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SOME PROPERTIES OF THE QUOTIENT SPACE
(LI(Td) / H(Da))

QUANHUA XU

1. Introduction

Let D be the unit disc of the complex plane and T the unit circle equipped
with normalized Lebesgue measure. Let d be a positive integer. We denote
by Dd and Td respectively the products of d copies of D and T. They are
respectively the d-disc and d-torus. Td is equipped with the product measure
dm. Let 0 < p < o. We denote by HP(Dd) the classical Hardy space in the
polydisc Dd. If p < 0% this is the space of the analytic functions f in Dd such
that

sup fx If(rz)l
0<r<l d

where r (rl,..., rd) [0, 1)d, z (ZI,... Zd) T d and rz
(rlZl,..., rdZd) Dd. If p 0% H(Dd) is the space of the bounded ana-
lytic functions in Dd. Equipped with its natural norm or quasi-norm, HP(Dd)
is a Banach space if 1 < p < oo and a quasi-Banach space if 0 < p < 1. It is
well-known that every function in HP(Dd) admits a.e. radial limits on Td and
the function is uniquely determined by its boundary function on Td. Thus
identifying functions in HP(Dd) with their boundary values, we may regard
HP(Dd) as a closed subspace of LP(Td).

Let us recall that a Banach (or quasi-Banach) space X is of cotype 2 if
there exists a constant C such that for all finite sequences {xn} c X

E[[Xn[]2) 1/2 . cfll enXnll,
where {en} is a Rademacher sequence. Recall also that a linear operator u"

X Y between two Banach spaces is called p-summing (1 < p < oo) if there
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exists a constant C such that for all finite sequences {xn} c X

( EIlUnIIP) I/p
C sup((E [(Xn) IP)I/P" - S*, I111 1).

The least such constant is denoted by 7rp(u). If every bounded operator from
X into 12 is 1-summing, X is called a GT space in Pisier’s terminology. The
reader is referred to [15] for more information about these notions.
The main result of this paper is the following

THEOREM 1. LI(Td)/HI(Dd) is a GT space of cotype 2.

We can also formulate a dual version of Theorem 1. For this we need some
notation. Let C(Td) be the space of the continuous functions on Td, equipped
with the uniform norm. Let Q(Td) be the subspace of C(Td) defined by

Q(Td) {fC(Td) "f(n) =0ifn <0},
where f is the Fourier transform of f, and where n (nl,...,nd) < 0
means that nk < 0 for all 1 < k < d. Note that Q(T) is just the disc algebra
A (but Q(Td) is not an algebra if d > 1).

THEOREM 2. Let 2 < p < and Y be a Banach space. Then for every
2-summing operator u: Q(Td) Y we have

%(u) Cpr2(u)2/llull-2/p,

Consequently, every bounded operator from Q(Td) into L is 2-summing. More
generally, if Y is of cotype 2, then every bounded operator from Q(Td) irtto Y is
2-summing.

Remark. It is worth noting that if d > 1, A and Q(Td) are not isomor-
phic, and neither are LI(T)/HI(D) and LI(Td)/HI(Dd) (see Section 5
below).
When d 1, the above results are the famous theorems about

Grothendieck’s inequality for the disc algebra, proved by J. Bourgain in [3].
Very recently, Bourgain also obtained the ball version of the above results
(cf. [2]).
To prove Theorems 1 and 2, we shall adapt a recent elegant argument of

G. Pisier [13]. Pisier in [13] gave a simple proof of Bourgain’s theorem for the
disc algebra (i.e., the above theorems in the case d 1). In this approach,
the essential point is a result on interpolation between vector-valued Hardy
spaces in the disc. For adapting this approach to our present situation, what
we have to do is to prove the following result on interpolation between
vector-valued Hardy spaces in the polydisc.
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Let0<p<ooand0<q<cz. Set

LP(lq; Td) {fn}n>O C LP(Td) , Ifnl q
d
n>O

HP( lq; od) {fn}n>O C HP(Da)
a E If.I a dm < oo

n>O

These spaces are equipped with their natural norms or quasi-norms. We also
need the so-called K-functional from the interpolation theory (cf. [1]). Let
(X0, X1) be an interpolation couple of quasi-Banach spaces. Then for any
> 0 and x Xo + X1,

Kt( x; Xo, Xl) inf{llxollxo + tllxlllx" x Xo + x, xy Xy, j O, 1}.

