\sqrt{-1} Y_{j}$ and $\bar{Z}_{j}:=X_{j}-\sqrt{-1} Y_{j}$, one computes that

$$
\begin{align*}
& Z_{j}=2 \frac{\partial}{\partial \bar{z}_{j}}+\frac{\sqrt{-1}}{2} z_{j} \frac{\partial}{\partial t} \\
& \bar{Z}_{j}=2 \frac{\partial}{\partial z_{j}}-\frac{\sqrt{-1}}{2} \bar{z}_{j} \frac{\partial}{\partial t} \tag{1.3}
\end{align*}
$$

The Heisenberg sub-Laplacian is the left invariant differential operator $\Delta_{H_{n}}$ on H_{n} given by

$$
\begin{align*}
\Delta_{H_{n}} & :=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)=\frac{1}{2} \sum_{j=1}^{n}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right) \\
& =4 \sum_{j=1}^{n} \frac{\partial}{\partial z_{j}} \frac{\partial}{\partial \bar{z}_{j}}+\sqrt{-1} \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}} \frac{\partial}{\partial t}-\sqrt{-1} \sum_{j=1}^{n} \bar{z}_{j} \frac{\partial}{\partial \bar{z}_{j}} \frac{\partial}{\partial t}+\frac{1}{4}|z|^{2} \frac{\partial^{2}}{\partial t^{2}} \tag{1.4}
\end{align*}
$$

$\Delta_{H_{n}}+\partial^{2} / \partial t^{2}$ is the Laplace-Beltrami operator for a left-invariant metric on H_{n}. The sub-Laplacian is homogeneous of degree 2 with respect to the dilations d_{s} given by

$$
\begin{equation*}
d_{s}(z, t)=\left(s z, s^{2} t\right) \tag{1.5}
\end{equation*}
$$

for $s \in \mathbf{R}^{+}$. That is, $\Delta_{H_{n}}\left(f \circ d_{s}\right)=s^{2} \Delta_{H_{n}}(f) \circ d_{s}$ holds for smooth functions $f: H_{n} \rightarrow \mathbf{C}$.

In [Fo1], G. Folland found that $\Delta_{H_{n}}$ has a fundamental solution F given by the formula

$$
\begin{equation*}
F=\frac{\Gamma\left(\frac{n}{2}\right)^{2}}{8 \pi^{n+1}} r^{-n} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\left(\frac{|z|^{4}}{16}+t^{2}\right)^{1 / 2} \tag{1.7}
\end{equation*}
$$

The distribution F is tempered, given by a locally integrable function and has singular support $\{(0,0)\}$. Folland's result is motivated by the well known fact that a suitable multiple of $\|x\|^{2-n}$ is a fundamental solution for the usual Euclidean Laplace operator Δ on \mathbf{R}^{n} for $n>2$. (See e.g. [Hö].) The function $r(z, t)$ on H_{n} plays a role analogous to that of $\|x\|^{2}$ on \mathbf{R}^{n}. In particular, $r(z, t)$ is homogeneous of degree 2 with respect to the dilations given by Formula 1.5.

In this paper we consider the problem of finding fundamental solutions for (positive integral) powers $\Delta_{H_{n}}^{p}$ of $\Delta_{H_{n}}$. Since $\Delta_{H_{n}}^{p}$ is homogeneous with respect to dilations, existence of a fundamental solution is equivalent to both local and global solvability [Ba]. The corresponding problem in $\mathbf{R}^{n}(n>2)$ is easy. Since $\Delta\left(\|x\|^{a}\right)=a(a+n-2)\|x\|^{a-2}$, we see that a multiple of $\|x\|^{2 p-n}$ is a fundamental solution for Δ^{p}. The situation for H_{n} is more complicated.

Since $\Delta_{H_{n}}\left(r^{a}\right)$ is not a scalar multiple of r^{a-2}, we cannot use Folland's result to derive a fundamental solution for $\Delta_{H_{n}}^{p}$ in a simple fashion.

Let $\gamma:=|z|^{2} / 4-i t=r e^{i \theta}$ where r is given by Formula 1.7 and $-\pi / 2<$ $\theta \leq \pi / 2$. Homogeneous functions of degree $2 a$ on H_{n} can be written in (r, θ)-coordinates as $Q(\theta) r^{a}$. An exercise with the chain rule shows that $\Delta_{H_{n}}$ is given in (r, θ)-coordinates by the formula

$$
\begin{equation*}
\Delta_{H_{n}}=r \cos (\theta) \frac{\partial^{2}}{\partial r^{2}}+\frac{\cos (\theta)}{r} \frac{\partial^{2}}{\partial \theta^{2}}+(n+1) \cos (\theta) \frac{\partial}{\partial r}-\frac{n \sin (\theta)}{r} \frac{\partial}{\partial \theta} . \tag{1.8}
\end{equation*}
$$

One has

$$
\begin{align*}
& \Delta_{H_{n}}\left(Q(\theta) r^{a}\right)=\left[\cos (\theta) Q^{\prime \prime}(\theta)-n \sin (\theta) Q^{\prime}(\theta)\right. \\
&+a(n+a) \cos (\theta) Q(\theta)] r^{a-1} \tag{1.9}
\end{align*}
$$

We conclude that a fundamental solution for $\Delta_{H_{n}}^{p}$ should be expressible in the general form $Q(\theta) r^{p-n+1}$. When p is greater than $1, Q(\theta)$ will not be a constant function.

Our main result is the following.
Theorem A. Let p be a fixed integer with $1 \leq p \leq n$ and let $\gamma:=$ $|z|^{2} / 4-i t=r e^{i \theta}$. For $0<s<1$ and $|\theta|<\pi / 2$, define

$$
\begin{aligned}
G_{s}(\theta)= & e^{i(n-p+1) \theta} \int_{0}^{s} \frac{1}{s_{n}} \cdots \int_{0}^{s_{3}} \frac{1}{s_{2}} \\
& \times \int_{0}^{s_{2}} \frac{s_{1}^{n-1}}{\left(1-s_{1}^{2}\right)^{p-1}\left(s_{1}^{2}+e^{2 i \theta}\right)^{n-p+1}} d s_{1} \cdots d s_{n}
\end{aligned}
$$

Then, as $s \rightarrow 1^{-}, \operatorname{Re}\left(G_{s}(\theta)\right) \rightarrow \psi_{p}(\theta)$ uniformly on compact sets, where
(i) $\psi_{p}(\theta)$ is smooth for $|\theta|<\pi / 2$,

$$
\begin{equation*}
\Psi_{p}(z, t)=\frac{2(-1)^{p}(n-p)!}{r^{n-p+1}} \psi_{p}(\theta) \tag{ii}
\end{equation*}
$$

extends to a function on H_{n} which is smooth away from $(0,0)$,
(iii) Ψ_{p} is a tempered fundamental solution for $\Delta_{H_{n}}^{p}$ with singular support $\{(0,0)\}$.

Theorem A shows that for $s<1, G_{s}$ can be expressed in terms of iterated antiderivatives of elementary functions. G_{s} is determined by the differential
equation

$$
\begin{equation*}
\left(s \frac{d}{d s}\right)^{p} G_{s}=\frac{e^{i(n-p+1) \theta} s^{n}}{\left(1-s^{2}\right)^{p-1}\left(s^{2}+e^{2 i \theta}\right)^{n-p+1}} \tag{1.10}
\end{equation*}
$$

together with the initial conditions

$$
\left.\left(s \frac{d}{d s}\right)^{j} G_{s}\right|_{s=0}=0 \quad \text { for } j=0,1, \ldots, p-1
$$

One can recover Folland's Formula 1.6 for the fundamental solution Ψ_{1} of $\Delta_{H_{n}}$ from Theorem A by showing that $\psi_{1}(\theta)$ is a constant function. In the case $p=2$, we have been able to express the general fundamental solution in closed form. We consider the cases $p=1$ and $p=2$ below in Section 3. One can also use Theorem A to derive various series representations for Ψ_{p}. In particular, we prove the following.

