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INTERMITTENT OSCILLATION AND TANGENTIAL
GROWTH OF FUNCTIONS WITH RESPECT TO
NAGEL-STEIN REGIONS ON A HALF-SPACE

ROBERT BERMAN AND DAVID SINGMAN

1. Introduction

Let n be a positive integer and denote the upper half-space Rn )< (0, o) in
Rn+l by R_+ 1. The boundary 0R_+1 of R%+1 will be identified, in the usual
way, with Rn. In the discussion below, we shall transpose (without explicit
mention) results originally stated relative to the unit disk and its circumfer-
ence in the complex plane, to the upper half-space Rn / and its boundary Rn

+
in Rn+l.

In 1968, . Samuelsson [Sa] studied, for n 1, the generalized derivatives
of positive, Borel measures defined on Rn in relation to growth along the
normal Nx {(x,,t): 0 < < } of the positive harmonic functions Jg//x
associated by means of the Poisson integral formula,

(1) JC/Iz ( x ) flnK( x t z ) dtx ( z ) ( x ) R+1

Here, K(x, t, z), for x, z Rn and (0, ), denotes the Poisson kernel for
the upper half-space R_+ 1, and the measures /x satisfy the usual integral
condition required for the convergence of the Poisson integral. Among other
things, Samuelsson considered generalized upper symmetric derivatives of/
with respect to functions such as to(t) , 0 </3 < 1, at a point x R,
defined by

D,o(x) lim sup I(I)1

where the intervals I are centered at x and the limit superior is taken as
their lengths III converge to 0. When Do,tz(x) is positive, there is a sequence
of intervals {Ij} centered at x such that II1 --’ 0 and/z(Ij) is (at least) of the
order of o(1I1). One may describe this roughly by saying that /x has
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intermittent mass concentration of the order of to at x. Samuelsson demon-
strated that this is the case when there is intermittent growth of the
corresponding positive harmonic function JU/ along the normal Nx of the
order of to(t)/t as t --* 0 /. By showing that the set of points where/ has
intermittent concentration of the order of to can have at most a certain
Hausdorff measure, he was able to deduce the analogous statement concern-
ing the set of normal lines Nx along which JU can grow intermittently at the
rate to(t)/t.
The work of Samuelsson was followed up by the first author in [Be1] and

[Be2] (still with n 1). In [Be1], the results concerning the generalized
derivatives of measures /z and the boundary behavior of the positive har-
monic functions JU/ were expanded to a broader context in which the
measures were replaced by functions and the harmonic functions were
defined in terms of a formal integration by parts of the Poisson integral
formula. The function /z: R --. R was assumed to have bounded generalized
variation of the type studied by J. Musielak and W. Orlicz [MO]. (See also
[Av] for related references.) For such a function /z, an analogous notion of
"intermittent oscillation" replaces that of "intermittent mass concentration",
where (I) is understood to mean (y) -/z(x) for x and y the endpoints of
I. The standard setting of measures and positive harmonic functions was
reconsidered in [Be2], and it was shown that the ideas developed in [Sa] (and
in [Be1]) led in most cases to a precise characterization of the exceptional set
of points x where a measure can have a prescribed intermittent concentra-
tion of mass and a positive harmonic function can have a prescribed intermit-
tent growth along the normal Nx.

In 1984, A. Nagel and E.M. Stein [NS] gave a different sort of generaliza-
tion of the standard differentiation theory in connection with an improved
Fatou theorem (for n _> 1). They introduced a maximal function along with
an associated derivative in terms of translates of an "approach set" more
general than the usual nontangential approach set. This set determines a
family of balls which is used to define the maximal function and the
derivative. The hallmark of the Nagel-Stein generalization is the "cross-sec-
tional measure" condition (see 2) satisfied by the approach set. The deriva-
tive is shown to exist a.e. (and agrees with the classical symmetric derivative
a.e.). These results are then used to establish the existence of boundary limits
of positive harmonic functions on the half-space for (Lebesgue) almost all
translates of a boundary approach region also satisfying a cross-sectional
measure condition. The paper [NS] was influential in many papers that
followed. In the discussion below, we shall restrict our attention only to those
which are more closely related to the present work. We refer the reader to
[AN], [CDS], [Sul], [Su2], and [Su3] for other interesting developments.
The Nagel-Stein results were extended in joint work of the second author

