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DEFORMATIONS AND THE RATIONAL HOMOTOPY OF
THE MONOID OF FIBER HOMOTOPY EQUIVALENCES

VOLKER HAUSCHILD

Suppose X is a topological space which has the homotopy type of a
CW-complex. Then it is well known that Hurewicz fibrations X- E - B
are classified up to fiber homotopy equivalence by the homotopy classes of
maps f: B - B aut(X) where aut(X) denotes the topological monoid of self
homotopy equivalences of X. It is then highly interesting to calculate certain
elementary topological invariants of the classifying space B aut(X) in terms
of the invariants of X.
Here we are in particular interested in the rational homotopy of B aut(X).

A case which seems to be rather treatable is the case of the so called
F0-spaces.

DEFINITION. A 1-connected space X is said to be of type F0 if the
following conditions are satisfied.

(i) dim H*(X; Q) < oo

(ii) dim 7r, (X) (R),. Q < oo

(iii) Hd(x; Q) 0.

Under these conditions S. Halperin [2] was able to show that the cohomol-
ogy Ao H*(X) is a complete intersection, i.e., we have

Ao P/Io,

where P is a graded polynomial algebra in n generators of even degree and
I0 is an ideal generated by a maximal length prime series {fl,..., fn} of
homogeneous elements.

It is exclusively this case which will concern us on the subsequent pages. In
the papers [6, 7] W. Meier found formulas for the rational homotopy groups
of B aut(X), see e.g., [6], Prop. 2.10 and [7], Prop. 1. In these expressions the
evenly graded part 7rev(aut(X)) (R),. Q of the rational homotopy is interpreted
as the negatively graded part of the A0-module of graded Q-derivations
DerQA0. It is a longstanding conjecture that in the case of a complete graded
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intersection A0 of finite length (DerQ A0)_= 0, see [15]. In its topological
form this conjecture stems from S. Halperin and says that every Q-orientable
fibration X E B, with X an F0-space, must have a collapsing Serre-
spectral sequence; see [6], (2.3) Conjecture. The equivalence of both conjec-
tures was shown in the above cited paper [6] of Meier. Moreover he proved
the conjecture for a series of homogeneous spaces G/H, H c G a closed
connected subgroup of maximal rank. Newer results stem from Shiga and
Tezuka [13] who proved the conjecture for all such homogeneous spaces.

In this note we want to give a deformation theoretic interpretation of the
results of Meier’s and generalize them to monoids of fiber homotopy equiva-
lences. Suppose we are given a Q-oriented fibration sc {X E B}
where X is of the F0 type and B is a formal space. Since we cannot use the
Halperin conjecture, we shall assume that the corresponding Serre spectral
sequence collapses. Then we will give an algebraic description of the rational
homotopy of the monoid G(s) of fiber homotopy equivalences of sc. In the
case B a point we have of course G(s) aut(X) and then our results
reduce to those of Meier’s. Recall that a space B is called formal if the
rational homotopy of B is a formal consequence of its cohomology, i.e., if
there exists a map p: /J(B) H*(B) of differential graded algebras from
the minimal model to cohomology inducing an isomorphism in (co)homology.
This is for example the case if H*(X) is a complete intersection; see e.g., [1],
Sec. 16. In the following let M_ be the negatively graded part of a Z-graded
module M.

THEOREM A. Let : X - E - B be a Q-oriented Hurewicz fibration such
that X is an Fo-space and B is formal with Hd(B)= 0. Then there are
canonical isomorphisms

where R H*(B).

rv(Go(:)) (R),. Q --- Dern(H*(E))_,ro(Go()) (R)z Q --- T(H*(E))_,
Specializing the above formulas to the case of a fibration X X {, },

i.e., B {, }, gives the following result.

THEOREM B. IfX is an Fo space, then there are natural isomorphisms

7rev(aut0(X)) (R),. Q -= DerQ( H*(X))
rod(aut0(X)) (R),. Q --- T(H*(X))In all these expressions the index "0" means the 1-connected component

of the respective monoids, i.e., the submonoids of those maps which are
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homotopic to the identity, either because they are homotopic by a homotopy
of fiber homotopy equivalences as in the general case or by a homotopy of
self homotopy equivalences as in the case auto X. On the algebraic side
DerR(A) means the A-module of R-derivations of the R-algebra A whereas
T(A) is the A-module of infinitesimal R-deformations of A.
The above formulas show strong connections between the theory of univer-

sal fibrations and versal deformations with Gm-action. We therefore consider
in this note the relationship between universal fibrations and versal deforma-
tions with Gin-action. In the following denote by autO(X)c aut0(X) the
submonoid of those self homotopy equivalences which fix a distinguished
base point. The classifying space functor on the category of topological
monoids gives rise to the universal fibration

SOu X B autO(X) B aut0(X).