Theorem B. Let $\gamma=r e^{i \theta}$ as in Theorem A. The series

$$
\begin{aligned}
& \frac{(-1)^{p} 2(n-p)!}{r^{n-p+1}} \sum_{m=0}^{\infty} \frac{1}{(2 m+n)^{p}} \\
& \quad \times \sum_{k+l=m}(-1)^{l}\binom{p+k-2}{k}\binom{n-p+l}{l} \cos ((n-p+1+2 l) \theta)
\end{aligned}
$$

converges weakly to Ψ_{p}.
The series in Theorem B diverges pointwise. One must integrate term-wise against a test function before summing the series. In this sense, Theorem B is a weaker result than Theorem A.

The unitary group $U(n)$ acts on H_{n} via

$$
\begin{equation*}
k \cdot(z, t)=(k z, t) \quad \text { for } k \in U(n),(z, t) \in H_{n} . \tag{1.11}
\end{equation*}
$$

The operator $\Delta_{H_{n}}^{p}$ is invariant under the $U(n)$-action. The key idea in our proof of Theorem A is to exploit this invariance by expanding Ψ_{p} in terms of $U(n)$-spherical functions $\phi_{\lambda, m}$ on H_{n}. (See Equation 2.5.) Each $\phi_{\lambda, m}$ satisfies $\phi_{\lambda, m}(0,0)=1$ and is an eigenfunction for $\Delta_{H_{n}}$ and its powers. In fact,

$$
\begin{equation*}
\Delta_{H_{n}}^{p}\left(\phi_{\lambda, m}\right)=(-1)^{p}|\lambda|^{p}(2 m+n)^{p} \phi_{\lambda, m} \tag{1.12}
\end{equation*}
$$

The set $\left\{\phi_{\lambda, m}: \lambda \in \mathbf{R} \backslash\{0\}, \mathrm{m} \in \mathbf{Z}^{+} \cup\{0\}\right\}$ has full measure in the space of positive definite $U(n)$-spherical functions. Reasoning formally using

Godement's Plancherel Theorem [Go], one is led to a decomposition

$$
\begin{equation*}
\Psi_{p}=\int_{-\infty}^{\infty} \sum_{m=0}^{\infty}\binom{m+n}{m}\left\langle\Psi_{p}, \phi_{\lambda, m}\right\rangle \phi_{\lambda, m}|\lambda|^{n} d \lambda \tag{1.13}
\end{equation*}
$$

for the fundamental solution Ψ_{p} of $\Delta_{H_{n}}^{p}$. Moreover,

$$
\begin{aligned}
\left\langle\Psi_{p}, \phi_{\lambda, m}\right\rangle & =\frac{(-1)^{p}}{|\lambda|^{p}(2 m+n)^{p}}\left\langle\Psi_{p}, \Delta_{H_{n}}^{p}\left(\phi_{\lambda, m}\right)\right\rangle \\
& =\frac{(-1)^{p}}{|\lambda|^{p}(2 m+n)^{p}}\left\langle\Delta_{H_{n}}^{p}\left(\Psi_{p}\right), \phi_{\lambda, m}\right\rangle \\
& =\frac{(-1)^{p}}{|\lambda|^{p}(2 m+n)^{p}}\left\langle\delta_{(0,0)}, \phi_{\lambda, m}\right\rangle \\
& =\frac{(-1)^{p}}{|\lambda|^{p}(2 m+n)^{p}} \phi_{\lambda, m}(0,0)=\frac{(-1)^{p}}{|\lambda|^{p}(2 m+n)^{p}} .
\end{aligned}
$$

Thus we obtain a formal expansion

$$
\begin{equation*}
\Psi_{p}=(-1)^{p} \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(2 m+n)^{p}}\binom{m+n}{m} \phi_{\lambda, m}|\lambda|^{n-p} d \lambda \tag{1.14}
\end{equation*}
$$

for Ψ_{p}.
Ψ_{p} is the weak limit of tempered distributions P_{s} as $s \rightarrow 1$ defined by

$$
\begin{equation*}
P_{s}=(-1)^{p} \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}}\binom{m+n-1}{m} \phi_{\lambda, m}|\lambda|^{n-p} d \lambda \tag{1.15}
\end{equation*}
$$

We show that for $s<1, P_{s}$ is given by

$$
\frac{2(-1)^{p}(n-p)!}{r^{n-p+1}} \operatorname{Re}\left(G_{s}\right)
$$

where G_{s} is defined in the statement of Theorem A , and that the limit distribution Ψ_{p} is a smooth function away from $(0,0)$.

Section 2 of this paper contains the proofs of Theorems A and B. Some of the detailed analysis parallels that found in [MR1] (see also [MR2]) which was a source of inspiration for the present work. In Section 3 we recover Folland's formula for $p=1$ and consider the case $p=2$ in more detail producing an explicit closed formula for this case. This answers a question of Koranýi (personal communication). Section 4 addresses the scope of our methods and describes some directions for further research. We expect that
our methods can be used to find fundamental solutions for other differential operators (on H_{n} and on certain solvable groups) which satisfy strong invariance conditions. Throughout, p, n denote fixed positive integers with $1 \leq p \leq n$.

We gratefully acknowledge the support of the Australian Research Council, and the University of Missouri. We also wish to thank the referee whose comments helped us improve a previous version of this paper.

2. Proofs of Theorems A and B

We begin by reviewing some standard facts about the representation theory for H_{n}. The infinite dimensional irreducible unitary representations π_{λ} of H_{n} are parametrized by non-zero real numbers λ. For $\lambda>0, \pi_{\lambda}$ can be realized in the Fock space \mathscr{F}_{λ} of entire functions $f(w)$ on \mathbf{C}^{n} which are square integrable with respect to $(\lambda / 2 \pi)^{n} e^{-\lambda|w|^{2} / 2} d w d \bar{w}$ [Br]. The holomorphic polynomials $\mathbf{C}\left[w_{1}, \ldots, w_{n}\right]$ form a dense subspace of each \mathscr{F}_{λ} and the scaled monomials $\left\{u_{\lambda, \alpha}: \alpha \in\left(\mathbf{Z}^{+}\right)^{n}\right\}$ given by

$$
\begin{equation*}
u_{\lambda, \alpha}(w)=\frac{|\lambda|^{|\alpha| / 2} w^{\alpha}}{\left(q^{|\alpha|} \alpha!\right)^{1 / 2}} \tag{2.1}
\end{equation*}
$$

provide an orthonormal basis for $\left(\mathscr{F}_{\lambda},\langle,\rangle_{\lambda}\right)$. Here we adopt the usual multi-index conventions $w^{\alpha}:=w_{1}^{\alpha_{1}} \cdots w_{n}^{\alpha_{n}},|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ and $\alpha!:=$ $\alpha_{1}!\cdots \alpha_{n}!$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. One has for $\lambda>0$,

$$
\begin{equation*}
\pi_{\lambda}(z, t) f(w)=\exp \left(i \lambda t-\frac{1}{2} \lambda w \cdot \bar{z}-\frac{1}{4} \lambda|z|^{2}\right) f(w+z) \tag{2.2}
\end{equation*}
$$