with B.A. Mair [MS] to the case where the kernel K(x, t, z) in (1) is more
general. Aside from the Poisson kernel, which gives rise to harmonic func-
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Rn+tions, other examples give solutions to certain parabolic equations on +
and solutions to the heat equation on the right half space. (See [MS] for a
discussion of these examples in greater detail.) Each such kernel K(x, t, z)
has associated with it a pseudo-distance d (see 2). As before, an approach
set f is required to satisfy a cross-sectional measure condition, this time
given in terms of the pseudo-distance d. Examples of such sets f which
contain a sequence having an arbitrary degree of tangency were also con-
structed in [MS].
A related generalization was given in a paper of J. Sueiro [Sul]. He proved

a Fatou theorem for Poisson-Szeg6 integrals of Lp functions on the bound-
ary of a generalized half-plane in Cn. Again, a cross-sectional measure
condition appears in the description of the approach sets.

Subsequent generalizations were carried out by the second author with
Mair and S. Philipp in [MPS1] and [MPS2]. There, functions were considered
of the form (1) with Rn replaced by a space X of homogeneous type having a
group structure, and Lebesgue measure replaced by a measure cr associated
with X. Nagel-Stein type differentiation and Fatou theorems along with
converse results (in an even more general setting) were given. In [MPS1], it
was also shown that for any function, the existence of "standard" limits
(defined in terms of translates of the standard set f {(y, s): d(O, y) < as}
for a > 0) a.e. [or] in a measurable set E in the boundary implies the
existence of corresponding Nagel-Stein type limits a.e. [r] in E. We note,
however, in this result "a.e." means almost everywhere with respect to the
specific measure r (e.g., where r is Lebesgue measure), and not for a more
general Hausdorff measure or content. Here, we shall concern ourselves with
obtaining results which involve Nagel-Stein type approach sets and thinner
exceptional sets.
The purpose of this paper is to join together the ideas stemming from the

work of Samuelsson on intermittent concentration and growth, with those
evolving from the work of Nagel and Stein on more general approach sets.
The focus of our study will be on intermittent concentration of measures,
intermittent oscillation of functions of bounded generalized variation, and
intermittent boundary growth of functions given in the form (1) (where/z is a
suitable measure). Maximal functions, "limsup" maximal functions, and
generalized upper derivatives are defined with respect to "test-functions"
o(t) and "admissible" approach sets f. The test functions are given in the
form o(t) [Ba(0, t)[ 0, where Ba(x, t) denotes the open ball (determined by
the pseudo-distance) of radius around the point x, and 0 denotes the
origin. They are the functions in relation to which the mass concentration,
oscillation, and growth are measured. The admissible approach sets f satisfy
a Nagel-Stein type cross-sectional measure condition and determine the
family of balls used in the definition of the maximal functions. For the results
concerning intermittent oscillation, we shall concentrate our attention on