Then we show that the application of the cohomology functor to SOu produces
an algebraic object which in deformation theory is well known under the
name of a positively graded versal deformation

THEOREM C. Let X be a space of type Fo with DerQ(H*(X))_= 0. Then
the H*(B auto(X))-algebra H*(B autO(X)) is the positively graded part of a
Gm-equivariant versal deformation of the graded Q-algebra H*(X).

We observe that the positively graded part of a graded (= Gm-equivariant)
deformation is uniquely and canonically determined which is in contrast to
the behaviour of a versal deformation which is also unique up to isomor-
phism but not in a canonical way. The information on the cohomology of the
space Baut(X) given by Theorem C can now be used to compute the
rational homotopy groups of Baut(X). Suppose Of c HOmAo(I/I2 Ao) is
the subspace generated over the ground field Q by the partial derivatives

O/Of. and let (/z(Of) TI(Ao) be the corresponding image. Then our result can
be formulated as follows.

THEOREM D. Suppose X is a space of type Fo. Let Ao H*(x) with
DerQ(A0) 0. Then BautX has no odd rational homotopy and we have
the formula

7r,(B aut X) (R),. Q [T(Ao)_/lz(Of)]* mAo/mo,

where mAo is the maximal (augmentation) ideal ofAo.

I want to express my gratitude to the Dipartmento di Matematica and the
Faculty S.M.F.N. of the University of Rende/Italy for the congedo in the
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academic year 1990/91 and the Sonderforschungsbereich 170 at the Univer-
sity of G6ttingen and especially Prof. tom Dieck for the kind hospitality
allowing the preparation of the present note.

1. Derivations and infinitesimal deformations of graded algebras

In the following, all fields, rings and algebras will be commutative. Let k
be a field and denote by (R, ran), R/mn -= k, a local k-algebra. Denote by A
a finitely generated R-algebra. We choose an embedding representation
A P/I, P R[X1,..., Xn], I c P, the defining ideal. Then the first step in
deformati6n theory is to consider the exact sequence

1/12 "P R tp A "-) I"A R "’) O

After dualizing with the functor Home(-, A)we obtain the exact sequence

0 - HOmA(flAiR, A) ---) Home(f/elR, A) ---) HomA(I/I2, A).

Let T(A) Ker A HOmA(AIR, A) DerR(A) and TA(A) Coker A.
Then we have an exact sequence

(0) 0 Dern(A) Home(12eln, A) a--, Home(I, A) T,(A) O.

We investigate now the special case of a complete intersection A over R.
Thus we can assume that I is generated by a regular series of homogeneous
elements F., j 1,..., k, in the indeterminants X with coefficients in R.
Under these hypotheses the conormal module I/I2 is freely generated by the
derivatives dF., j 1,..., k; i.e.,

k

I/I2 EAdF..
j=l

The dual object then takes the form

k 0
HomA(I/I2, A) =- E A 3--fj=l

Since the homomorphism 8:
differential d: P 12e, we get

1/12 -* PIR is induced by the canonical

EOF,./oX, dX,.
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Obviously DerR(P A) Homp("PiR, A) is also free .and thus we have

k 0
Dern(P,A) EA-//.

i=1

On the generators the homomorphism A assumes the form

Consequently the homomorphism A is given by the Jacobian matrix of the
polynomials F1,..., Fk.

If R is a positively graded local k-algebra with mR rn R / the aug-
mentation ideal, and if A is a graded R-algebra, then .all the four terms in
the exact sequence (0) have a natural graduation. Let

deg X n

and

deg F. wj,

then O/OX has degree -n and O/OF. has degree -wj. This implies in
particular that DerR(A) and T(A) can have terms of negative degree. Since
the data of a graduation are equivalent to the data of an action of the
reductive group Gm --k*, we can extract from (0) a "negatively graded"
exact sequence

(I) 0--* DerR(A)_ A-i - T (A) O
i=1 j=l

It is in particular this sequence we want to interpret topologically. Suppose
R k is the base field. Then Home(P, A)_ is a finite k-vector space. The
same is true for HomA(I/12, A)_. Consequently DerR(A)_ and TIR(A)_ are
also finite k-vector spaces. It might seem that our definition of T(A)
depends on the chosen embedding representation. But this is not the case as
follows from the deformation theoretic interpretation which can be given to
it; see e.g., [7].
Here we consider an example which will be of a certain interest in the

sequel. As usual let R be a positively graded local k-algebra and let
A R[X]/(F), deg X d, where F is a homogeneous polynomial. Then we
have

DerR(A) {a-- ab-- (F), a A
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and

TRI(A) -= OF 0

If F -Xn+l- r, r mRR[X] where R is the graded polynomial ring
R k[t], deg t 0(mod 2), then we obtain

T(A) R X /( F Fx) --f

where Fx is the partial derivative of F with respect to X. We now evaluate
the R-module TIn(A) along the spectrum of R k[t]; i.e., we compute the
k(y)-vector spaces T(Ao) TIn(A) (R)n k(y) for y Spec R.