For $\lambda<0$, one defines $\mathscr{F}_{\lambda}=\overline{\mathscr{F}}_{|\lambda|}$ and $\pi_{\lambda}=\bar{\pi}_{|\lambda|}$. Using Formula 2.2, one computes that

$$
\begin{equation*}
\pi_{\lambda}\left(\Delta_{H_{n}}\right) u_{\lambda, \alpha}=-|\lambda|(2|\alpha|+n) u_{\lambda, \alpha} \tag{2.3}
\end{equation*}
$$

We also require a lemma that appears in [MR1].
Lemma 2.4 (Müller-Ricci). Let $f \in S\left(H_{n}\right)$ and $N \in \mathbf{N}$ be given. There is a constant c_{N} for which

$$
\left|\left\langle\pi_{\lambda}(f) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda}\right| \leq \frac{c_{N}}{(1+|\lambda|)^{N}(1+2|\alpha|)^{N}}
$$

A smooth $U(n)$-invariant function $\phi: H_{n} \rightarrow \mathbf{C}$ is said to be $U(n)$-spherical if $\phi(0,0)=1$ and ϕ is an eigenfunction for both $\Delta_{H_{n}}$ and $\partial / \partial t$. The bounded $U(n)$-spherical functions have been computed by many authors [BJR2], [Fa],
[HR], [Kol, [St], [Str]. The generic bounded $U(n)$-spherical functions are given by

$$
\begin{equation*}
\phi_{\lambda, m}(z, t)=e^{i \lambda t} e^{-|\lambda||z|^{2} / 4} L_{m}^{(n-1)}\left(|\lambda||z|^{2} / 2\right) \tag{2.5}
\end{equation*}
$$

where $\lambda \in \mathbf{R} \backslash\{0\}, m \in \mathbf{Z}^{+} \cup\{0\}$ and $L_{m}^{(n-1)}$ is the generalized Laguerre polynomial of degree m and order ($n-1$) normalized to have value 1 at 0 . Explicitly,

$$
\begin{equation*}
L_{m}^{(n-1)}(x)=(n-1)!\sum_{j=0}^{m}\binom{m}{j} \frac{(-x)^{j}}{(j+n-1)!} . \tag{2.6}
\end{equation*}
$$

The remaining bounded $U(n)$-spherical functions do not depend on the variable t and can be expressed in terms of Bessel functions. These play no role in the subsequent analysis.
The spherical function $\phi_{\lambda, m}$ is related to π_{λ} by

$$
\begin{align*}
\binom{m+n-1}{m} \phi_{\lambda, m}(z, t) & =\operatorname{tr}\left(\left.\pi_{\lambda}(z, t)\right|_{\mathscr{P}_{m}}\right) \\
& =\sum_{|\alpha|=m}\left\langle\pi_{\lambda}(z, t) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda} \tag{2.7}
\end{align*}
$$

where $\mathscr{P}_{m} \subset \mathscr{F}_{\lambda}$ denotes the homogeneous polynomials of degree m. Note that $\binom{m+n-1}{m}$ is the dimension of \mathscr{P}_{m}. It follows from Formula 2.3 and Proposition 3.20 of [BJR2] (or by direct computation) that

$$
\begin{equation*}
\Delta_{H_{n}} \phi_{\lambda, m}=-|\lambda|(2 m+n) \phi_{\lambda, m} . \tag{2.8}
\end{equation*}
$$

For each $0<s \leq 1$, formally define $\left\langle P_{s}, f\right\rangle$ for $f \in S\left(H_{n}\right)$ by

$$
\begin{align*}
\left\langle P_{s}, f\right\rangle= & (-1)^{p} \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}}\binom{m+n}{m} \\
& \times \int_{H_{n}} \phi_{\lambda, m}(z, t) f(z, t) d z d t|\lambda|^{n-p} d \lambda . \tag{2.9}
\end{align*}
$$

Lemma 2.10. (1) P_{s} is a tempered distribution for each $0<s \leq 1$ and

$$
P_{s}=(-1)^{p} 2 \operatorname{Re} \int_{0}^{\infty} \sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}}\binom{m+n-1}{m} L_{m}^{(n-1)}\left(\frac{\lambda|z|^{2}}{2}\right) e^{-\lambda \gamma} \lambda^{n-p} d \lambda
$$

in $S^{\prime}\left(H_{n}\right)$ where $\gamma=|z|^{2} / 4-i t$.
(2) $\lim _{s \rightarrow 1^{-}} P_{s}=P_{1}$ in $S^{\prime}\left(H_{n}\right)$
(3) $\Psi_{p}=P_{1}$ is a fundamental solution for $\Delta_{H_{n}}^{p}$ on H_{n}.

Proof. In view of the relation between $\phi_{\lambda, m}$ and π_{λ},

$$
\begin{align*}
\left\langle P_{s}, f\right\rangle & =(-1)^{p} \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}} \operatorname{tr}\left(\pi_{\lambda}(f) \mid \mathscr{P}_{m}\right)|\lambda|^{n-p} d \lambda \\
& =(-1)^{p} \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{|\alpha|=m} \frac{s^{2 m+n}}{(2 m+n)^{p}}\left\langle\pi_{\lambda}(f) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda}|\lambda|^{n-p} d \lambda \tag{2.11}
\end{align*}
$$

We will show that this converges absolutely. Indeed, by Lemma 2.4,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \sum_{\alpha} \frac{\left|\left\langle\pi_{\lambda}(f) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda}\right|}{(2|\alpha|+n)^{p}}|\lambda|^{n-p} d \lambda \\
& \quad \leq \int_{-\infty}^{\infty} \sum_{\alpha} \frac{c_{N}}{(2|\alpha|+n)^{p}(1+2|\alpha|)^{N}(1+|\lambda|)^{N}}|\lambda|^{n-p} d \lambda \\
& \quad \leq c_{N} \int_{-\infty}^{\infty} \sum_{\alpha} \frac{1}{(1+2|\alpha|)^{N}} \frac{|\lambda|^{n-p}}{(1+|\lambda|)^{N}} d \lambda
\end{aligned}
$$

Here

$$
\sum_{\alpha} \frac{1}{(1+2|\alpha|)^{N}}=\sum_{m=0}^{\infty}\binom{m+n-1}{m} \frac{1}{(1+2 m)^{N}}
$$

converges for $N>n$ since

$$
\binom{m+n-1}{m} \sim \frac{m^{n-1}}{(n-1)!} \quad \text { as } m \rightarrow \infty
$$

Also, since $p \leq n$,

$$
\int_{-\infty}^{\infty} \frac{|\lambda|^{n-p}}{(1+|\lambda|)^{N}} d \lambda \leq 2 \int_{0}^{\infty}(1+\lambda)^{n-p-N} d \lambda
$$

converges for $N>n$.
The formula for P_{s} given in (1) results from substituting Formula 2.5 for $\phi_{\lambda, m}$ and manipulating. Here, equality means weak convergence in the space of tempered distributions.

Let

$$
\begin{aligned}
g_{s}(\lambda)= & (-1)^{p}|\lambda|^{n-p} \sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}}\left(\begin{array}{c}
m+\underset{m}{n}-1
\end{array}\right) \\
& \times \int_{H_{n}} \phi_{\lambda, m}(z, t) f(z, t) d z d t .
\end{aligned}
$$

In the proof for (1) we saw that $\left|g_{s}(\lambda)\right|$ is integrable. Since $g_{s}(\lambda) \rightarrow g_{1}(\lambda)$ as $s \rightarrow 1$ and $\left|g_{s}(\lambda)\right| \leq\left|g_{1}(\lambda)\right|$, the Lebesgue Dominated Convergence Theorem shows that

$$
\left\langle P_{s}, f\right\rangle=\int_{-\infty}^{\infty} g_{s}(\lambda) d \lambda \rightarrow \int_{-\infty}^{\infty} g_{1}(\lambda) d \lambda=\left\langle P_{1}, f\right\rangle \quad \text { as } s \rightarrow 1
$$

This shows that $\lim _{s \rightarrow 1^{-}} P_{s}=P_{1}$ in $S^{\prime}\left(H_{n}\right)$. That P_{1} is tempered follows from the w^{*}-completeness of $S^{\prime}\left(H_{n}\right)$.