R+
_
R of bounded ,-variation which generalizeclasses of functions u +
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those studied by N. Wiener [Wi] and others. (See also references 6-12 in
[Av], and [Ge], in particular.) Paradigms for such functions u arise in the case
n 1 from any function /" R --. R of bounded y-variation in the sense of
Wiener by defining u(x, t) =/(x + t) -/(x t), and, from any positive,
Borel measure on Rn (the case 3’--- 1), when u(x, t)= ix[Ba(x, t)]. The
lim sup maximal function mirrors a corresponding generalized upper deriva-
tive of a function/x defined on the boundary Rn when u arises from such a
function. We shall apply our results in the special case of measures (when
3’ 1) to obtain results concerning the intermittent boundary growth of a
variety of classes of functions given in the form (1).
The paper is organized as follows. In 2 we develop the basic setting,

giving background definitions and facts. It is divided into the five subsections:
Pseudo-Distance, Approach Sets, Content and Hausdorff Measure, Generalized
l/ariation, and Maximal Functions and Generalized Derivatives. In 3, we
study the Nagel-Stein type approach sets f, which we refer to as "admissible
sets". In that section are included several results which may be of indepen-
dent interest. For example, Lemma 2 asserts (roughly) that any admissible set
f is contained in an admissible set generated by placing standard regions
over a countable set. Furthermore, each cross-section is contained in the
union of the cross sections of the standard regions above a finite set of points
taken from the countable set, the cardinality being uniformly bounded
regardless of the height of the cross-section. In 4 we turn to the intermittent
oscillation of functions of bounded y-variation and prove the first two of our
central results, Theorems 1 and 2. Theorem 1 gives a weak-type inequality
satisfied by the maximal function of u. The measuring function is "-content",
where is defined in a natural way in terms of the parameters associated
with the tangentiality of the approach set, the test function against which the
mass concentration or oscillation is measured, and the class of functions of
bounded generalized variation under consideration. Theorem 1 leads to
corresponding content and Hausdorff measure conditions on the size of the
sets of points where functions , defined on the boundary, can have intermit-
tent oscillation of a prescribed type. Theorem 2 gives a stronger result for the
intermittent concentration of measures than follows immediately from Theo-
rem 1 in the case 3’ 1. Our third main result, Theorem 3, is the application
of Theorem 2 to the intermittent growth of functions of the form (1). This is
the subject of 5. Converse results, demonstrating that the conditions on the
maximum size of the exceptional sets in Theorems 1, 2, and 3 are best
possible, are given in 6.

2. Preliminaries

In this section we shall develop the background necessary in the rest of the
paper. We divide it into five subsections: Pseudo-Distance, Approach Sets,
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Content and Hausdorff Measure, Generalized Variation, and Maximal Func-
tions and Generalized Derivatives.

Pseudo-distance
Let n be a positive integer. For E a measurable subset of Rn we denote

the Lebesgue measure of E by IEI. A translation invariant pseudo-distance
on Rn is defined to be a function d: Rnx Rn--> [0, oo) together with a
constant K [1, oo) and a function r: (0, oo) (0, oo), such that for all points
X, y, Z Rn, we have

(i) d(x, y) O c, x y,
(ii) d(x, y) d(y, x),
(iii) d(x + z, y + z) d(x, y),
(iv) d(x, z) < K [d(x, y) + d(y, z)],
(v) {Ba(x, t): > 0} forms a base of neighborhoods of x (in the Euclidean

topology), where

Bd(X,t ) {y Rn:d(y,x) <t},

and,
(vi) IBa(0, st)l < ,z(s)lBa(O, t)l for all s, > 0.

The constants K and -(2) are greater than or equal to 1 and are called the
constants of the pseudo-distance. For more background see [CW].
We shall add one more assumption; that is, there exist positive constants

c 1, c2, and r, such that
(vii) Cltr < IBd(0, t)l < 2tr for all > 0.

Observe that condition (vii) implies that (vi) holds with z(s) (c2/c1)s r.

Terminology.
pseudo-distance.

Any function d satisfying (i)-(vii)will be called an allowed

Examples of allowed pseudo-distances are d(x, y)= EIx -yil ai, where
{ai: 1,..., n} is a set of positive real numbers. Specific choices allow us to
apply our results to various classes of functions defined as in (1). Some
examples are a 1 for all (positive harmonic functions), a 2 for all
(solutions of a wide variety of parabolic equations), and o 2 for
1,..., n- 1, n 1/2 (solutions of the heat equation as they approach a
vertical boundary). These examples are described in detail in [MS].