In the case y (t) we obtain with k(y) k and A0 k[X]/(Xn+ 1) the
expression

T(Ao) --k[X]/(xn+l,(n + 1)X")(-(n + 1)),

where (-(n + 1)) indicates a grade shift by -(n + 1). If now char k 0 we
obtain the version

T(Ao) k[X]/(xn)(-(n + 1)).

At the other hand, if we take a closed point outside the origin, say (t y),
y k {0}, we obtain with K k(y) and Ay A/(t y)A the expression

Tl(Ay ) K[X]/(f, f’),

where f is the polynomial F(t, X)evaluated in y, i.e., f(X)= F(y, X)
and f’ means of course the derivative of f with respect to X. Thus we
conclude that T(Ay) is different from zero if and only if the polynomial f
has at least one multiple root.

2. Self maps of fiber bundles and rational homotopy

In the proof of Theorem A we proceed now as Meier did in his proof of
Prop. 1 in [7]. Let {X E B} be a fibration satisfying the hypotheses
of Theorem A. As shown in [2], the cohomology algebra A0 H*(X; Q) is a
complete intersection of finite artinian length; i.e., A0 can be written as

Ao P/Io
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with P Q[XI,... Xn] deg X di, d =- 0(mod 2), a graded polynomial al-
gebra and I0 (fl,..., fn), a defining ideal, generated by a maximal length
prime series (regular series) of homogeneous elements with deg f1 wi" Let
R H*(B), then by a result analogous to Theorem 1.1 in [3] it follows that
the R-algebra H*(E) has the form

H*( E) PR/I

with PR R[X1,..., X,,] and a defining ideal I generated by homogeneous
elements of the form F fl- ri, r1 mRPR. Let A H*(E) and Q
Q[Y1,..., Yn], deg Y1 wi; then consider the commutative diagram

(I)
Pn ,A

P

where the homomorphism F is given by F(Y1) F1, j 1,..., n, and the
right vertical arrow is simply the structural morphism of the Q-algebra A.
Since the polynomials Fi form again a prime series this implies that F is flat.
Recall that H*(E)= HeY(E), since by the hypothesis B has no odd coho-
mology. Moreover, by III.3(1), Th6orme in [14] the minimal model of E is
pure and therefore E is also formal, since B is formal after the hypothesis.
Our first goal is to realize the above diagram by a rational fibration

E’ --* BO K -- g2,

where the Ki, 1, 2, are adequate products of rational Eilenberg-McLane
spaces, i.e.,

n

K1 1-I K(Q, di)
i=1

and

n

K2 1-I K(Q,
i=1

Recall that the respective cohomology rings are given by the polynomial rings

and

R P H*(K,; Q) --- Q[ Xl,... Xn] deg X d

R2 H*(K2, Q) Q[ yl,..., Yn ], deg Y1
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Now the set of homotopy classes of continuous maps h" K -- K2 is given by

[K,,K:] I-I[K,K(Q,w)] --- I-IH(K;Q),
whereas the set of homotopy classes of continuous maps H: B K -- K2 is
given by

[B K,K] I-I[B K1, K(Q,w.)].
J

Therefore we have

[B K1, K2] I-IHW(B Ki;Q).
J

Now we choose a map in the homotopy class of the element

(F1,...,Fn) 1-IHwj(B K1,Q) =- I-I(R[X1,...,Xn])wj.
J J

Let/91: B K -- B be the trivial fibration where p is the projection onto
the first factor. Then we define a map th as the composition of with the
inclusion j of the fiber K1. It is easy to see that b corresponds to a map in
the homotopy class of the element

(fl,’’’,fn) HHW(K1,Q).
J

Therefore we have the commutative diagram

v0 4,
X’ K K2

E’ B K K2

B. B
It is clear by construction that the middle horizontal fibration realizes the

diagram (I). Moreover it follows from the Eilenberg Moore spectral sequence
that the fiber E’ of has the cohomology H*(E’)=-A. Consequently the
cohomology of the fiber X’ of b is given by Ao. Moreover it is clear that the
inclusion of the fiber X’ in E’ induces precisely the homomorphism
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A Ao. Therefore :’= {X’ E’ BO} is a fibration which cohomologi-
cally looks like :. We have to show that so’ is fiber homotopy equivalent to