The distribution T_{D} given by a left invariant differential operator D on H_{n} is defined by

$$
\begin{equation*}
\left\langle T_{D}, f\right\rangle:=(D f)(0,0) \quad \text { for } f \in \mathscr{E}\left(H_{n}\right) \tag{2.12}
\end{equation*}
$$

The assertion that $\Psi_{p}=P_{1}$ is a fundamental solution for $\Delta_{H_{n}}^{p}$ means $\Psi_{p} * \check{T}_{\Delta_{H_{n}}^{p}}=\delta_{0}$. That is, we must show that for $f \in \mathscr{D}\left(H_{n}\right)$,

$$
\begin{equation*}
\left\langle\Psi_{p}, f * T_{\Delta_{H_{n}}^{p}}\right\rangle=f(0,0) \tag{2.13}
\end{equation*}
$$

Using Formula 2.11 we see that

$$
\left\langle\Psi_{p}, f * T_{\Delta_{H_{n}}^{p}}\right\rangle=\int_{-\infty}^{\infty} \sum_{\alpha} \frac{\left\langle\pi_{\lambda}\left(f * T_{\Delta_{H_{n}}^{p}}\right) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda}}{(-(2|\alpha|+n))^{p}|\lambda|^{p}}|\lambda|^{n} d \lambda
$$

Since $\pi_{\lambda}\left(f * T_{\Delta_{H_{n}}^{p}}\right)=\pi_{\lambda}(f) \pi_{\lambda}\left(\Delta_{H_{n}}^{p}\right)$ and

$$
\pi_{\lambda}\left(\Delta_{H_{n}}^{p}\right) u_{\lambda, \alpha}=(-(2|\alpha|+n))^{p}|\lambda|^{p} u_{\lambda, \alpha} \quad \text { (by Formula 2.3) }
$$

we obtain

$$
\begin{aligned}
\left\langle\Psi_{p}, f * T_{\Delta_{H_{n}}^{p}}\right\rangle & =\int_{-\infty}^{\infty} \sum\left\langle\pi_{\lambda}(f) u_{\lambda, \alpha}, u_{\lambda, \alpha}\right\rangle_{\lambda}|\lambda|^{n} d \lambda \\
& =\int_{-\infty}^{\infty} \operatorname{tr}\left(\pi_{\lambda}(f)\right)|\lambda|^{n} d \lambda \\
& =f(0,0)
\end{aligned}
$$

by the Plancherel formula for H_{n}. (See e.g. [Fo2].)

Lemma 2.14. (1)

$$
\sum_{m=0}^{\infty} \frac{s^{2 m+n}}{(2 m+n)^{p}}\binom{m+n-1}{m} L_{m}^{(n-1)}\left(\frac{\lambda|z|^{2}}{2}\right)
$$

converges absolutely and uniformly for all z and $0 \leq s<1$ to a Schwartz function $F_{s}(z, \lambda)$ characterized by

$$
\left(s \frac{d}{d s}\right)^{p} F_{s}(z, \lambda)=s^{n}\left(\frac{s}{1-s^{2}}\right)^{n} \exp \left(\frac{-s^{2}}{1-s^{2}}\left(\frac{\lambda|z|^{2}}{2}\right)\right)
$$

and

$$
\left.\left(\frac{d}{d s}\right)^{j} F_{s}\right|_{s=0}=0 \quad \text { for } j=0,1, \ldots, p-1
$$

(2) $P_{s}=(-1)^{p} 2 \operatorname{Re} \int_{0}^{\infty} F_{s}(z, \lambda) e^{-\lambda \gamma} \lambda^{n-p} d \lambda$ where $\gamma=|z|^{2} / 4-i t$. The integral converges uniformly for $0 \leq s<1$ and z bounded away from 0 . In particular, P_{s} is a smooth function for $z \neq 0$.

Proof. Part (1) follows from the classical fact that

$$
\begin{equation*}
\sum_{m=0}^{\infty}\binom{m+n-1}{m} L_{m}^{(n-1)}(w) t^{m}=\frac{1}{(1-t)^{n}} \exp \left(\frac{-t w}{1-t}\right) \tag{2.15}
\end{equation*}
$$

where convergence is absolute and uniform in t for $0<t<1$. (See e.g. [Fa].) Since $F_{s}(z, \lambda)$ is divisible by s^{n} and $p \leq n$, the appropriate initial conditions are as claimed.

Part (1) of Lemma 2.10 shows that $P_{s}=(-1)^{p} 2 \operatorname{Re} \int_{0}^{\infty} F_{s}(z, \lambda) e^{-\lambda \gamma} \lambda^{n-p} d \lambda$ as distributions. On the other hand, the differential equation for $F_{s}(z, \lambda)$ given above shows that for $0<s<1$ and $|z| \neq 0, F_{s}(z, \lambda)$ decays exponentially as $\lambda \rightarrow \infty$. This proves part (2).

Proof of Theorem A. Let

$$
\widetilde{P}_{s}(z, t)=\int_{0}^{\infty} F_{s}(z, \lambda) e^{-\lambda \gamma} \lambda^{n-p} d \lambda
$$

for $s<1$ where $F_{s}(z, \lambda)$ is as in Lemma 2.14. The lemma shows that

$$
\begin{aligned}
\left.\left(\frac{d}{d s}\right)^{j} \widetilde{P}_{s}(z, t)\right|_{s=0} & =\left.\int_{0}^{\infty}\left(\frac{d}{d s}\right)^{j} F_{s}(z, \lambda)\right|_{s=0} e^{-\lambda \gamma} \lambda^{n-p} d \lambda \\
& =0 \text { for } j=0,1, \ldots, p-1
\end{aligned}
$$

and that

$$
\begin{aligned}
\left(s \frac{d}{d s}\right)^{p} \widetilde{P_{s}}(z, t) & =\int_{0}^{\infty}\left(s \frac{d}{d s}\right)^{p} F_{s}(z, \lambda) e^{-\lambda \gamma} \lambda^{n-p} d \lambda \\
& =\int_{0}^{\infty}\left(\frac{s}{1-s^{2}}\right)^{n} \exp \left(\frac{-s^{2}}{1-s^{2}}\left(\frac{\lambda|z|^{2}}{2}\right)\right) e^{-\lambda \gamma} \lambda^{n-p} d \lambda \\
& =\frac{s^{n}}{\left(1-s^{2}\right)^{n}} \int_{0}^{\infty} e^{-\lambda \alpha} \lambda^{n-p} d \lambda
\end{aligned}
$$

where

$$
\alpha=\frac{s^{2}}{1-s^{2}} \frac{|z|^{2}}{2}+\gamma
$$

Since $p \leq n$, the above integral converges to yield

$$
\begin{equation*}
\left(s \frac{d}{d s}\right)^{p} \widetilde{P}_{s}(z, t)=\frac{s^{n}}{\left(1-s^{2}\right)^{n}} \frac{(n-p)!}{\alpha^{n-p+1}} . \tag{2.16}
\end{equation*}
$$

Using the formula for γ one obtains

$$
\begin{equation*}
\alpha=\frac{s^{2} \bar{\gamma}+\gamma}{1-s^{2}} \tag{2.17}
\end{equation*}
$$

Substituting Formula 2.17 in 2.16 and manipulating yields

$$
P_{s}=\frac{(-1)^{p} 2(n-p)!}{r^{n-p+1}} \operatorname{Re}\left(G_{s}(\theta)\right)
$$

where

$$
\begin{equation*}
\left(s \frac{d}{d s}\right)^{p} G_{s}(\theta)=\frac{e^{i(n-p+1) \theta} s^{n}}{\left(1-s^{2}\right)^{p-1}\left(s^{2}+e^{2 i \theta}\right)^{n-p+1}} \tag{2.18}
\end{equation*}
$$

as claimed.
Lemmas 2.10 and 2.14 show that the weak limit Ψ_{p} as $s \rightarrow 1^{-}$of the functions

$$
\frac{2(-1)^{p}(n-p)!}{r^{n-p+1}} \operatorname{Re}\left(G_{s}\right)
$$

gives a tempered fundamental solution for $\Delta_{H_{n}}^{p}$. It remains to prove that we also have pointwise convergence to a smooth function away from $\{(0,0)\}$ as asserted in the statement of Theorem A.