THEOREM 3. There exists a constant C (depending only on d) such that

t > 0, f H1(12; Dd),

Kt(f" Hl(/X;Dd),Hl(12; vd)) < CKt(f; Ll(ll;Td),LX(12;Td)).

In the language of Pisier [14], Theorem 3 says that (Hi(/1, Dd), H1(/2; Dd))
is K-closed relative to (LI(/I; Td), L1(/2; Td)). More generally, let (X0, X1) be
an interpolation couple and S. c X (j 0, 1) a closed subspace. Following
Pisier, (So, S1) is said to be K-closed relative to (X0, X1) if there exists a
constant C such that for any > 0 and any x SO / $1,

gt( x; So, S1) _< CKt( x; Xo, Sl).

Using Theorem 3, we can deduce Theorems 1 and 2 as in [13]. The details
are left to the reader.
The remaining part of this paper is mainly devoted to the proof of

Theorem 3. We shall give two different proofs. The first one is via tent spaces
introduced by R. Coifman, Y. Meyer and E.M. Stein [5]. The second one,
pointed out to us by J. Bourgain and S.V. Kisliakov, uses unconditional bases
in HI(Dd). The existence of such bases was first proved by B. Maurey [11].
The two proofs are respectively presented in the following two sections (in
the case d 2). The reason that we give two different proofs in that each of
them has its advantage over the other. The proof of Theorem 3 in the case of
d bigger than 2 is sketched in Section 4. Section 5 contains some more results
and remarks.
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2. The first proof of Theorem 3: the bidisc

By conformal transformation it suffices to show Theorem 3 (in the case
d 2) in the bi-upper-half-plane. Hence we shall consider the Hardy space

HP(R2+ X R2+)inR2+R2+ (0<p<).

If 0 < p < , HP(R2+ R2+) is the space of the analytic functions f in

R2+ R2+ satisfying

sup f If(z1, Z2)Ip dx1 dx2 < o, Zk --Xk -[- iYk, k 1,2.
yl> 0 dR2
Y2>0

H=(R2+ RZ+) is the space of all bounded analytic functions in R2+ RZ+. The
conformal transformation mapping isometrically H(D) onto HI(R./ R+)
is defined by

1
f "/7"2( Z + i)2(Z2 + i)

2f(W(Z1)’W(z2))’ f Hi(D2)’

where w(z) (i z)/(i + z) is the conformal transformation mapping RE
+

onto D (cf. [6]). As in the bidisc case, HP(R2+ RE)/ is also considered as a
closed subspace of LP(R2). Similarly, we define the vector-valued spaces
HP(l’; R2+ R2+) and LP(lq; R2).

Therefore, to prove Theorem 3 is equivalent to show that the couple

(Hi(/1. Rz+ R2 2 R2 X R2+),H (/ + +))
is K-closed relative to (L1(11; R2), L1(12; R2)). The main ingredients of the
following proof for this last statement are tent spaces and interpolation
results between vector-valued Hardy spaces in the disc. The idea is to
consider Hardy spaces in the bidisc as Hardy spaces of functions in the disc
with values in Hardy spaces in the disc.
Now let us introduce tent spaces. Let 0 < p, q < o. Let f: R2+ C be a

measurable function. Define

Aq( f)( x)
-xl < t 2

xR,

and

TaP(R2+) TaP {f" Aa(f) LP(R)}.