Suppose now that a (0, oo). One verifies without difficulty that d" is an
allowed pseudo-distance. In fact, (i)-(iii) and (v) are immediate. Condition
(iv) holds with K replaced by K or 2-1K according as a (0, 1] or
a (1, oo). Condition (vii) evidently holds with replaced by r/a. In the
sequel, we shall use the pseudo-distance d", for a > 1, to define approach
sets which, roughly speaking, have a times the order of contact of standard
approach sets defined in terms of d. (This will be discussed in detail in the
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next subsection.) Certain modifications and conventions in notation will be
adopted in this connection. The notation B,(x, t)will be used in place of
Ba(x, t) when the ball is defined in terms of d instead of d. More generally,
"a" will be used in place of "d" in other related notation in which the latter
appears explicitly.
The following result will be used frequently.

COVERING THEOREM [CW, Th6orme 1.2, p. 69].
subset of R and let

Let E be a bounded

{Bd[x,r(x)]: x E)

be a covering of E. Then there exists a sequence of disjoint d-balls Bd[xi, r(xi)]
taken from the covering such that {Bd[x i, kr(xi)]} covers E. The constant k
depends only on the constants of the pseudo-distance d.

Throughout the remainder of the paper, d will always denote an allowed
pseudo-distance. The notation K, r, c 1, c2, r, and k given in this subsection
will be reserved for use in connection with the pseudo-distance d. On
occasions when two pseudo-distances are being considered, we shall some-
times use subscripts to avoid ambiguity.

Approach sets
We will consider subsets of Rn + The term approach set will refer to any4-

such subset I having the origin as its only limit point in . By translation,
we can view (x, 0) + f as an approach set to x R.

For x Rn, > 0, and a > 0, define

(d,a)-S(x,t) {(y,s) R_+1" d(x, y) < a(s -t)}.

We call this the d-standard region having aperture a and vertex (x, t). If
a 1, then we simply write d-S(x, t). Clearly d-S(O, 0) is an approach set. As
indicated before, when d is replaced by d" in the above definition, we shall
replace d in the notation with a.

Observe that in the classical setting where d is the Euclidean distance, a
d-standard region is just a cone above its vertex. When a > 1, the a-standard
region is tangential to the horizontal hyperplane containing its vertex, with
the tangentiality increasing with a.
For f any subset of R_+1 and > O, we call

l’),(t) {X Rn: (x,t) a}
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the t-section of f. For a > 0, define

12d, a O{(d,a)-S(x,t): (x,t) 12}.

In case a 1, we simply write fd. Note that

fd,a(t) U{Bd[y,a(t s)]" (y,s) f, s < t}.

We say that an approach set is (d, a)-admissible provided
(i) f(t) is a bounded, measurable set for each > 0, and
(ii) there is a positive constant Ad, a such that

laa, a(t)l <-Ad, alBa(O,t)l.

Note that (ii) says that the t-section through -d,a has measure at most a
fixed multiple of the measure of the t-section of the standard region with
vertex at the origin. This is sometimes called the "cross-sectional measure"
condition.

LEMMA 1.
b>O.

If 12 is (d, a)-admissible, then 12 is (d, b)-admissible for all

The proof follows easily by applying the Covering Theorem to the t-sec-
tions, 12a, b(t ).

DEFINITION. Let 12 be a subset of R_+ 1. We say that 12 is d-admissible if
is (d, a)-admissible for some (hence, by the preceding lemma, for every)

a>0.

By the triangle inequality (condition (iv) in the definition of an allowed
pseudo-distance), we see that (lid, a)d, a

(7. ’d, Ka" The preceding lemma then
implies that if 12 is d-admissible, then Od, a is d-admissible as well.
The d-admissible sets were first studied with the usual Euclidean distance

in [NS]. They were then studied with a general pseudo-distance in [MS] and
[Sul]. We shall obtain some more properties of d-admissible sets in 3.

