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FEJER THEOREMS ON COMPACT SOLVMANIFOLDS

CAROLYN PFEFFER

Section 1. Introduction

In the theory of Fourier series, it is well known that if f L2(T) is
continuous, where T is the unit circle), then the Fourier series

g(x) E f(n)e
n t.Z

2 nx

need not converge uniformly or even pointwise to f. However, the Fejer
theorem asserts that there exists a set of constants {an, k},k= a, such that for
each fixed n only finitely many k differ from 0, and so that if we define

On(X ) y’ an, kf(k)e
kZ

2,n’ikx

then tr f uniformly on T.
We note that the map f f(n)e2"rrinx is an orthogonal projection onto a

subspace of L2(T)which is translation-invariant; if A denotes the quasi-regu-
lar representation of R in L2(T), then A restricted to the subspace {Ce2"r’inx}
is equivalent to an irreducible representation of R.

Similarly, if S is a solvable Lie group with cocompact discrete subgroup F,
the right quasiregular representation decomposes L2(S/F) into a countable
direct sum of orthogonal irreducible subspaces. Those irreducible representa-
tions of S which appear in the decomposition may appear with multiplicity,
always finite. Although the decomposition of L2(S/F) isn’t unique, the direct
sum of all irreducible 7r-spaces is independent of the decomposition; we call
it the primary summand of 7r. We order the primary summands {Hn} and let
P denote orthogonal projection onto the nth primary summand.

In this paper we address the question of whether Fejer theorems exist for
the three-dimensional compact solvmanifolds which are quotients of the
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following solvable Lie groups:
1. S is the semidirect product of R with R2. R acts on R2 via the

one-parameter subgroup

cos(27rt)
Oh(t) -sin(2zrt)

sin(27rt) )cos(27rt)

2. Sh is the semidirect product of R with R2, where R acts on R2 via the
one-parameter subgroup

0 A -t

where h is a positive real number satisfying h + A-1 3.
It is known that these are the only three-dimensional, solvable, non-nilpo-

tent Lie groups with cocompact discrete subgroups (see [AGH], Section 2.2).
In addition,

Nh {(O,x,y) Sh} and Nr= {(O,x,y) St}

form abelian, normal subgroups of Sh and St, respectively; we will use the
symbol N without the subscript when the context is clear.
The existence of Fejer theorems on compact quotient spaces of nilpotent

Lie groups with flat Kirillov orbits has been demonstrated by L. Richardson
in [Ril]; this work builds heavily upon the results of L. Richardson, J. Brezin,
and W. Rudin. Richardson (in [Ri2], examples 5.3 and 5.4) used results of
Rudin on irreducible idempotent measures (see [Ru], Theorem 3.1.3) to
demonstrate that orthogonal projections on r-primary summands of S \ F
preserve continuity of functions in C(S \ F), the space of continuous func-
tions on Sr \ F, and that those on primary summands of Sh \ F do not; he
also gave a characterization of those compact nilmanifolds for which primary
summand projections preserve the continuity of functions [Ri2, Theorem
3.10]. J. Brezin expanded this result to show that primary summand projec-
tions in L2 of a nilmanifold preserve continuity of functions if and only if the
associated nilpotent Lie group has flat Kirillov (coadjoint) orbits ([Bre],
Theorem 2.5).

In Section 2, we demonstrate the existence of a Fejer theorem on quotients
of the form S \ F, using approximate identities on a fundamental domain of
Nr\Nr O F T2.
Our goal in Section 3 is to prove:

THEOREM 3.1. Let S Ern=lAnPn be an operator, S" L2(Sh \ F)
L2(Sh \ F), which is a linear combination ofprimary summand operators. Then
S maps at least one element of C(Sn \ F) to an essentially unbounded function.



FEJER THEOREMS ON COMPACT SOLVMANIFOLDS 81

This theorem shows that the standard type of Fejer theorem does not hold
on this solvmanifold, and thus we are led to the following question: is there a
sequence of operators of this type such that for each f C(Sh \ F), there
exists an n N such that if k > n, then we have Skf L(Sh \ F)(and
hence in C(Sh \ F)), and Skf f uniformly on Sh \ F?

Section 2

In this section, let F be a fixed cocompact discrete subgroup of Sr; we
assume that Sr is coordinatized so that R acts on N via the map

cos(2"n’t)
tr(t)

sin(27rt)
sin(27rt) )cos(2rt)

Then the points of N n F form a nonstandard lattice subgroup of Nr, and
the nondegenerate coadjoint orbits of Sr are cylinders centered about the

* the vector space dual of the Lie algebra of Sr. The infinite-di-t-axis in s,,
mensional representations of Sr correspond to these nondegenerate orbits,
and those appearing in the spectrum of the quasiregular representation of S

* whichcorrespond to orbits which contain "integral points", elements h sr
satisfy

x(N n F) e2riA(lg(N r)) 1.