THE QUOTIENT SPACE LI(Td)/HI(Dd) 441

TaP is equipped with the quasi-norm IIAq(f)llp. It is easy to see that TaP is a
quasi-Banach lattice (a Banach lattice if 1 < p, q < oo). It is also clear that if
1 < p, q < 0% TaP is a UMD space (cf. [4] for the definition of UMD spaces).
Let a > 0. The a-convexification (TAP)(") of TaP is isometrically equal to Tfqp
(the reader is referred to [10] for the notion of a-convexification). Therefore,
for any p, q (0, oo), there exists a > 0 such that (TP)() is a UMD space. If
X is a Banach space, we define similarly the vector-valued tent space
TqP(X;R2+) Tf(X) of functions on R2+ with values in X as above by
replacing the absolute value by the norm of X. Then TP(X) is a UMD space
if 1 < p, q < oo and X is UMD. If additionally X is a Banach lattice, then
T(X) is a quasi-Banach lattice, and in that case (TP(X))) TfqP(X)) for
any a > 0.
We also need Hardy spaces of harmonic functions. Let HPtR2)

(0 < p < oo) be the Hardy space of the complex harmonic functions in R2

whose nontangential maximal functions belong to LP(R). Similarly, we define
H’(/2; R2+) H’(/2) as the Hardy space of harmonic functions with values in
12
The relation between tent spaces and Hardy spaces is expressed by the

following important result (cf. [5]).

LEMMA 4. There exist bounded linear operators

r: H, - T and ’: T H

such that ’cr id/_/A.
nates by coordinates)
r21(/2) to H2(/2).

Moreover, r and - extend in the natural way (coordi-
to bounded operators from H(/2) to T21(/2) and from

we set
The desired operators cr and - can be defined as follows. For tr

ofrf( x, t) t-( x, t).

Then it is well known that f H iff crf T21. In order to define - we take
a function C(R)with compact support satisfying

faqg(x) dx 0 and -27r (t)e-2’lltdt 1, Vsc #= O,

where q3 is the Fourier transform of q. Write t(X)= (1/t)(x/t). If
f T ’(f) is defined as the Poisson integral in R2+ of the following
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function in R

dt
(., t),

Then by [5] : T - H is bounded and zr idn2.
Remark. The last part of Lemma 4 concerning/2-valued functions is not

explicitly stated in [5]. But the proof there works without any change for this
vector-valued case. The extended operators will be still denoted by r and z.

Now we consider the couple (ll(T), T(12)). Since (/I(T))() l(T4) and
(T21(/2))(2) T42(/4) are UMD lattices, by [9] Theorem 5.3 (in the present
situation Lemma 5 can be also deduced from arguments in [14]), we have:

LEMMA 5.

(HI(II(T); R2+ ), H1(T2(12); R2+))
is K-closed relative to

(LI(ll(T); R), LI(T(12) R)).

By Lemmas 4 and 5 we easily show:

LEMMA 6.

(Hl(ll(U); R2+ ), Hl(ug(12); R2+ ))
is K-closed relative to

(LI(ll(H) R), LI(H(12); R)).

Proof. Let t > 0 and f HI(H](Ia); R+) be such that

Kt(f; LI(ll(Hg);R),LI(HA(12);R)) < 1.

Choose fo - LI(II(H); R)and fl - LI(H(12); R)such that f f0 4-fl and

IIfoIILI(II(H);R) + tllfll[Ll(HA(lb;R) < 1.

Then it follows from Lemma 4 that o’fo LI(II(T); R), o’fl LI(T(12); R)
and

IIrfoIItl7b;i + tllerflllzl(z(12);R C;
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so

Kt(o’f; LI(II(T);R),LI(T(12);R)) <_ C.

Note that rf HI(Tg(12); R2 ); and we find, by Lemma 5+

go H’(II(T)" R2 HI 2+), g, (T(l);R2+)

such that trf go + g and

IIgoIIHIIICT);RZ+) + tllglllHaTqZ);RZ+) < C.

Now by Lemma 4 once more,

f rtrf rgo + rgl,

,rgo Hl(ll(H2). R2+),’g H (H2(/2) ",R2+);
moreover,

This shows Lemma 6 by homogeneity.
Now consider

H1/R2+)H(RE+) R_.HI(+),RE
where is the natural inclusion and R the Riesz projection. Then from these
two elementary operators and Lemma 6 we deduce as above the following
result.

LEMMA 7.