First we recall that B is a formal space. Let ’(B) be the minimal model of
B. Then there exists a D.G.A.-morphism P0: ’(B) H*(B) inducing an
isomorphism in (co)homology. Moreover A0 is a complete intersection. It
follows from [14], III.3(1), Th6orme, that the minimal models of E, resp. E’
are pure and thus are also formal, since B is formal; see Appendix, Theorem
A.2. Consider H*(E) and H*(E’) as algebras over ’(B) via the
formality map. Then there exist formality maps p: ’(E) H*(E) and p’:
.,’(E’) H*(E’)which are also D.G.A.-morphisms over . Let a:
H*(E’) H*(E) be an isomorphism. Consider the diagram

(E’) M(), ’(E)

H*(E’) o,, H*(E)

Since the differential graded algebras over form a closed model category
in the sense of Quillen (see e.g., [1][10][11]) there exists a lifting M(a) such
that the above diagram becomes homotopy commutative. Let h: E E’ be
the corresponding geometric map. Then h is a rational fiber homotopy
equivalence between s and :’; i.e., from the point of view of rational
homotopy theory the fibrations s and s’ can be identified. Thus in the
following we put s :’. The fibration gives now rise to a fibration of
mapping spaces:

Maplo(E, E; l) .- Maplo(E, B x K1;v/)--.> Map(E, K2; dP Vl)

Here 1: E - E is the localization map and/)1 V is the composition of v
with 1, whereas 1o: B B is the localization map on the base space B.
Recall that by functoriality of the localization we have a commutative
diagram

E E

loB " BO.

Then the superscript 0 distinguishes those maps which lie over 0. As H*(E)
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is evenly graded, we have

Tr2i_l(Map(E, K2; 1]l) 0

for all N. Let P2" B K K be the projection onto the second
factor, then by the same reason we have

Tr2i-I(Map(E, K1;bo p2 o/"l) 0.

for all N. Therefore by the obvious identification

Map/0(E, B K1; v,) Map(E, K1; p2 Yl)

we obtain as the exact homotopy sequence of this fibration the four term
exact sequence

(II) 0 -- Zrev Map/(E, E; l) -- Trev Map( E, K1; p2

Trev Map(E, K2; 0/l) -"> Trod Mapt(E, Eo; l) O.

Recall now that by the canonicity of the localization there is a chain of
natural maps

MapS(E, E) ’Mapt0(E, E) MapS"(E, E) --, MapS(E, E)

which comes out to be the Q-localization of MapS(E, E) and thus is a
rational homotopy equivalence. Thus it follows

Trev Map/(E, E; 1) =- Trcv MapS("E, E; id) (R)z Q.

We consider now the monoid G(:)0 MapS(E, E; id) of B-maps which are
homotopic through B-maps to the identity id: E E. Since the above
isomorphisms remain also true in the odd case, the above considered exact
sequence take the form:

(III) 0 -* Trev(G(:)o) 0,. Q --* TrevMap(E, K1;p2ovl)

Trev Map(E, K2; ,) --, Trod(G(s)o) (R),. Q - 0.

THEOREM 2.1. The exact sequence (III) is canonically isomorphic to the
exact sequence (I) after reversing the sign of graduation.

As a corollary of Theorem 2.1 we obtain immediately Theorem A.
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Proof of Theorem 2.1.
phisms

First we show that there are canonical isomor-

*r,v Map(E, K1; 11920/l) Home(f/eln, A)_
"ffev Map(E, K2; (p vt) =- HomA(I/I2; A)_

of graded Q-vector spaces after a graduation reversing. By using Thom theory
we observe that there are homotopy equivalences

n n

Map(E, K1) VIMap(E,K(Q, di))= 1-I VIK(Hq(E),di-q)
i=l i=l q

Since the odd rational cohomology of E vanishes, we have

T/’od Map(E, K1; P2 o/21) 0,

n di
7/’ev Map(E, K1; p2 121) E E Hq(E)

i=1 q=0

and therefore we have a sign reversing isomorphism

n("rrev Map(E, K1; p2o 1jl) E H*(E) -ii_1

But the right hand side can of course be interpreted as Homp (p A)
which gives the first of the desired isomorphisms. In a quite analogous way
we can proceed to prove the second isomorphism.
Thus it remains to show, that the linear map in the exact sequence (II) is

given by the Jacobian homomorphism h AF of the ring homomorphism F.
Let S2n be the 2n-sphere and denote by [$2" Eo, K1]p2o the set of
homotopy classes of those maps f: $2" E0---) K such that for every
s S2" the map f/ EO Kl, f(x)=f(s,x), is homotopic to the fiber
inclusion vt. Thus we have

7"/’2n Map( E, K p2 Pl) s2n X EI K1] p2 ,.

Since P R H*(K1) the minimal model M(K1) of K is also given by
M(K1) R because the differentials must disappear by graduation reasons.
Therefore rational homotopy theory (Sullivan equivalence) gives us the
isomorphism

[S2n Egi, K1] [R1, M(S2n X E)].
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Substituting M(S2n) A(:)/:2, deg : 2, for the minimal model of the
sphere and using the formality of E we obtain

M(S e) =- A()/ =- H*(e)
and therefore

[S2n x E0, K1] [R1, H*(E) (R) A()/2].