Such representations appear with finite multiplicity in the decomposition of
Z2(Sr \ I’) into irreducible subspaces. If n is the multiplicity of 7r, then the
sum of any n irreducible independent 7r-spaces (i.e., invariant subspaces of
L2(Sh \ ’) upon which the quasiregular representation is equivalent to zr) is
called the primary summand of zr, and is canonically determined by 7r. The
decomposition of a primary summand into irreducible subspaces is, however,
highly nonunique.

Since there are only countably many primary summands, we may order
them as {H}.

Orthogonal projection onto the primary summand Hn is given as follows. If
the irreducible representation zrn in the spectrum of the right quasiregular
representation of Sr corresponds to the coadjoint orbit On, and if k is the
multiplicity of 7rn in the decomposition of the right quasiregular representa-
tion of St, then On contains k F-orbits of integral points. Let On be the
intersection of the set of integral points in RX* + RY* with On. Then the
elements of fn can be represented as pairs (N1, N2) satisfying N12 + N22
h2n, where h is the radius of On. Note that due to our choice of coordinatiza-
tion for Sr, the (N1, N2) may not be pairs of integers.
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If f L2(Sr\ I’), then for a.e. fixed [0, 1], the function ft(x, y)=
f(F(t, x, y)) is in L2 of the 2-torus N/N N F. We let J(N1, N2) denote the
partial Fourier transform of f with respect to x and y, evaluated at the
lattice point (N1, N2).
We then have

P(f)(F(t,x,y)) ft( N,, N2)X(N1,N2)( X, y)

for a.e. (t, x, y).

THEOREM 2.1. Let Pn L2(Sr \ F) -) Hn be orthogonal projection onto Hn.
Then there exists a sequence {Sk} of operators, Sk Y’rn_lOln, kPn, such that"

(i) For each Sk, the number of nonzero Otn, k is finite.
(ii) Sk maps C(S \ F) to C(S \ F) for each k.
(iii) For all f C(S \ F), Sn(f) f uniformly as n - .
Proof. Let {hk}__l be a compactly supported, Coo, rotation-invariant ap-

proximate identity on N. Let D be a fundamental domain of N/N n F
containing the identity of N as an interior point; we choose the hk. so that
their supports are contained inside D, and so that for each e > 0 there exists
a k N such that if n > k, then the support of h is contained in an e-ball
around the origin in N.

Since each hk is C, we have

(r,k( X1, X2) E
I(gl, g2)l <r

/?tk( Nx, N2) exp(2"rri(Nxx + N2X2) )

converging uniformly to hk as r . Note also that since hk is rotation-in-
variant,

k(gl, N2) k(M1, M2) if N12 + Nzz M2 + Mzz.

Note also that the sum may be over a nonstandard lattice (i.e., the coordi-
nates of the lattice may not be integral).

Define (k (rl,k for each k so that

Ilchk hkll < 1/k

is satisfied on N/N c F. Now let f: S \ F’ C be a continuous function on
S\ F, so that in particular ft(x, y)=f(F(t,x, y)) is continuous on the
2-torus (N/N F).



FEJER THEOREMS ON COMPACT SOLVMANIFOLDS 83

We define the function

L * 6 (x, y) [ L( x x0, y yo)6 (x0, yo) dx0dy0
JN/Nr3F

where the x0, Y0 range over a fundamental domain for N/(N N F).
We wish to show that ft * rhk converges uniformly to ft for each and, in

fact, that

ft. bk -- ft(x, y) =f(t,x,y)

in the sup norm on Sr \ F.
First consider SUpr(t,x,y)s,\rlft ft * hkl. This is given by

sup fN [ft(x, Y) ft(x Xo, Y yo)]hg(xo, Yo) dxo dyol.
/NNFF(t, x, y) Sr\F

Since S I is compact, f(t, x, y) is uniformly continuous on S F. Let k
be large enough that

Ift(x, y) f(x Xo, y Yo)l < e/2

for all (x, y) S F and (xo, Yo) support hk. Then we have that

sup
F(t, x, y) fN [ft(x’ y) ft(x x’ y Y)]hk(X’ YO) dxo dyo

/NNF

< (el2) fvlvorh(xo, Yo) dx0 dyo e/2.

On the other hand, we have

sup If, * hk ft * bkl <
F(t, x, y)

1
sup IILIIoollhk 111 sup IIftll" ’,

t[0,1] t[0,1]

where the second norm is on N/N F.
Thus if k is large enough, this term can also be made less than e/2, so that

f * k ft uniformly in the sup norm on S \ F, as desired.
Define ax, k tk(N1, N2) if N12 + N22 A2. This is well defined, since hk

was initially rotation-invariant, and therefore k(N1, N2)--k(M1, M2) if
N12 + N22 M12 + M. Then if the projection Pn corresponds to the coad-
joint orbit having radius A > 0, the operator Sn as defined in the statement
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of Theorem 2.1 satisfies

Snf(F(t,x, Y)) ft *bk(X, Y),

which as we have seen converges uniformly on Sr \ F to f. This completes
the proof of Theorem 2.1.