The integrand

$$
R_{s}(\theta)=\frac{e^{i(n-p+1) \theta} s^{n}}{\left(1-s^{2}\right)^{p-1}\left(s^{2}+e^{2 i \theta}\right)^{n-p+1}}
$$

is a sum of terms, each with a singularity at one of the points $s=1,-1, i e^{i \theta}$, or $-i e^{i \theta}$ and coefficients which are smooth functions of θ in the domain $|\theta|<\pi / 2$. As $s \rightarrow 1^{-}$, we need only consider the terms with singularities at 1 to check for uniform convergence on compacta. The degree of the singularity for such a term is at most $p-1$. After $p-2$ integrations, the "worst terms" are of the form

$$
\frac{s}{s-1}=\sum_{j=1}^{\infty} s^{j}
$$

After two more divisions and integrations, this becomes $\sum_{j=1}^{\infty} s^{n} / n^{2}$, which is absolutely convergent as $s \rightarrow 1^{-}$. Hence, $\psi_{p}(\theta)$ is a smooth function for $|\theta|<\pi / 2$.

When $\theta=\pi / 2, R_{s}(\theta)$ becomes

$$
\frac{(-1)^{n-p+1} s^{n} e^{i(n-p+1) \pi / 2}}{\left(1-s^{2}\right)^{n}}
$$

and the above analysis fails. On the other hand, we know that $\Delta_{H_{n}} \Psi_{2}=\Psi_{1}$, where Ψ_{1} is given by Folland's Formula 1.6. Since Ψ_{1} is smooth away from (0,0) and $\Delta_{H_{n}}$ is hypo-elliptic (see [FS]), we conclude that Ψ_{2} is smooth away from (0,0). Similarly, the singular support of each Ψ_{p} is $\{(0,0)\}$. We conclude that the smooth function Ψ_{p} for $r \neq 0$ and $|\theta|<\pi / 2$ must extend continuously to a smooth function for $r \neq 0$. That is, the apparent singularities at $\theta=\pi / 2$ are an artifact of our choice of coordinates (r, θ).

Proof of Theorem B. Theorem A together with the binomial expansions

$$
\frac{1}{\left(1-s^{2}\right)^{p-1}}=\sum_{k=0}^{\infty}\binom{p+k-2}{k} s^{2 k}
$$

and

$$
\frac{1}{\left(s^{2}+e^{2 i \theta}\right)^{n-p+1}}=\left(e^{-2 i \theta}\right)^{n-p+1} \sum_{l=0}^{\infty}\binom{n-p+l}{l}\left(-e^{-2 i \theta}\right)^{l} s^{2 l}
$$

yield

$$
\left.\begin{array}{rl}
\left(s \frac{d}{d s}\right.
\end{array}\right)^{p} G_{s} .
$$

This fact together with the initial conditions on G_{s} at $s=0$ gives

$$
\begin{align*}
G_{s}= & e^{-i(n-p+1) \theta} \sum_{m=0}^{\infty} \frac{1}{(2 m+n)^{p}} \\
& \times\left(\sum_{k+l=m}\binom{p+k-2}{k}\binom{n-p+l}{l}(-1)^{l} e^{-i 2 l \theta}\right) s^{2 m+n} . \tag{2.19}
\end{align*}
$$

Applying Formula 2.19 to a test function and setting $s=1$, Theorem A now shows

$$
\begin{aligned}
\Psi_{p} & =\frac{(-1)^{p} 2(n-p)!}{r^{n-p+1}} \\
& \times \operatorname{Re}\left[\sum_{m=0}^{\infty} \frac{1}{(2 m+n)^{p}} \sum_{k+l=m}(-1)^{l}\binom{p+k-2}{k}\binom{n-p+l}{l} e^{-(n-p+1+2 l) i \theta}\right] \\
& =\frac{(-1)^{p} 2(n-p)!}{r^{n-p+1}} \sum_{m=0}^{\infty} \frac{1}{(2 m+n)^{p}} \\
& \times \sum_{k+l=m}(-1)^{l}\binom{p+k-2}{k}\binom{n-p+l}{l} \cos ((n-p+1+2 l) \theta)
\end{aligned}
$$

where the series converges to Ψ_{p} in $S^{\prime}\left(H_{n}\right)$.

3. The cases $p=1$ and $p=2$

One can recover Folland's Formula 1.6 for the fundamental solution Ψ_{1} of $\Delta_{H_{n}}$ from Theorem A by showing that $\psi_{1}(\theta)$ is a constant function. Note that when $p=1$, the integrand in the definition of $G_{s}(\theta)$ has no singularity at
$s=1$. Thus, we can write

$$
\psi_{1}(\theta)=\operatorname{Re}\left(G_{1}(\theta)\right) \quad \text { where } G_{1}(\theta)=\int_{0}^{1} \frac{e^{i n \theta} s^{n-1}}{\left(s^{2}+e^{2 i \theta}\right)^{n}} d s
$$

One computes,

$$
\begin{aligned}
\frac{d}{d \theta} G_{1}(\theta) & =\frac{d}{d \theta} \int_{0}^{1} \frac{e^{i n \theta} s^{n-1}}{\left(s^{2}+e^{2 i \theta}\right)^{n}} d s \\
& =i n e^{i n \theta} \int_{0}^{1} \frac{s^{n-1}\left(s^{2}-e^{2 i \theta}\right)}{\left(s^{2}+e^{2 i \theta}\right)^{n+1}} d s \\
& =i e^{i n \theta} \int_{0}^{1} \frac{\partial}{\partial s}\left[\frac{-s^{n}}{\left(s^{2}+e^{2 i \theta}\right)^{n}}\right] d s \\
& =\frac{-i e^{i n \theta}}{\left(1+e^{2 i \theta}\right)^{n}}=-i\left(\frac{1}{2 \cos (\theta)}\right)^{n}
\end{aligned}
$$

We see that $(d / d \theta) G_{1}(\theta)$ is pure imaginary and hence $\psi_{1}(\theta)$ is constant.
Theorem B yields a weak power series representation for Ψ_{p}. We will describe an alternative approach to deriving a formula for Ψ_{p} from Theorem A. Rather than expanding $1 /\left(1-s^{2}\right)^{p-1}$ and $1 /\left(s^{2}+e^{2 i \theta}\right)^{p} n^{n-p+1}$ in power series, one can form a (finite) partial fractions decomposition for

$$
\frac{s^{n}}{\left(1-s^{2}\right)^{p-1}\left(s^{2}+e^{2 i \theta}\right)^{n-p+1}}
$$

In principle, this can be done for all n and p. Unfortunately, integration in s will yield a log term which one must expand in power series to carry out successive integrations. Here we will illustrate the procedure for $p=2$ and $n=2 N$ even.