It is now a simple exercise to show that two differential graded homomor-
phisms f and g from R to H*(E) (R) A()/s2 are homotopic in the sense of
D.G.A.-morphisms if and only if they coincide. Therefore we obtain the
isomorphism

HomD.G.A.(R1, H*(E) (R) A()/2) [R1, H*(E) (R) A()/2].

Now we distinguish a certain subclass of D.G.A.-morphisms: A D.G.A.-mor-
phism h" R -o H*(E) (R)(1 A(:)/:2 is called special if for every s S2n the
composed homomorphism

R1 h_ H*( E) (R)Q H*( S2n) --) H*( E) (R)Q H*( s} )

is equivalent to the canonical projection P -o A H*(E), i.e., to the homo-
morphism induced by the fiber inclusion Il. Thus, by composition of the
above isomorphisms, we get

’n’z. Map(E, K1; p2 Ill)

where the exponent tr means of course ’special’.
Let R2 H*(K2); then we consider the set

Hom])..A.(R2, H*(E) (R)(1 A(:):2)

of homomorphisms g such that the composition

RE H*(E) (R)(1 H*(S2n) H*(E) (R)(l H*({s})

coincides with the map induced by Ill. Then in a similar way we obtain
the isomorphism

7r2, Map(E, K2; 0 Ill) Hmb.G.A.(RE,H*(E) 0(1 A()/:2)
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Recall that h takes on the generators Xi, 1,..., n, the value

h( Xi) X + I + (qi + I) (R) S.
Therefore we get the series of equalities

(6) (Y.)= h(F(Y.))
h(F.(X "b I,..., Xn + I)),
F.(h(Xa),..., h(Xn) ) dr" I,

Fj(X q- I + (ql + I) (R) so,..., Xn + I + (q, + I) (R) :) + I

OF,.
.(x,...,x + + (q + ) ?-2-2 e’

kl

and therefore

n F(6)(Y) E (qk + I)-k (R) s.
k=l

This shows that 6 is given by the Jacobian homomorphism AF "-A of F
which proves Theorem A.
We conclude this paragraph with an example. We take a fibration of the

type

S 2n E CPk.

Then the cohomology of E can be written as

H*( E) R[ X]/( F), F X2 aX + ,
where a and /3 are certain homogeneous elements in R H*(CP)
Q[t]/(t k/l) such that the defining polynomial F becomes homogeneous.
After the formulas in Section 1 we obtain

0T1R(H*(E)) R[X]/(F,2X- a)--ff,

and therefore

Tnl(H*(E)) --- Q[ t]/(t k + 1, [3 2
Xa )(-4n).



550 VOLKER HAUSCHILD

Case 1. 4/3 O2 0. Here we obtain

T(H*(E)) Q[t]/(tk+l)(-4n).

Case 2. 4/3 at 2 0. This gives

T(H*(E)) -= Q[t]/(tk+l, t2n)(-4n),

and therefore

T(H*(E)) Q[t]/( tin)(--4n)

with m min(k + 1, 2n).
It is now a simple exercise to show DerR(H*(E))_= O. Therefore we

obtain for the rational homotopy groups of G(:)0:

71"2i-- I(G(:)O) (R)z Q Q if 2n k + j, j 0,..., k,

7T2i-l(G(:)o) (R), Q Q if 2n m + j, j 0,..., m,

and zero otherwise.

3. Versal deformations and universal fibrations

In this paragraph we consider some consequences of Theorem B. Denote
by k a field, and let A0 be a graded local k-algebra; i.e., consider A0 as a
local algebra where the maximal ideal mA0 is given by the augmentation ideal
of the positively graded elements in A0. Let R be a graded ring with a
distinguished maximal ideal M, R/M =- k, such that M is homogeneous with
respect to the given graduation. In most cases M will be the ideal of
positively graded elements. But we don’t exclude the more general case of a
Z-graduation, i.e., a graduation which allows also negative degrees. As it is
well known, the data of a graduation are equivalent to the data of an action
of the multiplicative group Gm k* on the algebraic object as a group of
ring automorphisms. So, we will use both terms simultaneously. Then a
Gm-equivariant deformation of A0 along the ring R is a fiat graded R-alge-
bra A such that AlMA Ao. We have therefore a commutative diagram

J
A >A0

R ----* k,

where f is the fiat structural morphism and j denotes a surjection inducing
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an isomorphism j: A (R) k A0 of graded k-algebras. In the following,
deformations will be denoted by greek letters. A morphism g: --, where

{R A --, A 0} and / {S --. B A0} is a commutative diagram

idAo Ao

g
A B

l l
hR S

of graded ring homomorphisms. If R S and h id we speak of an
isomorphism between deformations along R. We can subject a deformation :
to a base change with respect to h. In this way we obtain a new deformation