Section 3

Let F be a fixed cocompact, discrete subgroup of Sh.
section is to prove:

Our goal in this

THEOREM 3.1. Let S" L2(Sh \ I’) ---) L2(Sh \ I’), S ,r=lAnPn, be the
finite sum ofprojections of LE(Sh \ [’) onto primary summands of L2(Sh
Then S maps at least one element of C(Sh \ F) to an essentially unbounded
function.

Suppose Sh R ( Nh
1-parameter subgroup

is coordinatized so that R acts on Nh via the

A 0 )Th(t)---
0 1 -t"

Then the nondegenerate coadjoint orbits will be "hyperbolic cylinders",
saturated in the t-direction, given by the equations xy k, k R. Let 7r be
an infinite-dimensional irreducible representation of Sh in the spectrum of
the right quasiregular representation of Sh on L2(Sh \ F), and let

\ r) \ r)

be orthogonal projection of L2 onto the w-primary summand of L2; Pr
does not preserve continuity of functions on Sh \ F [Ri2, Example 5.3]. Let
(a, b) be a fixed lattice point in the coadjoint orbit Or, lying in the plane
RX* / RY*; we note that with the chosen coordinatization of S, the torus
Nh \Nh N F will be a nonstandard torus, and so the elements A (a, b)
O satisfying xx(Nh F)= 1 will not have integer coordinates. The set of
such elements forms a lattice in the plane which we call L*. l-l L* 0

9

consists of finitely many F-orbits of integral points, and so the union of these
sets for finitely many orbits O consists of finitely many F-orbits as well.
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As described in Section 2, the projection P,,
mand Hn of Sh F is given by

onto the nth primary sum-

Pn(f)(F(t,x,y)) E
(a,b)

L(a,b)X,a.b)(x,Y)

LEMMA 3.2.
p. 127).

The union of finitely many F-orbits is a Sidon set (see [Ru],

LEMMA 3.3. Let S Y’.,=lhnPn be as in the statement of Theorem 3.1.
Define U to be the union of the finitely many sets 1 which correspond to
projections appearing in the sum for S. Suppose f S(LE(Sh \ [’)), f L(Sh \
F). Then for almost all fixed o, we have

f(F(t,x, y)) E ft(a,b)X,a,b)( x, Y)
(a,b)U

absolutely and uniformly convergent to f.

Proof Follows immediately from Lemma 3.2, together with the definition
of a Sidon set.

COROLLARY 3.4. Suppose f C(Sh \ F). If S(f) L(Sh \ F), then S(f)
is continuous (see [Pf], Corollary 1.3).

Suppose that S is as described in Theorem 3.1, and that S maps C(Sh F)
into L(Sh \ [’). Then Corollary 3.4 shows that S must map C(Sh \ F) to
C(Sh \ F); the Riesz representation theorem, together with the fact that S
commutes with the right quasiregular representation of Sh in L2(Sh \ I’),
then shows that S is given by convolution with a product measure of 60 with
a measure z on the torus T2 (see [Ri2], Theorem 3.7). The Fourier-Stieltjes
transform . of z is a function of finite range, supported in U; therefore we
have that - is the linear combination of finitely many measures on T2 which
are irreducible convolution idempotents [Ru, Theorem 3.4.3].
A function tk on Z 2 can be the Fourier-Stieltjes transform of a convolution

idempotent only if it is the characteristic function of an element of the coset
ring of Z2 [Ru, Theorem 3.1.3]. We use the following lemma, which can be
proved easily using induction on the number of functions in the sum.

LEMMA 3.5. Suppose that the functions tn n 1,..., k, are characteristic
functions of sets in the coset ring of Z 2. Then .rn=lOlntn Oln C is supported
in the coset ring of Z 2.
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Thus if we can show that , is not supported in the coset ring of Z2, we
have a contradiction, and the proof of Theorem 3.1 is complete. U is the
union of sets of elements in Z2 satisfying a polynomial relation which
transforms to xy k, for some k R, under a linear isomorphism of RE.
However, we have:

LEMMA 3.6. Let Q be in the coset ring of Zk. Then the Zariski closure of Q
in Rk is a finite union of linear varieties Bre, Theorem 2.3].

Since the Zariski closure of the support of , is contained in the zero sets
of polynomials which transform to the hyperbolae xy k, the conclusion of
Lemma 3.6 cannot be satisfied, and we have a contradiction. This completes
the proof of Theorem 3.1.
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