Clearly d-standard regions are d-admissible. Examples of d-admissible sets
containing sequences converging to the origin having arbitrary degree of
tangency can be constructed using techniques developed in any of the
references quoted in the previous paragraph.

In the sequel, we shall be primarily interested in using a-admissible sets
for our approach sets.
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Content and Hausdorff measure
We now recall the definitions of content and Hausdorff measure for the

cases under consideration here. Recall we have fixed c a, c2, and r such that
(vii) in the definition of an allowed pseudo-distance holds.

DEFINITION.
E is given by

Let E be any subset of Rn and 0 < 8 < r. The 6-content of

(E) =inf E IBI sIr

where the infimum is taken over all countable covers #’= {B} of E by open
d-balls. If E is an analytic set, the 6-dimensional Hausdorff measure of E is
given by

(E) lim (E),
s--,O

where ’S)(E) is defined similarly to with the additional stipulation that
the balls in the cover 0 all have radius no greater than s.

For general background concerning Hausdorff measures and content, see
[Cn; II], [Fr], [Ts; Chapter 3, 4], or [Ro]. The following collects some of
these facts.

PROPOSITION 1. Let ’ and d be the content and Hausdorff measure

defined on R as above. Let E be a subset of Rn. Then the following assertions
are valid.

(i) ’, is an outer measure that is subadditive and outer regular in the sense
that for each e > O, there exists an open set 0 E such that (0) < ,(E) + e.

(ii) aW is an inner regular (infinite) measure with respect to which every
analytic set is measurable.

(iii) A set E has oW(E) 0 if and only if ,(E) O. (This follows from
the Covering Theorem and the subadditivity of t*/.)

(iv) d(d(E)= 0 for a Borel set E if and only if there does not exist a
nontrivial, positive, Borel measure v with support on E such that for every
d-ball Ba(x, t), we have v[Ba(x, t)] < [Ba(O, t)l/ (Frostman [Fr]).

Generalized variation
We define next a notion of generalized variation which extends that

considered by Wiener. This very general notion of variation may be viewed as
a convenient formalism in which to give the proofs. Our primary interest is in
applications to measures, functions of generalized variation in the more
classical sense of Wiener, and the boundary behavior of integrals of the form
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(1) defined relative to measures. In the remainder of this section, we will be
Rn+l -- R.considering functions u: +

DEFINITION. Let 3, > 1. The 3,-variation Ilull Ilull of u is defined as

sup Elu(x,,t )
where the supremum is taken over all sequences {(xj, t)} in R_/1 such that
{Ba(x, t)} is a mutually disjoint family of balls. In addition, we denote the
class of all functions u of finite 3,-variation by 3,BV, so that

3,BV {u" Ilull <

In the sequel, we shall assume 3’ > 1 is fixed, and sometimes suppress
reference to this parameter by writing Ilull for Ilull. In case It" R R and
u(x, t) is equal to diam(it[Bd(X, t)]), It(x + t) It(x), or It(x) It(x t),
the class of functions It for which u 3,BV is the class of functions that
Wiener considered to be of bounded y-variation. It is easy to show that any
such function It is regulated; that is, It has both one-sided limits at each
point. In particular, It is bounded on any bounded interval with at most
countably many discontinuities, each of these being a jump discontinuity.

Maximal functions and generalized derivatives
We assume that a > 1, 0 </3 < + 0% u is a real-valued function on R_+ 1,

and 12 is an approach set as described in the second subsection.

DEFINITION. For each x R, define the maximal function

/n tsu(x) sup( lu(x + y, t)l. (y,t) f, < 1}.
Similarly, we define the lim sup maximal function

n,su(x) limt__,0sup { u(x + Y,t)l }iBa(O,t)l
(y,t) f/

Notation. (i) Let It" Rn R. Then Dn,It(x) denotes ’n,tu(x)when

u(x, t) diam(It[Bd(X, t)] ).