Let $\gamma=r e^{i \theta}$ as before and write $\beta=e^{i \theta}$. We must solve

$$
\begin{equation*}
\left(s \frac{d}{d s}\right)^{2} G_{s}=\frac{\beta^{n-1} s^{n}}{\left(1-s^{2}\right)\left(s^{2}+\beta^{2}\right)^{n-1}} \tag{3.1}
\end{equation*}
$$

subject to

$$
G_{0}=0=\left.\frac{d}{d s}\left(G_{s}\right)\right|_{s=0}
$$

Letting $u=s^{2}$ and $a=\beta^{2}$, Formula 3.1 becomes

$$
\begin{equation*}
\frac{4}{\beta^{n-1}}\left(u \frac{d}{d u}\right)^{2} G_{u}=\frac{u^{N}}{(1-u)(u+a)^{2 N-1}} \tag{3.2}
\end{equation*}
$$

Dividing

$$
\frac{u^{N}}{(1-u)(u+a)^{2 N-1}}
$$

by u and expanding in partial fractions yields

$$
\begin{aligned}
& \frac{u^{N-1}}{(1-u)(u+a)^{2 N-1}} \\
& \quad=\frac{1}{(1+a)^{2 N-1}} \frac{1}{(1-u)}+\frac{1}{(1+a)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-a}{1+a}\right)^{k} \\
& \quad \times \sum_{j=0}^{N+k-1} \frac{(1+a)^{j}}{(u+a)^{j+1}} .
\end{aligned}
$$

Integrating in u, taking initial conditions into account, gives

$$
\begin{align*}
& \frac{1}{(1+a)^{2 N-1}}\left[\log \left(1+\frac{u}{a}\right)-\log (1-u)\right] \\
& \quad-\frac{1}{(1+a)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-a}{1+a}\right)^{k} \\
& \quad \times\left[\sum_{j=1}^{N+k-1} \frac{(1+a)^{j}}{j(u+a)^{j}}-\sum_{j=1}^{N+k-1} \frac{(1+a)^{j}}{j a^{j}}\right] \tag{3.3}
\end{align*}
$$

We divide Expression 3.3 by u, expand the log terms in power series and re-write the inner sums using partial fractions. This gives

$$
\begin{aligned}
& \frac{1}{(1+a)^{2 N-1}} \sum_{k=1}^{\infty}\left[\frac{(-u)^{k-1}}{k a^{k}}+\frac{u^{k-1}}{k}\right] \\
& \quad+\frac{1}{(1+a)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-a}{1+a}\right)^{k} \sum_{j=1}^{N+k-1} \frac{(1+a)^{j}}{j a^{j}} \sum_{m=0}^{j-1} \frac{a^{m}}{(u+a)^{m+1}} .
\end{aligned}
$$

Integrating with respect to u, taking initial conditions into account and
letting $u \rightarrow 1^{-}$yields

$$
\begin{aligned}
\frac{4}{\beta^{n-1}} G_{1}= & \frac{1}{\left(1+\beta^{2}\right)^{2 N-1}} \sum_{k=1}^{\infty}\left[-\frac{(-1)^{k}}{k^{2} \beta^{2 k}}+\frac{1}{k^{2}}\right] \\
+ & \frac{1}{\left(1+\beta^{2}\right)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-\beta^{2}}{1+\beta^{2}}\right)^{k} \sum_{j=1}^{N+k-1} \frac{\left(1+\beta^{2}\right)^{j}}{j \beta^{2 j}} \\
& \times\left[\log \left(1+1 / \beta^{2}\right)-\sum_{m=1}^{j-1}\left(\frac{\beta^{2 m}}{m\left(1+\beta^{2}\right)^{m}}-\frac{1}{m}\right)\right]
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
4 G_{1}= & \frac{1}{(2 \cos \theta)^{2 N-1}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\left(1-(-1)^{k} \bar{\beta}^{2 k}\right) \\
& +\frac{1}{(2 \cos \theta)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-1}{2 \cos \theta}\right)^{k N+k-1} \sum_{j=1}^{N} \frac{(2 \cos \theta)^{j}}{j} \\
& \times\left[\beta^{N+k-j-1} \log (2 \bar{\beta} \cos \theta)-\sum_{m=1}^{j-1} \frac{1}{m}\left(\frac{\beta^{N-1+k-j+m}}{(2 \cos \theta)^{m}}-\beta^{N-1+k-j}\right)\right] .
\end{aligned}
$$

Finally, taking the real part of G_{1} and multiplying by 2 gives the fundamental solution for $\Delta_{H_{n}}^{2}$:

$$
\begin{equation*}
\Psi_{2}=\frac{(n-2)!}{2 r^{n-1}} Q_{1}(\theta) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{1}(\theta)= \sum_{k=1}^{\infty} \frac{1+(-1)^{k-1} \cos (2 k \theta)}{k^{2}(2 \cos \theta)^{n-1}} \\
&+ \frac{1}{(2 \cos \theta)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-1}{2 \cos \theta}\right)^{k N+k-1} \sum_{j=1} \frac{(2 \cos \theta)^{j}}{j} \\
& \quad \times[\cos ((N-1+k-j) \theta) \log (2 \cos \theta)+\theta \sin ((N-1+k-j) \theta) \\
& \quad-\sum_{m=1}^{j-1} \frac{1}{m}\left(\frac{\cos ((N-1+k-j+m) \theta)}{(2 \cos \theta)^{m}}\right. \\
&\quad-\cos ((N-1+k-j) \theta))]
\end{aligned}
$$

and $n=2 N$.

Moreover,

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{1+(-1)^{k+1} \cos (2 k \theta)}{k^{2}} & =\sum_{k=1}^{\infty} \frac{1}{k^{2}}-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos (2 k \theta) \\
& =\frac{\pi^{2}}{6}-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos (2 k \theta) \\
& =\left(\frac{\pi}{2}-\theta\right)\left(\frac{\pi}{2}+\theta\right) \tag{3.5}
\end{align*}
$$

The last equality is a nice exercise using the fact that the 2π-periodic extension of $\theta(\pi-\theta)$ on $[0, \pi]$ has Fourier series

$$
\frac{\pi^{2}}{6}-\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cos (2 k \theta)
$$

Thus we obtain a finite expression for the fundamental solution (3.4) where

$$
\begin{aligned}
& Q_{1}(\theta)= \frac{1}{(2 \cos \theta)^{n-1}}\left(\frac{\pi^{2}}{4}-\theta^{2}\right) \\
&+\frac{1}{(2 \cos \theta)^{N}} \sum_{k=0}^{N-1}\binom{N-1}{k}\left(\frac{-1}{2 \cos \theta}\right)^{k N+k-1} \sum_{j=1}^{j} \frac{(2 \cos \theta)^{j}}{j} \\
& \times[\cos ((N-1+k-j) \theta) \log (2 \cos \theta)+\theta \sin ((N-1+k-j) \theta) \\
& \quad-\sum_{m=1}^{j-1} \frac{1}{m}\left(\frac{\cos ((N-1+k-j+m) \theta)}{(2 \cos \theta)^{m}}\right. \\
&\quad-\cos ((N-1+k-j) \theta))]
\end{aligned}
$$

and $n=2 N$.
A similar analysis may be carried out for the case where n is odd, $n=2 N+1$. In this case, we obtain (after considerable labour) the closed expression

