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THE HILBERT TRANSFORM ALONG CURVES THAT ARE
ANALYTIC AT INFINITY

LINDA SAAL AND MARTA URCIUOLO

1. Introduction

It is known that if B denotes the unit ball of Rm, ’y" B Rn is an analytic
function, 3,(0)= 0, and k is a C(Rm- {0}) function, homogeneous of
degree -m, then the operator given by Tf(x) =p v fB f(x y(t))k(t) dt
is bounded on LP(Rn), 1 < p < oo. See for example [2], [9]. We observe that
in this case y is "approximately homogeneous" at the origin in the sense
given in [10].
The purpose now is to consider the analogous problem at infinity, for the

case rn 1. More precisely we prove the following:

THEOREM 1.1. Let Bc

by
{t R: t > 1} and let y: Bc _., Rn be defined

y(t) (t aa + al(t),...,t a" + an(t)) a N, a < < an,

where ol is a real analytic function on Bc, oti(t)= hi(t)+ Pi(t) with h
analytic at infinity, and Pi a polynomial of degree at most a 1. Then the
operator

dt,;rf( x ) p v cf( X y( ) ) --is bounded on Lp(Rn), 1 < p < oo.

This result still holds if y(t) ()’l(t) + tel(t),...,Yn(t) + an(t)) where
yi(t) are homogeneous functions of degree ai, a R, 1 < a < < an,

and asking weaker conditions about the behavior at infinity of a(t).
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2. Proof of the theorem

Let us consider Rn with the group of dilations given by Dr(x)=
(ralxl,..., ranXn) for all r > O, where a < < an, a N, 1,..., n.
We set Dr(X) r x.

Associated to {Dr}r> o we fix a homogeneous norm, i.e., a continuous
function

1: R [0,

which is C on Rn {0} and satisfies:
(a) Ixl 0 if and only if x 0;
(b) l-xl--Ixl;
(c) [r. x[--- rlx[ for all x Rn, r > 0.

It can be proved that homogeneous norms always exist. Also it is known that

(2.1) Ix + yl < c(Ixl + lyl) for some constant c > 0, for all x, y R.
For the proof of these facts see [4].
Let a a + -ban be the homogeneous degree of R.
LEMMA 2.2. Let {q(/}, j Z, be a family offunctions in LI(Rn) satisfying:

(i) fql 0

and for some c > O and O < 6 < 1;

(ii) x + y) q,(x)l dr _< clyl (L1-H61der condition);

(iii) flxllqi(x)l dx < c.

Let T1 be the operator of convolution by 21abi(2i. X), then for n, m e Z,
n<m,

1 < p < oo, with cp independent ofn and m.
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Proof. By the Marcinkiewicz Interpolation Theorem and a usual duality
argument, it is enough to check

(2.3) 2 independent of n and m,

and

(2.4) (Tj.)f(X)n C

TIIfll (weak type 1-1)

with c independent of n and m.
To prove (2.3) we use Cotlar’s Lemma, from [5]. Let fi(x) 2iai(2i" x).

The operator T.* is given by convolution with g.(y) f.(-y). So, for < j

IIT/T,.*II2,2 Ilfi * gylll f fyix y)gy(y) dy dx

x -y) -fi(x))f.(-y)dy

< f2Yaf]q,i(x 2i’y) i(X)] dxl,y(-2Y, y)[ dy

<_ cf2Ya2ilYlld/y(--2Y y)l dy

2<i-Y)flylnly(y)l dy _< c2(i-j)

The estimations for T/* T.II2,2 when < j and the case j < are similar. So

2-1il6/2
i=

It is known that (2.4) follows if we check that there exists a constant A
independent of n and m, such that, for y 0,

rn

E (f.(x + y) f.(x))
]>2cly] j=n

dx_<A

where c is the constant in (2.1) [3].
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Now

m

fix E (fy(x + y) fj(x))
1> 2clyl j=n

_< 52 fix I,(x + 2.r) ,;(x)l a
jZ I> 2’+1clyl

E + E
2J+lclyl<l 2J+lclyl>

We use (ii) to get the first sum bounded by 522;+1clyl<12Jlyl * and this
geometric sum is bounded independently of y. Now

E f I(x + 2;.r) ,(x)l a
1>2’+1clYl

E
2S+clyl>l

E
2+clyl>l

2+1cly1>1

_<c E

(ftxl> Vtyt
I(x)l dx + ftx I>" 2J+IIY[

(x)l dx)
( flxl>=llI( x)llxllxl- dx - flxl:2J+lclyllO( x)llxllxl- dx)

2+clyl>l
(2-nlyl- + (2c)-n2-nlyl-*).