In case n 1, we use the notation r It(X) and ln,t n,a/z(x) when u(x, t) is
equal to It(x + t) It(x) and It(x) It(x t), respectively.
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(ii) Let/x be the difference of two positive Borel measures on Rn. Then we
use the notation D,,tz(x) in connection with the function u(x,t)=
tZ[Bd(X, t)]. In case n 1, we write ra, e/Z(X) and ta, e/x(x) when u(x, t) is
equal to iZ[Bd(X, t) n {y: y > x}] and iZ[Bd(X, t) {y: y < x}], respectively.

(iii) In case f is the a-standard region (a, a)-S(O, O), we replace the
subscript El in the notation defined above with a. (Specific reference to a is
suppressed.)

m!For/x" Rn ----> R, the upper derivatives D, e/Z(x), D,,, e/x(x), and D, e/x(x)
were considered in [Bell in the case n a 1 and 0 </3 < 1.

If/x is a positive, Borel measure on R and d(x, y) Ix y is the usual
metric on R, then ,e/z(x), ,e/z(x), and D,,,e--Itz(x) denote the general-
ized upper symmetric, right-hand, and left-hand derivatives (with respect to
t) considered by Samuelsson in [Sa], and by the first author in [Be2] in the
casen =a= 1.
We note that the notation established above conflicts with that used in

[Bel] since there, the analogous notation would be given, for example, as
AD,elz(x) in place of D,etz(x), to underline the point that these are
"absolute" lim sup maximal functions.

3. Admissible sets

In this section we develop some more properties of d-admissible sets, and
in particular, a-admissible sets. Recall that the latter arise when the allowed
pseudo-distance d is replaced by d. Proposition 2 is a technical but very
useful description of a-admissible sets which will enable us in 4 to overcome
the nontrivial problem of transposing the Nagel-Stein machinery to the
current context. It relies on Lemma 2 which we believe represents a new
description of admissible sets which will be a helpful tool in future results.

Recall that we have fixed the notation K, c1, c2, -, and r in relation to the
allowed pseudo-distance d, and k is the constant associated by the Covering
Theorem.

DEFINITION. Let a >_ 1 and 0 </3 _< 1/a. Let be an approach set such
that 12(t) is a bounded, measurable set for each > 0. Let a > 0. We say
that f is (a, , a)-admissible if there exists a positive constant A such that,
for all > 0, the set l-l,a(t) can be covered by d-balls {Bd(Xi, ti)} and

,lBd(Xi, ti)] <_AlBa(O,t)l.
Notice that if fl is (a,/3, a)-admissible, then from the definition and the

subadditivity of the function t e, we have

[a,a(t)l _< (ElBa(xi, ti)l) <-ZlBa(O,t)l.
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Thus,

Ia a(t)l < A1/(aP)[Bd(O,t)l 1/a < A1/(al3)( c/a ) IB(O’ t)

which implies that f/is a-admissible. The following result gives the converse.

Rn+l Let a > 1. Then f isPROPOSITION 2. Let El be a subset of +
a-admissible if and only iffor some a > 0 and every fl (0, l/a], the set f is
(a 13, a)-admissible.

We shall use the following lemma in the proof.

LEMMA 2. Let f be a d-admissible set. Fix a > O. Then there exists a
countable d-admissible set f’, such that f’ contains f and satisfies thed, a d, a
following property" there exists a positive integer M such that for all > O, the
set 1’ ra( ) is covered byd,

( IJ ( d, kKa)-S( z.))(t),
where the union is taken over a subset of {zj} of 1’ having cardinality less
than M.