$$
\begin{equation*}
\Psi_{2}=\frac{-(n-2)!}{r^{n-1}} Q_{1}(\theta) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
Q_{1}(\theta)= & \frac{\pi^{2}}{2^{2 N+3}(\cos \theta)^{2 N}}+\frac{1}{(2 \cos \theta)^{N}} \sum_{j=0}^{N}\binom{N}{j}\left(\frac{-1}{2 \cos \theta}\right)^{j} \sum_{k=0}^{N+j-1}(\cos \theta)^{k} \\
& \times\left[\binom{2 k}{k} \frac{1}{2^{k}}\left\{\frac{\pi \theta}{4} \sin (N+j-k-1) \theta-\psi(\theta) \cos (N+j-k-1) \theta\right\}\right. \\
& +\sum_{l=0}^{k-1}\binom{k+l}{l} \frac{1}{k-l} \frac{1}{2^{l}} \\
& \times\left\{\frac{\pi}{4} \cos (N+j-k-1) \theta+\frac{1}{2} \log \tan \left(\frac{\theta}{2}+\frac{\pi}{4}\right)\right. \\
& \times \sin (N+j-k-1) \theta-\sum_{m=1}^{k-l-1} \frac{1}{m(2 \cos \theta)^{m}} \\
& \left.\left.\times \sum_{q=1}^{[(m+1) / 2]}\binom{m}{2 q-1}(-1)^{q} \cos (N+j-k+m-2 q) \theta\right\}\right]
\end{aligned}
$$

Here

$$
\psi(\theta)=\frac{1}{2} \int_{0}^{\pi / 2-\theta} \log \left(\tan \frac{\varphi}{2}\right) d \varphi, \quad|\theta|<\frac{\pi}{2}
$$

is the function with Fourier series

$$
-\sum_{k=0}^{\infty}(-1)^{k} \frac{\sin (2 k+1) \theta}{(2 k+1)^{2}}
$$

(See Formula 1.32 in [Ob].)
For low values of n, some of the sums in the formulae for Ψ_{2} collapse and one can obtain further simplifications by using multiple angle identities. We used the Mathematica system on a computer to obtain the following forms for Ψ_{2} with $n=2,3,4$ and 5 .

$$
\Psi_{2}= \begin{cases}\frac{\pi^{2}-4 \theta^{2}}{8 r \cos \theta}, & \text { for } n=2 \tag{3.7}\\ \frac{\pi(2 \theta \sin \theta+2 \cos \theta-\pi)}{32 r^{2} \cos ^{2} \theta}, & \text { for } n=3 \\ \frac{\pi^{2}-4 \theta^{2}-4 \cos ^{2} \theta-8 \theta \cos \theta \sin \theta}{32 r^{3} \cos ^{3} \theta}, & \text { for } n=4 \\ \frac{\pi\left(6 \theta \sin \theta+3 \theta \cos ^{2} \theta \sin \theta+\cos ^{3} \theta+6 \cos \theta-3 \pi\right)}{64 r^{4} \cos ^{4} \theta}, & \text { for } n=5\end{cases}
$$

We used the computer to check that $\Delta_{H_{n}}^{2}\left(\Psi_{2}\right)=0$ for $r \neq 0$ in each case by applying Formula 1.8. Using l'Hospital's rule, one can check that there are no singularities at $\theta=\pi / 2$ as asserted in part (ii) of Theorem A.

4. Concluding remarks

In this section we will place some of the preceding discussion in a more general setting. Let K be a compact subgroup of $U(n)$. We say that $\left(K, H_{n}\right)$ is a Gelfand pair if the convolution algebra $L_{K}^{1}\left(H_{n}\right)$ of K-invariant L^{1}-functions is commutative. This condition is equivalent to the action of K on the space $\mathscr{P}\left(\mathbf{C}^{n}\right)$ of holomorphic polynomials on \mathbf{C}^{n} being multiplicity free [Ca], [BJR1], [BJR2]. It is well known that $\left(U(n), H_{n}\right)$ is a Gelfand pair but one also obtains Gelfand pairs using many proper subgroups K of $U(n)$ [BJR2]. Suppose below that $\left(K, H_{n}\right)$ is a Gelfand pair and let

$$
\begin{equation*}
\mathscr{P}\left(\mathbf{C}^{n}\right)=\sum_{\alpha \in \Lambda} V_{\alpha} \tag{4.1}
\end{equation*}
$$

denote the multiplicity free decomposition of $\mathscr{P}\left(\mathbf{C}^{n}\right)$ into irreducible K modules.

Let $\mathbf{D}_{K}\left(H_{n}\right)$ denote the algebra of left- H_{n}-invariant differential operators on H_{n} that are also invariant under the action of K. For example, $\mathbf{D}_{U(n)}\left(H_{n}\right)=\mathbf{C}\left[\Delta_{H_{n}}, \partial / \partial t\right]$. In [BJR2] it is shown that in general

$$
\begin{equation*}
\mathbf{D}_{K}\left(H_{n}\right)=\mathbf{C}\left[D_{1}, D_{2}, \ldots, D_{r}, \frac{\partial}{\partial t}\right] \tag{4.2}
\end{equation*}
$$

where D_{1}, \ldots, D_{r} are certain "fundamental" homogeneous differential operators of even degree (with respect to the dilations given in Formula 1.5). When K acts irreducibly on $\mathbf{C}^{n}, \Delta_{H_{n}}$ will be one of the generators D_{1}, \ldots, D_{r} and the remaining generators each have degree at least 4 . Below, we consider the problem of finding a fundamental solution for a given differential operator $D \in \mathbf{D}_{K}\left(H_{n}\right)$.

A smooth function $\phi: H_{n} \rightarrow \mathbf{C}$ is said to be K-spherical if $\phi(0,0)=1$ and ϕ is a simultaneous eigenfunction for all operators $E \in \mathbf{D}_{K}\left(H_{n}\right)$. A $K-$ spherical function is bounded if and only if it is positive definite [BJR1]. Let $\Delta\left(K, H_{n}\right)$ denote the set of bounded K-spherical functions. The spherical transform $S(f): \Delta\left(K, H_{n}\right) \rightarrow \mathbf{C}$ of an integrable function $f: H_{n} \rightarrow \mathbf{C}$ is

$$
\begin{equation*}
S(f)(\phi)=\int_{H_{n}} f(n) \check{\phi}(n) d n \tag{4.3}
\end{equation*}
$$

where $\check{\phi}(n):=\phi\left(n^{-1}\right)$. Godement's Plancherel Theorem [Go] shows that
there is a measure ν on $\Delta\left(K, H_{n}\right)$ for which the formula

$$
\begin{equation*}
f(n)=\int_{\Delta(K, N)} S(f)(\phi) \phi(n) d \nu(\phi) \tag{4.4}
\end{equation*}
$$

holds for all positive definite functions $f \in L_{K}^{1}\left(H_{n}\right)$.
It is shown in [BJR2] that a set of full measure in $\Delta\left(K, H_{n}\right)$ is parametrized by pairs

$$
(\lambda, \alpha) \in(\mathbf{R} \backslash\{0\}) \times \Lambda)
$$

using the formula

$$
\begin{equation*}
\phi_{\lambda, \alpha}(z, t)=\frac{1}{\operatorname{dim}\left(V_{\alpha}\right)} \sum_{i=1}^{\operatorname{dim}\left(V_{\alpha}\right)}\left\langle\pi_{\lambda}(z, t) v_{i}, v_{i}\right\rangle_{\lambda} \tag{4.5}
\end{equation*}
$$

where $\left\{v_{i}\right\}$ is any orthonormal basis for $V_{\alpha} \subset \mathscr{P}\left(\mathbf{C}^{n}\right) \subset \mathscr{F}_{\lambda} . \quad \phi_{\lambda, \alpha}$ has the general form

$$
\begin{equation*}
\phi_{\lambda, \alpha}(z, t)=q_{\alpha}(\sqrt{|\lambda|} z) e^{-|\lambda||z|^{2} / 4} e^{i \lambda t} \tag{4.6}
\end{equation*}
$$

where q_{α} is a homogeneous polynomial of even degree in (z, \bar{z}). Note that the identity $\check{\phi}_{\lambda, \alpha}=\bar{\phi}_{\lambda, \alpha}$ follows. The polynomials $\left\{q_{\alpha}: \alpha \in \Lambda\right\}$ are, in principle, computable for given K.