In the last inequality we use (iii). So we obtain another geometric sum
bounded independently of y. m

Remark 2.5. It can be proved that if {$j} z is a family of functions as in
Lemma 2.2, then

*(f) E 2’afc’y(2y" x)f(x) dx
jZ

defines a tempered distribution and thus we have just proved that the
operator of convolution by xlt is bounded on LV(Rn), 1 < p < oo.

Let ),(t) be as in Theorem 1.1.

LEMMA 2.6. Let

r(tl,... tn) /(tl) + +T(tn)
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and

(tl,..., tn) det(DF)l(ta

the determinant of the jacobian matrix of F at (tl,..., tn)"
(1) (tl,... n) P(tl,... n) + R(tl,... tn) where P is a homogeneous

polynomial of degree a n and for some positive constant A, R is an analytic
function in

{(Zl,... Zn) e Cn" Izgl > Z > 0, 1,..., n}.

(2) If K is a compact set in C contained in C- {0} C {0} then

r(a-n)R( r-lzl, r- lZn) rO
0 uniformly on K.

Proof We do the proof by induction on n.
n 1 We have to check that ral-lotl(r-lz) 0 uniformly on K as

r 0. Since al(t) hi(t) + Pl(t), hi analytic at infinity, there exists A > 0
such that al(Z)= E?lbkzk in Izl > A.
So there exists r0 > 0 such that rlK c {z: Izl > A} and this implies that

r a a1( r- 1Z )
r g 0 uniformly on K.

By Cauchy’s formula we have that if r is small enough and for z K,

1 fl 01(’)
)2 d"tl(r-lz)

-r-lz[ =(r-’[z[)/2 ( r-lz

and so

2r
supla(r-lz)[ < ]-[._r_lz =(r-l[z[)/2

Then

2ral
sup Il(r)l.ral-l[(r-Xz)[--< [Z[ [_r_lz[=(r_llz[)/2

lz[ < Irl < 31zlBut O1(") al(r lrsr) and
So rr belongs to a compact / such that 0 /(. Since

,0 uniformly on K,rallal(r-lw)[ rO
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we have

r a 11a( r- 1Z )l r-g 0 uniformly on K.

We now assume that the statement of the lemma holds for n 1:

DF(tl,...,tn)
altO1-1 -t- o(tl) altnal-1 -k O(tn)

antn-1 + a’n( tl) antn-1 + Ot’n( tn)

We develop the determinant by the first column and we obtain summands of
the form

(ajtY-1 + a(tl))(Pn_l(t2,...,tn) + Rn_l(tE,...,tn) )
ajt-lPn_l(t2,...,tn) + ajt-lRn_l(t2,...,tn)
q- ot(tl)en_l(t2,...,tn) q- ot(tl)gn_l(t2,...,tn)

where Pn-1 is a homogeneous polynomial of degree

a +... -btj +...+an -(n- 1),

and Rn_l satisfies

ral+ +,+ +an-(n-1)Rn l(r-1Z2, r-1Zn) r--.{ 0

on compact sets as those described in (2).
By inductive hypothesis and the estimate about a, the lemma follows.

Proof of the Theorem 1.1. Following [7], for f S, we decompose

(0 )E  ,j*f (x)

where

dtf(T(t))qo(21[tl)-i-J(f)
I>1

with q0 C0(,2) satisfying Eyzq0(2Yltl) 1.
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The theorem follows if we prove that

(2.7) a’mf
0

/xj f is bounded on LP(Rn) independently of m.

For x Rn, we define b0(x)= q0(lxl) and for k Z, let tk(X)=
2kadPo(2k X). So, for each fixed Jo,

ao 6o + 6,+1 6,.
k =Jo

Then

o o(E 60*/xj*f= E thy+ Ethk+l
j= -m j= -m k=j

0 0

E Pj*l’tj*f + E E "ok+j*ftj*f
j=-m k=O j=-m

where ’Ok tk+l tk" Thus

EMn *f
k=0

with

0

L qbj * Ij and M"
j-- --In

0

E ’Ok+j *
J’---

To prove (2.7) we first show that if i < p < 0%

(2.8) IILmll, < %, IIMff’ll, -< %2, e > O,

cp independent of m.

and

(2.9) IlMff’ 112,2 < c2-rk for some tr > O, c independent of m.