Proof of Lemma 2. For z (x,t) ’d,a, let Rz be the "rectangle"
about the point (x, t) defined by

Rz= {(w,s) R_+l"d(w,x) <at/4 and Is-tl <t/4}.
We claim that for all points (w, s) Rz we have Rz c_ (d, Ka)-S(w, s/5).

To show this, let (u, q) Rz. Using the triangle inequality for d, we have

(td(u,w) < K[d(u,x) + d(x,w)] < Ka - + -Ka( 3t
4

The claim is thereby verified.
Let

,.= {to" tO C fd,a, Zl, Z2 tO, Zl =/:: Z2 :=# Zl RZ2 and z2 RZl}.

This is a nonempty collection of subsets of fd, a which are at most countably
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infinite. If we order by inclusion, a straightforward argument using Zorn’s
lemma implies that - has a maximal element. Denote it by {z.} where

z (x., t) for each j. Thus, by maximality,

(2) tz - [-d,a 771j such that either z RZ or z Rz.

It follows from the claim in the previous paragraph that

d,a U (d, Ka)-S(x, t/5).
J

Let ’ denote the sequence {(x, t/5)}. We shall show that ’ satisfies the
conclusion of the lemma.
We have already seen that O’d, r contains Od, a" We show now that ’ is

d-admissible. Note that if s 2t, then

(d,a)-S(x,t/5)(s) c (d,9a/5) S(x,t)(s).

Let > O. Then

, (t)l =] U{(d,a)-S(xi, t/5)(t ) t/5 <t}l
[ U{(d,a)-S(xi, t/5)(lOt)" ti/5 < t}l
1U{(d,9a/5)-S(x,ti)(lOt)}[

l( ad, a)d,9a/5(lOt)l
]a,9/5(10t)
,a/(10)I(0, t)I,

where Aa,9a/ is defined as in (ii) of the definition of (d, gKa/5)-admis-
sible. Thus ’ is d-admissible.
By Lemma 1, there exists a positive constant D such that

(3) n’ oln(0,t)l > 0.,a(t)l <

Choose s, 8 > 0 such that (1 + )/(1 e) < 1 + 5/(8K) and s < 1/5. F
t > 0. Let

J1-- {J" 0 < ty/5 <_ (1 e)t}
and

J2 {J" (1 e)t < tff5 < t}.
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For j J1 k3 J2, let By Bd(Xy Ka(t ty/5)). Observe that

[’’ {By J1 U J2}d, Ka(t) U j

Consider first {By: j J1}. By the Covering Theorem, there exists a finite
subcollection {By: j J} of mutually disjoint balls such that

U {By" j J1} c U {By." j (E J},

where By.’ Bd[xy, kKa(t ty/5)]. Since ty < 5(1 e)t, each By for j J
contributes to the t-section a measure of at least IBd(X, Kaet)l. Thus if #J
denotes the cardinality of J, then

DlBd(O,t)l >lffd, Ka(t)l > #JlBd(xy, Kaet)l
>_ #J[r(1/(gae))]-llBd(O,t)[

so that

#J < Dr[1/(Kas)].

Consider now {By" j J2}" Let i, j J2" Then

It tyl < 5te < 5t(1 e)/4 < tJ4.

Since (Xi, i) q R(X’t), we have

d(xi, Xj) >_ aty/4 > 5a(1 e)t/4.

Let the lowest point of intersection of the closures of the sets (d, Ka)-
S(xi, ti/5) and (d, Ka)-S(xy, ty/5) be denoted by (y, s). Then

5a(1 e)t/4 < d(xi, xj) < K(d(xi, y) + d(xj, y))
< K2a((s -ti/5) + (S tj/5))
< 2g2a(s (1 e)t),

so that

s >_ (1 s)t[1 + 5/(8K2)] > (1 +

Thus for all j J2, the d-balls Bd[Xy Ka((1 + a)t tJ5)] Bd(Xy KaSt)
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are disjoint and are contained in 12’d, Ka[(1 + t)t]. It follows that

and so

#J2 < D’r(1 + 3)-[1/(Ka3)].