Formula 4.4 is related to the usual Plancherel Formula for H_{n} and in terms of our parametrization one has

$$
\begin{equation*}
d \nu\left(\phi_{\lambda, \alpha}\right)=\operatorname{dim}\left(V_{\alpha}\right)|\lambda|^{n} d \lambda \tag{4.7}
\end{equation*}
$$

(Recall that $d \mu\left(\pi_{\lambda}\right)=|\lambda|^{n} d \lambda$ is Plancherel measure on \hat{H}_{n} [Fo2].) We rewrite Formula 4.4 as

$$
\begin{equation*}
f(n)=\int_{-\infty}^{\infty} \sum_{\alpha \in \Lambda, ~} \operatorname{dim}\left(V_{\alpha}\right) S(f)\left(\check{\phi}_{\lambda, \alpha}\right) \check{\phi}_{\lambda, \alpha}(n)|\lambda|^{n} d \lambda \tag{4.8}
\end{equation*}
$$

Suppose now that we are given $D \in \mathbf{D}_{K}\left(H_{n}\right)$ and that D is positive definite. Otherwise, $\left(D^{*}\right) * P$ will be a fundamental solution for D if P is a fundamental solution for $D * D^{*}$. If D has a fundamental solution then K-averaging will yield a K-invariant fundamental solution P. This is clear since both D and δ_{0} are K-invariant. Formally we can use Formula 4.4 to expand P in terms of K-spherical functions provided we can compute the coefficients $S(P)\left(\check{\phi}_{\lambda, \alpha}\right)=\left\langle P, \phi_{\lambda, \alpha}\right\rangle$.

Recall that V_{α} can be regarded as a subspace of the representation space \mathscr{F}_{λ} for π_{λ}. Since D is K-invariant, $\pi_{\lambda}(D)$ must preserve V_{α} and commute
with the action of K. Schur's Lemma implies that $\left.\pi_{\lambda}(D)\right|_{V_{\alpha}}$ is a scalar operator $\chi_{\lambda, \alpha}(D) I_{V_{\alpha}}$ say. In fact, $\chi_{\lambda, \alpha}(D)$ is the $\phi_{\lambda, \alpha}$-eigenvalue for D [BJR2],

$$
\begin{equation*}
D\left(\phi_{\lambda, \alpha}\right)=\chi_{\lambda, \alpha}(D) \phi_{\lambda, \alpha} . \tag{4.9}
\end{equation*}
$$

Similar reasoning shows that for $f \in L_{K}^{1}\left(H_{n}\right)$, one has

$$
\begin{equation*}
\left.\pi_{\lambda}(f)\right|_{V_{\alpha}}=\left\langle f, \phi_{\lambda, \alpha}\right\rangle I_{V_{\alpha}} . \tag{4.10}
\end{equation*}
$$

Since $\pi_{\lambda}(D) \pi_{\lambda}(P)=\pi_{\lambda}\left(\delta_{0}\right)=I$, we see that

$$
\left.\pi_{\lambda}(P)\right|_{V \alpha}=\frac{1}{\chi_{\lambda, \alpha}(D)} I_{P_{\alpha}}
$$

and conclude formally from Formula 4.10 that

$$
\begin{equation*}
\left\langle P, \phi_{\lambda, \alpha}\right\rangle=\frac{1}{\chi_{\lambda, \alpha}(D)} . \tag{4.11}
\end{equation*}
$$

Combining Formulas 4.6, 4.8 and 4.11 produces a formal expression for a fundamental solution for D.

$$
\begin{align*}
P(z, t) & =\int_{-\infty}^{\infty} \sum_{\alpha \in \Lambda} \frac{\operatorname{dim}\left(V_{\alpha}\right)}{\chi_{\lambda, \alpha}(D)} \cdot \overline{\chi_{\lambda, \alpha}(z, t)|\lambda|^{n} d \lambda} \\
& =\int_{-\infty}^{\infty} \sum_{\alpha \in \Lambda} \frac{\operatorname{dim}\left(V_{\alpha}\right)}{\chi_{\lambda, \alpha}(D)} e^{-i \lambda t} a_{\alpha}(\sqrt{|\lambda|} z) e^{-|\lambda||z|^{2} / 4}|\lambda|^{n} d \lambda . \tag{4.12}
\end{align*}
$$

One is left with the problem of determining whether or not this expression yields a well defined distribution. Some problems related to this were studied in [BaDo].
Finally we mention that the formal method described above carries over to certain more general solvable Lie groups G. Suppose that G is connected, simply connected and solvable, $K \subset \operatorname{Aut}(G)$ is compact and (K, G) is a Gelfand pair. That is, the convolution algebra $L_{K}^{1}(G)$ is commutative. This situation is studied in [BJR1]. One can hope to apply the techniques here to find fundamental solutions for left G - and K-invariant differential operators on G.

References

[Br] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math., vol. 14 (1961), pp. 187-214.
[Ba] F.D. Battesti, Résolubilité globale d'operateurs differentiels sur groupes de Lie, J. Functional Analysis, vol. 77 (1988), pp. 261-308.
[BaDo] F.D. Battesti and A.H. Dooley, Invariant differential operators on some Lie groups, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 15 (1987), pp. 6-20.
[BJR1] C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc., vol. 321 (1990), pp. 85-116.
[BJR2] _, Bounded K-spherical functions on Heisenberg groups, J. Functional Analysis, vol. 105 (1992), pp. 409-443.
[C] G. Carcano, a commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital., vol. 7, (1987), pp. 1091-1105.
[Fa] J. Faraut, "Analyse harmonique et fonctions speciales" in Deux Courses d'Analyse Harmonique, Birkhäuser, Boston, 1987.
[Fo1] G.B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., vol. 79 (1973), pp. 373-376.
[Fo2] _ Harmonic analysis in phase space, Princeton University Press, Princeton, New Jersey, 1989.
[FS] G.B. Folland and E.M. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., vol. 27 (1974), pp. 429-522.
[Go] R. Godement, A theory of spherical functions I, Trans. Amer. Math. Soc., vol. 73 (1952), pp. 496-556.
[Hö] L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, New York, 1983.
[HR] A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence of bounded harmonic functions on balls in \mathbf{C}^{n}, Invent. Math., vol. 62 (1980), pp. 325-331.
[Ko] A. Koranýl, "Some applications of Gelfand pairs in classical analysis" in Harmonic analysis and group representations, Centro Internazionale di Matematica Estivo, 1980, pp. 333-348.
[MR1] D. Müller and F. Ricci, The Laplace-Beltrami operator on the oscillator group, J. Reine Angew. Math., vol. 390 (1988), pp. 193-207.
[MR2] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math., vol. 101 (1990), pp. 545-582.
[Ob] F. Oberhettinger, Fourier expansions, a collection of formulas, Academic Press, New York, 1973.
[S] K. Stempac, An algebra associated with the generalized sublaplacian, Studia Math., vol. 88 (1988), pp. 245-256.
[Str] R. Strichartz, L^{p} harmonic analysis and Radon transforms on the Heisenberg group, preprint.

University of Missouri
St. Louis, Missouri
University of New South Wales
Kensington, New South Wales, Australia