(llLmllp, p denotes the convolution operator norm of Lm on LP(Rn), and
similarly for IIMn I1, .)
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From (2.8) and (2.9)we obtain (2.7). Indeed, let p be a fixed exponent,
1 < p < 2, and take P0 such that 1 < P0 < P < 2. We use the Riesz convex-
ity Theorem and so we interpolate between (2.9) and the estimate (2.8) for
IIM’ I10, o. If we choose the exponent e in (2.8) small enough, we obtain

IIMllp,p _< C2-’ks2ek(1-s) 1 s 1-s
where

P
+

Po

and thus E= llMff’ IIp, p is bounded independently of m.
For 2 < p < % (2.7) can be proved by duality.
To check (2.8) we observe that

0 0

Zm(x) E (by */.ty)(X) E 2Ja(0 * l/j)(2j’x)
j= -m j= -m

and

0 0

Mn(x) -, (rlk+j*l’tj)(X) E 2Ja(rlk*Vj)(2j’x)
j= -m j= -m

where v.i(f) tz.i(f D2y).
It is easy to check that r/ v and b0 v satisfy (i), (ii) and (iii) of Lemma

2.2. Moreover the constant 2k in (2.8) comes from the L1-H61der condition
of TIk * lj.

To prove (2.9) we use Cotlar’s Lemma and the iterative method in [1].
It is enough to check that if j, Z,

(2.10) II’Ok+.i*Ixy*(k+l*l)*ll2,2 C2-’k2-Ij-ll’ forsomecr>0.

We verify this for 0 > j < I.
To this end we recall that, if A and B are bounded linear operators on a

Hilbert space, then

IIABII _< IIA II1/211ABB* 1/2

Iterating N times, we have

Now

IIABII IIAII1-2-ClIA(BB*)2N-1II2-N.

Ilr/k+y * Ij *(TIk+l*/z)* 112,2 -< c IIr/k+y */zy * Ate’ 2,2

and taking A and B as the operators of convolution by r/k+y./j and /’
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respectively, we obtain

--2-NIl 2-NIIrk+ * */z’ 112,2 < IIk+ */zjl[2,2 ,r/k+j */j * (/z’ */Z/)2N-1112,2
2-N-< clink+y* * (’ *

since II?k+j */jlll - c independently of k and j. So (2.10) follows if we
check that for 0 > j > l,

(2.11) 11Tk+g * g *( * #/)2-111 - c2-k2(l-g) for some tr > 0.

Let

F(tl,... tn) --)(tl) + Y(t2) + + ( 1)n’y(tn)

and let

a’(tl,... tn ) det(DF)l(t,

It is clear that we can apply Lemma 2.6 to F. Thus if

r’l(tl,..., tn) D2,F(2-1t, 2-/t-)

and

//(tl,... tn) det(DFl)lu,

then

//(tl,’’’, tn) 21(a-n)cr(2-1tl, 2-1tn) P( tl, tn)

-I- 2l(a-n)R(2-1tl, 2-ltn)

which converges to P(tl,..., n) when - - if 4 0 for 1 _< < n.
Since a < < an, P 0 and so " is not identically null. Furthermore

( tl, tn) =/:0 a.e.(tl,...,tn)

such that tgl > 1, since it is a real analytic function there.
Now we apply Proposition (2.1) in [7] to obtain

/z +/z + (-- 1)n(/Zl --2)/z
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is absolutely continuous since it is the transported measure of

n

Wl( tl, tn) I-I qgO(21ti)l/ti
i=1

by F(tl,..., tn). Moreover its density Pl satisfies an L1-H61der condition.
From now on we fix N such that 2N- > n. Then it is enough to prove

(2.12) Ilpl */zy Tk+ylll -< C2-ek2(l-J) for some tr > 0.

Let

l,(tl,... tn) 2-lnWl(2-1tl, 2-ltn)

which doesn’t depend on 1. So if //(y)-- 2-lapl(2-l" y)we have that 1 is
the density of the transported measure by F of ft.