(R)g S {S - A (R)g S - A0}, since flatness is invariant under base change.
The deformation is called a Gm-equivariant versal deformation if any other
graded deformation is isomorphic to (R)g S for some graded ring homo-
morphism h: R - S. If h hn is uniquely determined by the isomorphism
type of t then is called a universal deformation. It is a theorem that in the
case of an artininian k-algebra A0 such a versal deformation exists. Its
construction will be considered in the special case of a complete intersection
in the following. For other information concerning deformation theory we
refer to the vast literature on the subject; see e.g. [4] [5] [8] [9] [12].
To explain the construction of a versal deformation in the case of a

complete intersection A0 of finite length, we come back to the exact
sequences of Section 1. Consider the exact sequence (I) in the case R k
where I is generated by the polynomials F. f., j 1,..., n. Then we have
the exact sequence

n O A
n O

0 - Derk(A0) _,Aooxi E Ao-f --* T(Ao) O.
i=1 j=l

Since A0 has finite length as a module over itself, the A0-module T(Ao)
must also be of finite length and therefore is a finite k-vector space. Let
r dim T(Ao), then we choose tuples gl (gll,’’’, gln), gtj P, homoge-
neous, 1,..., r, such that the projections of the elements

0
l E (glj d- I) Of.J

form a homogeneous basis of T(Ao). Let now R k[tl,...,tr] be the
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homogeneous polynomial algebra in the indeterminates with deg
deg fj deg glj" Then we consider the graded R-algebra A with

A R[X1,..., Xn]/J,

where J is generated by the polynomials f. Eltlglj. It is then easy to
see that also the . form a regular series, which shows that A must be fiat
over R. The deformation :v we have obtained by this procedure is then a
Gm-equivariant versal deformation of the k-algebra A0 of minimal dimension
of the parameter space Spec R. For a proof of this fact we refer to [4] [10] [14].
From the deformation :v we can extract a positively graded versal defor-

mation of A0 taking simply the positively graded generators tl,..., of R.
Let S k[tl,..., L] and let h" R S be the obvious projection homomor-
phism. Then sco+ is defined by + (R)R S. Suppose r/ is a graded defor-
mation along a positively graded local ring Q, then it follows from Gm-
equivariance that r/ is induced from :o+ by a graded homomorphism h"
S --, Q. This justifies the notation. If h h, is uniquely determined by the
isomorphism type of rt, then we speak of a positively graded universal
deformation (= pvd).

Let now S be any local graded k-algebra and let DAo(S) be the set of
isomorphism classes of graded deformations of A0 along S. Then DAo(--)
gives a functor from the category of graded k-algebras into the category of
sets. If r/ {R A A0} is a graded deformation, then there is a natural
transformation

’( r/)" Homam(R,- ) DAo( )

of functors, associating to any graded homomorphism f the deformation
r/ (R)R (-) induced from r/by f. Suppose S k[e], e 2 0, deg e 2i, is the
ring of dual numbers of weight 2i. Then one shows in deformation theory
that there is a natural isomorphism between the set DAo(--2i) DAo(k[e]) of
the infinitesimal deformations of degree 2i and the 2i-th homogeneous piece
T(Ao)(- 2i) of Tk(Ao). The map

"r(r/)(2i)" Homa’( R, k[e]) T( Ao)( -2i)

is then called the 2i-th homogeneous piece of the Kodaira-Spencer map of
r/. Now let X be a 1-connected space which is also a space of type F0.

Furthermore we shall assume that the graded Q-algebra A0 H*(X) has no
negatively graded derivations. Then we consider the universal fibration :u"

X B autO(X) B auto(X).
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It follows from Theorem B and rational homotopy theory that RX
H*(B aut0(X)) is a positively graded polynomial algebra in r
dimQ TI(A0)_ many generators of even positive degree. Since A0 has no
odd elements, the Serre spectral sequence of :u collapses and H*(B autO(X))
must be a free RX-module. From the Eilenberg Moore spectral sequence we
get an isomorphism

H*(X) H*(B autO(X)) (R)R Q

of graded Q-algebras. Consequently the commutative diagram

H*(B autO(X)) ,H*(X)

l
H*(B auto(X))

represents a positively graded deformation 0u of A0.
Denote by the symbol x(B) the set of rational fiber homotopy equiva-

lence classes of oriented fibrations

XE-B.

Here by fiber homotopy equivalence between two fibrations r/ {X E
B} and r/’ {X E’ - B} we mean the existence of a B-map h" E E’
inducing a homotopy equivalence h auto X on the fiber. In the case
B S 2i an even sphere we write simply x(2i).