(HI(I’(H’(R2+);R2+)); H’(H’(12;R2+);R2+))
is K-closed relative to

(LI(II(HI(R2+)); R), LI(HI(12; R2+); R)).
Now we can easily finish the proof of Theorem 3 (in the case d 2) as

follows. By the Fubini theorem

L’(l’(H’(R2+));R)) H’(L’(l;R);R2+)
L’(HI(I2 R); R)=H’(L’(l2 R);R2+).
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On the other hand by [9], Theorem 5.3 (cf. also [14]),

(H(LI(I; R);R2+), HX(LX(/2; R);R2+))

is K-closed relative to

(tl (tl( ll; R); R), Ll(Ll(12; R) R)).

This latter couple is exactly equal to (LI(I;R:Z),LI(I:;R2)). Hence by
Lemma 7,

(HI(I;R2+ Re+), H(/2;R2+ R2+))

is K-closed relative to

(L’(l’; R2), L’(/2; R2)),

which is what we want to show.

3. The second proof Theorem 3: the bidisc

We shall use unconditional bases of H spaces instead of tent spaces. The
existence of unconditional bases in H(D)was first proved by B. Maurey
[11]. So let {Xn}n>_0 be such a basis. Then by the classical Khintchine
inequality we have the following characterization of HI(D) in terms of the
"square function". A function f En>oanXn (a C, n > 0) belongs to
Hi(D) iff (Enolanl2lXnl2)1/2 LI(T). Moreover,

IIflH’D) la121xl u

n>_0 LI(T)

where the equivalence constants are independent of f. Now we consider
H(l; D) and H(12; D). Functions in these spaces are sequences of func-
tions in H(D). Let {en}n> o be the canonical basis of 1, that is,

en= (0,...,0,1,0,0,...).
n times

Then every function f in H(l; D) or H(lZ; D) can be written as

f E ankXnek,
n>O
k>O

ank C,n,k > 0.
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Therefore, by the above characterization of Hi(D) in terms of the square
function, we have

IlfllHl(ll’D) fT Ek>o nOankXn

EfT E ankXn- E E lankl21Xnl 2

k>O n>O k>_O n>O

nO lankl21Xnl2
k>_0 LI(I1;T)

Hence identifying f with the double sequence {ank} of its coefficients, we
may regard Hl(ll;-- D) as a space of double sequences as follows:

Then equipped with the norm

_
lankl21Xnl2 LI(I1; T)

n>_0 k>0

) 1/2f_ lanklEIXnl 2

"T k>_O n>0

H1(/1; D) clearly becomes a Banach lattice of double sequences.
Similarly, H1(/2; D) can be also viewed as a Banach lattice of double

sequences. Indeed, let {en}n 0 be a Rademacher sequence on a probability
space (f, P) and {e}n>_0 an independent copy of {en} 0. Then for every
function f En, kankXnek as above, we have by Khintchine’s inequality

f IIHI(12; D) f_ ankXn
"T n>_O

ankXn)
n>O

Ek

ankEk)Xn
k>O

fffTffl nO ( k>oE anklk )XnEn
lankl21Xnl 2

k>_O n>O_
lankl21Xnl 2

n>O k>O 1L1(/2; T)
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Therefore, we get as above

HI(l:Z; D) {ank C C: E lankl:ZlXnl :z

n>O k>0

e L1(12; T)).
In this way, HI(/2; D) also becomes a Banach lattice of double sequences,
equipped with the obvious norm.
Then we calculate the 2-convexifications of these lattices H1(/1; D) and

H1(/2; D). By definition (cf. [10]), the 2-convexification E(2) of a Banach
lattice E of measurable functions on a measure space is the following Banach
lattice

and

E(z) {f measurable" Ill E}

Now let {ank} be a double sequence in the 2-convexification (HX(/1; D))(2) of
H1(/1; D). Then

2 1/2
lit ank} II(H(I;D))a) [[{la,,kl }I[HI(I1;D)

Hence

n>0 k>0

e L2(12; T) }.
Similarly,

(HI(/;D))()
{ank C C" _, lankl4lXn[ 2

n>O k>O

e L2(14; T) }.
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It then is easy to see from the above two equalities that (H1(11; D))(2) and
(H1(12; O))(2) are UMD lattices.