If we prove that

(2.13) fll(X + y) (x)l _< clyl

for some tr > 0, c independent of 1,

then

flpl( X / y) -/91(x)l c2llyl.
The same holds for Pl * Ij since the total variation of /zy is bounded

independent of j. Also r/k+y has mean value zero and supp r/k+y C {X"
Ixl _< c2-k+Y)}.
Thus

lip//zy * nk/ll fill * y * k/y( x)l

f f(Pl * I’tj)( X Y)Ik+j(Y) dy dx

< ffl,l * y(x 3,) (Ol */zj)(x)l dxl’r/k+y ( y)l dy

< Cfs 2WlYl dy < c2/2-(k+y)"

upp ’r/k +y

which proves (2.12).
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To prove (2.13)we first observe that

fill( x + y) (x )l abc

c YI(fsupp1 + Vvl

for all 0 < tr < 1 such that fsuppvl/[/[2/1- < ([8]).
Thus we have to check

(2.14) There exists a > 0 such that for I/I large enough, fsuppV[l- c
independent of I.

Since //(tl,... tn) e(tl,... tn) + 21(a-n)R(2-1tl, 2-ltn), we will
check that there exists a > 0 such that

fs IP(t) + r(a-n)R(r-lt)l- dt < c for r small enough.
upp

To see this we make use of Lemma (2.1) in [6].
Let

o supp ff
__

[1/2,2] [1/2,2] and G(t) r(a-n)R(r-lt).

For r small enough G is analytic in the neighborhood

o + [-M,M] of o (t,..., t)

where M miniltl/4.
We will check that if Gr(t) EiarI(t to)I then

laTIMIII ,0
r O

I

where

i
az il in!

r(a n)- III 31tlR
Otl Otn(r-lt)"



572 LINDA SAAL AND MARTA URCIUOLO

Now by Cauchy’s formula

01IIR
Ot cgt (r-it)

1!’’’ in! [" R() dl dn
(2zri)" /li--r-ltl=(r-lltl)/2} (st1- r-itS)’1+1 (n r-its)in+l

then

a < 2 Ill Itl-lra-n sup IR(ff)l.
{/i-r-ltl =(r-11tl)/2}

We write R(sr) R(r-lr). Since r" belongs to a compact set d/, satisfy-
ing (2) of Lemma 2.6, we have a < e21Illtl for r small enough. So

lailMIII _< e 2-III
I I

Now, Lemma, (2.1) in [6] states that for a < 1/(a n) there exist c(t0), r(to)
and a neighborhood U(to) of o such that

fV<to)lP( t) + Gr( t)l < c(t0) for r < r(t0).

Since supp ff is compact, (2.14) follows.

3. Remarks

Remark 3.1. The theorem still holds if ai(t) is a real analytic function for
It[ > 1, satisfying:

(i) For each to, Itl > 1, the Taylor expansion of a converges in

C/l- tol <_ I_/)
(ii) For each o, Itol > 1, limr_, o raioti(r-l) 0 uniformly on

This result includes more curves than the Theorem; for example let
Oli(t) e- Itl for 1,..., n. We extend ai(t) as e -z for Re z > 0 and e z

for Re z < 0. So (i) and (ii) hold.
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Proof of 3.1. As in the proof of the theorem, we must estimate

-n)- IIaI r(a
1 oItlR

ix! in! 8t otin (r-lt)

Reviewing Lemma 2.6 it is easy to see that the summands of (tl,... tn)
are either

P(ti/l,...,tin)a)l(til) a)(ti),

where P is homogeneous of degree

a (a:l + +a:) (n k),

or

Oral( )’’" Ot.( tn )

Without lost of generality we assume

R(tl,... tn) a)l(tl) O)k(tk)P(tk+ 1,’’’,

We must estimate EIIaIM Itl with M as in the theorem.

larllMIII
I

rajl- 1-i

Zil ill. 0(’/1,1 + 1)( r-lt)lMil"’" .,ik rajk-ik !l-ik.
., DIp(t+l"’"t)

I=(i+ i ik+ !

I(.i+’(r-lto)lM

By Cauchy’s formula

r a11 il

il!
(.il + 1)(r- lto1)

ray1 1-il il + 1

fie
ay1(r)

d27ri _r-itS[ =(r-ltl)/2 ( r-lt)il +2
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So

ix!
< r%(i + 1)[t1-i-12il+ sup I%()1

-r-lt --(r- It 1)/2

Since Irsr t[ Itl/2 and aj(sr) ay(r-lr’), rail supl%(sr)l 0 as r 0
by (ii).
So by the choice of M, E converges and tends to zero with r. The same

hold for the other sums.

Remark 3.2. The theorem still holds if 3’(t) (yl(t) + al(t),. Yn(t) +
an(t)) where Yi is a homogeneous function of degree ai, a R, 1 <_ a

< an, and ai satisfying the conditions of Remark 3.1.
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