In the following we put RX H*(B aut0(X)). Let us consider the follow-
ing diagram:

[Bt, (B auto X)t] (1), xt(Bt)
(2)l l(4)

HomOm(RX,H,(B)) (3)) DAo(H,(B))"

Here the vertical maps (2) and (4) are given by passing to cohomology. The
first horizontal map (1) is given by f f*u whereas the second horizontal
map (3) is induced by the base change of the deformation 0u with the given
homomorphism g Hom(RX, H*(B)), i.e., from the assignment g 0u
(RX H*(B).

THEOREM3.1. LetXbe a space of type Fo such that Hd(B auto X; Q) O.
If B is a formal space then the above diagram is a commutative diagram of
isomorphisms.



554 VOLKER HAUSCHILD

It has been shown that in the case of complete intersection A0 which is
generated only by elements of degree 2 the Halperin conjecture is true, i.e.,
we have (Der A0)_= 0; see e.g., [6, 7] and [15]. This implies that RXd 0
for a space X with H*(X) Ao. Therefore we have

THEOREM 3.2. Let X be a space of type Fo such that H*(X) is generated by
elements of degree 2 and let B be a formal space. Then the above diagram is a
commutative diagram of isomorphisms.

Remark. Let k, chark 0, be a field and let B be a graded local
k-algebra. Then by rational homotopy theory R can be realized by a space B,
i.e., R -= H*(B; k); see e.g., [1]. Using the isomorphism (3) one has therefore
shown that the functor of positively graded deformations of A0 is repre-
sentable. In the following let Rk be the category of the positively graded
k-algebras. Denote by Ens the category of sets.

THEOREM 3.3. Let k be a field of characteristic 0 and let Aolk be a graded
complete intersection of finite length with residue field isomorphic to k. If
Derk(A0)_= 0 then the functor D: Rk Ens which associates to any R Rk
the set DAo(R) of graded isomorphism classes ofpositively graded deformations,
is representable.

In particular this proves Theorem C. In fact Theorem 3.3 says much more,
namely that 0u is a positively graded universal deformation and therefore
0u + as graded deformations.

Proof of Theorem 3.1. Commutativity is obvious by the definition of the
maps. It is not difficult to see that (B auto X) is a classifying space for
oriented fibrations with fiber X. That the map (1) is an isomorphism is
therefore an immediate consequence of the universality of the localized
fibration SCu. That the first vertical map (2) is an isomorphism follows from
the hypotheses on B auto X, B and rational homotopy theory. Observe that
by Sullivan theory

[B, (B auto X) [RX,.’(B)],

since by the hypothesis on BX (B auto X) the minimal model .’(BX) is
a polynomial ring and therefore isomorphic to RX. By formality of B we
have

[RX,."(B)] [RX, H*(B)]
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and consequently

[Bo,(B auto X) =_ Hom(RX, H*(B)).

Now we show that the second vertical map (4) is an isomorphism.
Surjectivity. Suppose we are given a graded deformation

A0} with R H*(B). Since the Q-algebra A0 is a complete intersection it
follows from Theorem 1.1 in [3] that A is also a complete intersection. As
usual we write

A R[X,..., X]/I

where the defining ideal I is generated by homogeneous elements F1,... Fn
of the type F. f. rj, rj R+PR. Suppose d deg x and w deg f.
deg F.. Now we proceed as in Section 1.

Let

and

K1 HK(Q, di)

K2= I-I K(Q, w).
J

Then we choose a map F in the homotopy class of the element

(F1,...,Fn) I-[HW(B xK1,Q) 1-I(R[X1,...,Xn])w.
J J

Define a map f as the composition of F with the inclusion j of the fiber K1.

Then f corresponds to a map in the homotopy class of the element

( fl, fn) HHW( K1, Q).
J

This gives our commutative diagram

f K2

II
K2
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Now it follows from the Eilenberg Moore spectral sequence that the fiber
E of F has the cohomology H*(E) A. Consequently the cohomology of
the fiber Y of f is given by A0. Moreover it is clear that the inclusion of the
fiber Y in E induces precisely the homomorphism A A0. Therefore
-, {Y E B} is a fibration which realizes r/. This shows the surjectivity
of (4).

Injectivity. We consider two fibrations r/ {Y E B}, and r/’ {Y’
E’ B}. Let 3’ and 3" be the two deformations induced from the fibrations r/
and r/’. Following the definition of an isomorphism between deformations we
have the commutative diagram

H*(Y) H*(Y’)

H*(E) H*(E’)

H*(B) id ,(,H B),

where a is a graded isomorphism. Now we proceed as in Section 2. Let be
the minimal model of H*(B). Since B is formal there exists a formality map
P0: R. Since A0 is a complete intersection the minimal models of E, E’
respectively are pure; see again [14], III.3(1), Th6orme. As in Section 2, one
can conclude that E and E’ are formal (see also Appendix, Theorem A.2).
Let A H*(E) and A’ H*(E’) and consider the diagram

(E) M(), (E’)

A ’* A’.