Let us summarize the preceding discussions in the following lemma.

LEMMA 8. With the identification between functions in H1(11; D), H1(12; D)
and the double sequences of their coefficients, HI(/1; D) and H1(/2; D) are
Banach lattices of double sequences; moreover, their 2-convexifications are
UMD lattices.

Now using Lemma 8 and [9], Theorem 5.3, we can easily prove Theorem 3
(in the case d 2). Indeed, considering (H1(/1; D), H1(/2; D)) as a couple of
Banach lattices as in Lemma 8, we deduce from Lemma 8 and [9] Theorem
5.3 that

(Hl(Hl(ll; D); D), Hl(Hl(12; D); D))
is K-closed relative to

(L’(HI(I’; D); T), L’(H’(12; D); T)).
Then using the Fubini Theorem and [9], Theorem 5.3, once more as in
Section 2, we show that

(HI(I1; D2),H1(12; D2))
is K-closed relative to

(L’(/1; T2), LI( 12; T2) ).

4. Proof of Theorem 3: the polydisc

The polydisc case can be similarly treated as the bidisc one. Both proofs
presented in the preceding sections extend to polydiscs. The proof via tent
spaces uses this time tent spaces in product domains (cf. [7]). The second one
by unconditional bases now employs unconditional bases for H in polydiscs
(cf. [11]). We give here the second one only since it is a straight generaliza-
tion of the previous proof for the bidisc.
We shall show Theorem 3 only in the case of d 3. The other cases can

be similarly proved by induction. So we shall consider the couple
(H1(11; D3), H1(/2; D3)). As in the bidisc case we write again H1(11; D3)
Hl(nl(ll; D2); D); similarly, for Hi(/2, D3). By [11], HI(D2) has an uncon-
ditional basis. Thus Theorem 3 in the case d 3 will follow from Theorem 3
in the case d 2, which was already proved previously, and the following
lemmas.
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LEMMA 9. Let (l’l, IX) be an arbitrary measure space. Let X c LI(IX) be a
closed subspace. IfX has an unconditional basis, then the couple

(HI(X(I1)), HI(x(12)))

is K-closed relative to

(Ll(X(ll)’ IX), Ll(X(12)’ Ix))).

Here, for a Banach space Y we have denoted by Hi(y) the closure in
LI(y; Ix) of all the complex polynomials with coefficients in Y.
X(Ip) is defined’as a space of sequences of functions in X in the natural

way.
We may prove Lemma 9 by the arguments in Section 3, just replacing H

by X.

LEMMA 10. Let (go, X1) be an interpolation couple of quasi-Banach spaces
and S1 X. (j O, 1) a closed subspace. Let 0 < Po, P <- oo and (12, Ix) be
an arbitrary measure space. If (So, $1) is K-closed relative to (Xo, X1), then

(LP(So; a), LPa(S1; a))

is K-closed relative to

(Lpo(Xo; ), Lpl(X1; )).

Proof To prove the lemma, first note that (So, S1) is K-closed relative to
(Xo, X1) iff there exists a constant C such that whenever x SO + S1 can be
written as x xo + x with xo Xo and x X1, then it can be written as
x S0 "[- S with so SO and S S such that Ilsoll-< CIIxoll and [[sill _<

C[[xx[[. Then we need only apply this remark pointwise.

5. More results and remarks

Let us first combine the reasoning of this paper and that of Pisier [13] to
obtain the following general result.

PROPOSITION 11. Let (12, IX) be an arbitrary measure space. Let X c LI(IX)
be a closed subspace. If (X( 1), X( p )) is K-closed relative to
(L1(/1; Ix), LI(lp; IX)) for some p (1, oo), then LI(IX)/X is a GT space of
cotype 2.
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Proof Let Y c L() be the annihilator of X. Then the K-closedness of
(X(/1), X(lP)) in (L1(ll;/z), LI(lp;/z)) implies the K-closedness of
(Y(lq), Y(l=)) in (Z(lq; iz), L=(I; /x)), where 1/p + 1/q 1 (see [14]). Thus
by interpolation and the reasoning of [13], we see that any bounded operator
from Y to L is 2-summing. Hence, by duality, LI(tz)/X is a GT space.
Now note that by Lemma 10,

(L’(X(t’)), L’(X(

is K-closed relative to

(L’(LI(I’; Iz)), LI(LI(lP;

Then applying the above arguments to LI(x) and LI(LI(/z)) instead of X
and LI(/z) respectively, we deduce that LI(LI(tz))/LI(X) is a GT space,
which implies the cotype 2 of LI(Iz)/X. We thus conclude the proof of the
proposition.
The following remarks were pointed out to us by the referee.

Remarks. (i) It is well-known that if X is a reflexive subspace of LI(),
then LI(lz)/X is a GT space of cotype 2 (cf. [15]). This result can be
recovered by Proposition 11. Indeed, by a well-known theorem of Resenthal
[16], X(lp) lP(X) (with equivalent norms) for some p (1, ). On the
other hand, X(/1) =/I(x) (with equal norms). It then follows that
(X(/1), X(lP)) is K-closed relative to (L1(/1; ), LI(/P; )). Therefore, it re-
mains to apply Proposition 11.

(ii) Let X be as in (i). Using the fact that HI(X(lP)) HI(lP(X)), we may
show that (HI(X(I1)),HI(X(IP))) is K-closed relative to (LI(LI(I1;tz)),
LI(LI(lp;/z))). Then by Proposition 11, LI(LI(I))/HI(X) is a GT space of
cotype 2.

Now we turn to generalize Theorem 1 to LP(Td)/HP(Dd) with p < 1.

PROPOSITION 12. Let 0 < p < 1. Then LP(Td)/HP(Dd) is of cotype 2.

If d 1, Proposition 12 was already proved by G. Pisier [13]. As for
Theorems 1 and 2, we shall prove Proposition 12 again following arguments
of [13]. So, like the case p 1, what we have to do is to show the following
(generalization of Theorem 3 to p < 1).

LEMMA 13. Let 0 < p < 1. Then

(HP(lP; Dd), HP(12; Dd))
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is K-closed relative to

(LP( 1; Td), LP( 12; Td) ).

Proof It can be done by either tent spaces or unconditional bases. We
give here the proof by unconditional bases and for d 2 only. It was shown
by P. Wojtaszczyk [17] that HP(D) possesses unconditional bases. Let {Xn}no
be such a basis. Then as in the case of p 1, functions in H’(l’; D) and
H’(/2; D) may be regarded as double sequences of complex numbers. An
easy application of Khintchine’s inequality shows

HP(t; D) {{ank c C" _. lannlZlXnl 2

n>_O k>O

HP(12;D) ( ank C C" E lankl2lXnl 2
n>O k>O

e LP(lP;T)},
LP(12;T)).

Therefore, these spaces may be viewed as quasi-Banach lattices of double
sequences. Then we may show that their (2/p)-convexifications are UMD
lattices; so the couple

(HP(lP; D), HP(12; D))

satisfies the conditions of [9], Theorem 5.3. By that theorem,

(H( HP(lP; D); D), HP(H(lU; D); D))

is K-closed relative to

(LP(HP(lP; D); T), LP(HP(12; D); T)).

Then we may finish the proof as in Section 3. The remainder is omitted.

Remark. From Lemma 13 we can deduce the following stronger result
than Proposition 12. Let L’ be an arbitrary LP-space. Let

u" co --* LP(LP(Td)/HP(Dd))

be a bounded operator. Then for any finite sequence {Xn} C 170,

II{U(Xn)}IIL’(L’(12;Ta)/H’(12;Da)) <-- Cllull I1{ Xn} IIc0/,

where C is a constant depending on d and p only. In particular, u is
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2-summing. We also deduce that if {en} is a Rademacher sequence, then for
every finite sequence {fn} c LP(Td)/HP(Dd) there exists {3n} c LP(Td) such
that

q(fn) fn, In (q" LP(Td) LP(Td)/HP(Da)
being the canonical quotient map),

fll EenfnllL’(Xd, < cfll EenfnllLP(Xd,/nP(od,"

This remark also applies to HI(Dd).