Here p and p’ are the corresponding formality maps. Consider A and A’
as o-algebras via P0 and the structure morphisms. Since C.D.G.A.’s over
form a closed model category in the sense of Quillen (see e.g., [1], 4.10; also
[10], 1.5 and [11], p. 234) there exists a C.D.G.A.-morphism M(a) lifting a up
to homotopy. It is clear that M(a) induces the identity on A0 and therefore
induces a rational fiber homotopy equivalence f: E E.
We conclude that (4) is an isomorphism. Therefore by commutativity also

(3) must be an isomorphism. This proves Theorem 3.1.
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As a corollary we obtain:

THEOREM 3.4. Let the hypotheses be as in Theorem 3.1. Then there is a
commutative diagram of isomorphisms

2i(B auto X) (R),. Q - x(2i)

HomGm(RX, Qte]) r50)(2i) ..,o( 2i).

Thus we see that in the context of fibrations the Kodaira-Spencer map
assumes the simple significance of the map ,n-2i(B auto X) (R)z Q -+ x(2i)
We can now use Theorem C for to compute the rational homotopy groups of
the space Baut(X) in the case that X is a space of type F0 with
DerQ(H*(X))_= 0. Since the ring H*(B aut X) is isomorphic as a graded
RX-algebra to the pvd + constructed above, we have an explicit expression
for RX H*(B aut(X);Q). In the following we want to give a rather
explicit description of the rational homotopy of the space B aut X using the
terminology of the previous pages. Let us consider the following diagram

HOmAo(I/I2, Ao) TI(Ao) 0

n 0

where /z denotes the canonical projection modulo the image of the Jacobi
homomoprhism. Let 0f c HOmAo(I/I2 Ao) be the subset generated over the
ground field k =- A cA0 by the partial derivatives O/Ofj.

If the embedding dimension e(Ao) ofAo is given by n, then

Proof We have the obvious formula

n

j=l

ImA
j=
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Thus it suffices to prove that

Im h N A0b-f /0}.

Therefore we have to consider the solvability of the equations

(mod Io), j 1,...,n,

for cj A k where at least one c. is different from zero. By minimality
we can assume that I0 c (Xl,..., xn)2. Suppose there is a non-trivial solution
(A1,...,An) of the system. Then we consider the system reduced
mod(x1, Xn):

n

E [ij’i Cj, j 1,..., n,
i=l

with

ij "/(0,...,0).

Since f (Xl,..., Xn)2 all the coefficients disappear and thus the reduced
system cannot have a solution. Therefore also the original system does not
have a solution.

THEOREM D. Suppose X is a space of type Fo. Let Ao H*(X) with
DerQ A0_= 0. Then B aut X has no odd rational homotopy and we have the
formula

’.(B aut X) (R),. Q --- [T(Ao)_/(Of)]* mAo/m2Ao

where mAo is the maximal (augmentation-) ideal ofAo.

Proof We can assume that the presentation of A0 given by A0 P/Io is
minimal in the sense that P has the minimal possible number of generators,
i.e., edim A0 dim P n. As a consequence of Lemma 3.3 we have n
linearly independent homogeneous elements tl,..., t T(Ao)_ which are
precisely the images of the 0/0f. under/z and thus form a homogeneous
basis of /z(0f). We complete now these vectors to a homogeneous basis
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tl,’’’, tn, tn+ 1,’’’, tr of T(Ao)_. After the construction of the versal defor-
mation we can write

H*(B aut X) -= RX[ XI, Xn]
(F1,...,Fn)

with F. F.’ tj, j 1,..., n. Consequently can write RX RX’[tl,..., tn],
with RX’= Q[tn+l,..., tr]" Cancelling the generators tj, j 1,..., n using
the relations F. 0 gives

X) Q Itn tr] IX Xn]H*(Bauto +1,...,

[T(Ao)-/tz(O:)]* mao/m
which proves the formula. We won’t close this paragraph without giving a
simple application of the previous result. We take as the space X the
complex projective space CP. Here we have A0 --Q[x]/Io, deg x 2,
where I0 is generated by F xn / 1. Then by the previous exact sequences we
obtain

T(( Ao)
((n + 1)x"Ao-

Thus we get

0
T((Ao) T((Ao)_ Q[ x ]/( Xn) ".

Consequently RX has exactly one generator in the dimensions 4, 6,...,
2n + 2. Now our theorem says that we have to replace the generator which
stems from the partial derivative O/OF by the generator of degree two which
comes from x. Thus for the rational homotopy groups of the space
B aut CP we get precisely one generator in dimensions 2, 4,..., 2n which
is precisely the rational homotopy of BS(U(n) U(1)).
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