Remark. It was provided in [17] that for any 0 < P0 < there exists a
sequence {Xn}n>_O which is an unconditional basis in HP(D) for every p
[P0, ). Using this result and the previous arguments we may show the
following

PROPOSITION 14. Let 0 < Po, P < . Then

(HP(Dd),HPI(Dd))

is K-closed relative to

(LPo(Te), LP(Te)).

Remark. In other words, Proposition 14 says that for any f H’o(Dd) +
HPl(Dd) and any > 0

K,(f; Ht’(Dd),Hpl(Dd)) Kt(f; LP(Td), LP(Td)).

It seems that this statement is new. At this point, let us recall the previously
known results about the K-functional for the couple (H’o(Dd), Hpl(Dd)). It
was shown in [8] that for any f Hpo(Dd) + HPl(Dd) and t > 0,

Kt(f; HP(Dd), Hpl(Dd)) Kt(Sf; LP(Td), LPl(Td))
gt(Mf; LP(wd), LPl(Td)),

where Sf and Mf are respectively the square and nontangential maximal
functions of f. Note that the norms of these two functions in Lp (0 < p < 1)
are generally larger than that of f itself.

Let us end this section by some more properties of LI(Td)/HI(Dd) and
Q(Td).
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PROPOSITION 15. Let d >_ 2. Then:
(i) Q(Td) is not isomorphic to the disc algebra A;
(ii) LI(Td)/HI(Dd) is not isomorphic to LI(T)/HI(D);
(iii) the dual space of Q(Td) can be written as

(Q(Td))* LI(Td) M,H(DH)

where H(Dd) {f HI(Dd): f(n) 0 if one of the coordinates of n is not
positive}, and where M is the subspace in (C(Td))* of all the measures singular
with respect to Lebesgue measure on Td.

Remark. The statement (i) above is known to specialists. It was pointed
out to us by S.V. Kisliakov in January 1991.

(iii) is the generalization to Q(Td) of the well-known classical F. and M.
Riesz theorem for the disc algebra (corresponding to d 1).

Proof of Proposition 15. (i) This result may be proved in a similar way as
the proof of the non-isomorphism between the polydisc and disc algebras
given in [12] p. 84.

(ii) If the two quotient spaces in question were isomorphic, then their dual
spaces would be isomorphic as well. These dual ones are respectively

(HI(Dd))
+/-

(Hi(D))
+/-

{f L(Td)" f(n) 0 if n > 0},

{fL(T) "j(n) =Oifn >_0}.

Note that (Hi(D)) +/- has the (ip, 7rp)-property and the relevant constant is of
order pE/(p 1) (1 < p < o) (cf. [12]). Therefore, (HI(Dd)) +/- would also
possess the same property. Now consider the natural inclusion

(HI(Dd))
+/- I,

-)S,,

where Sp is the closure of (HI(Dd)) +/- in LP(Td) (1 < p < oo). Ip is clearly
p-summing and rp(Ip)= 1; so it would be p-integral and ip(Ip) < C[p2/(p

1)]. Then the same would be true for the restriction of Ip to the subspace
of the continuous functions. But using the argument in [12] again, we know
that this last statement about the restriction of Ip is impossible. Hence (ii) is
proved.
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(iii) We first calculate the annihilator (Q(Td)) +/- of Q(Td). We claim that
(Q(Td)) +/-= H(Dd). Indeed, let/x be a measure from (Q(Td))1. Then

fTdfdl O, Vf Q(Ta).

It follows that/2(n) 0 if one of the coordinates of n is less or equal to zero.
We then deduce that the Poisson integral Pr */z of/z is an analytic function
in Dd. By Jensen’s inequality

sup f Pr(z) tzldm(z) < I111,
0_<r<l "Td

Therefore, Pr * Iz Hl(Dd); and so its boundary function is an Ll-function
on Td. This boundary function is just /z. Hence /z LI(Td), proving our
claim. Now (iii) is obvious from this claim. Thus we conclude the proof of
Proposition 15.
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