This completes the proof.

Proof of Proposition 2. We prove only necessity since sufficiency was
demonstrated following the definition of (a,/3, a)-admissibility. Suppose 12 is
a-admissible and let/3 (0, l/a]. Let f’ and M be as in Lemma 2 relative
to , a, and the pseudo-distance d. In the following argument, constants
K, k, and the function - are those associated With d". Observe that the
constants c and c2 of (vii) in the definition of an allowed pseudo-distance
are the same for d and d". Let > 0. Then there exists a set of less than M
elements of f’, which we denote by {(xj, tj)}, such that

-ot, a(t) C ’ta, Kaa(t) B[ x, kKa(t t)]
I.J Bd[x,(kKa(t- tj))l/],

and

.IB,[ x, k,Ka(t t.)] "8
< M(c2c;1/a’ca(kga))"lBd(O, t)It

This completes the proof.

We note in passing that Lemma 2 can be used to prove the following
result. For brevity, we omit the proof.

PROPOSITION 3. Suppose that > 0 and d and e are pseudo-distances on
R such that e(x, y) < d(x, y) whenever x, y R and d(x, y) <_ 6. Let 12 be

In+l such that its projection onto Rn is a bounded set. If f isa subset of +
d-admissible, then 12 is e-admissible.
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4. Intermittent oscillation of functions of finite y-variation

In this section we prove our principal result, Theorem 1, in which we
combine some of the ideas of Samuelsson on growth with those of Nagel and
Stein on admissible approach sets. The extension of the Nagel-Stein machin-
ery to this context does not seem to us to be routine. It makes great use of
Proposition 2 of {}3.
We assume a,7 > 1 and 0 </3 < 1. The significance of the parameters is

that a determines the tangentiality of the approach sets, y the class of
functions of bounded generalized y-variation under consideration, and/3 the
test-function against which intermittent oscillation is measured. We continue
to assume that K, -, c 1, c2, r, and k are fixed relative to the pseudo-distance
d as in 2.
Due to Proposition 4 in 6, we are primarily interested in the case where

a/3y < 1. In order to state subsequent results, we establish the following
terminology. A function u: R_+1 R is said to vanish eventually in the strip
R (0, 1) provided there exists a d-ball B such that u vanishes on (Rn \ B)

(0, 1). Since our results are local in nature, there is no loss of generality in
restricting to such functions.
The principal result of this paper is the following.

THEOREM 1. Let a, fl, 3’ satisfy the conditions a, y >_ 1 and 0 < fl <_

1/(a7). Put a137r. Let 12 be an a-admissible subset of R_+ 1o Then there
exists a positive constant C such that, for every function u: R_+1 --> R which
vanishes eventually in the strip Rn (0, 1) and all numbers h > O, we have

(4) -[{X Rn" ,/’f /3U(X) > A}] < C
Ilully

Hence, if u is an element of 7BV, then

o[{x Rn. f,/3u(x) oo}] 0.

Note that (4) and (5) hold when is replaced by , since a,tu <
/a,tu. With this replacement made, the theorem can be understood in
terms of the intermittent oscillation of /z, where /z is either a real-valued
function or a measure defined on the boundary Rn. In this case, Theorem 1
holds with /a,tu replaced by Da, t/z. (See notation at the end of {}2.)
We begin the proof with a special case.

LEMMA 3. Let a > O. Assume a, fl, 7, and 6 are as stated in Theorem 1.
Then there exists a positive constant C such that for every function u: R_+1 - R
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as in the theorem, we have

(6) ’[{X Rn’,/a u(x) >" A}I < C
[lulls/

Proof For simplicity, we assume that a 1. Let H {x Rn: /,, tu(x)
> A}. Note that our assumption on u implies that H is bounded. For each
point x H, there exists (Yx, tx) such that d(yx, 0)" < t, < 1 and u(x +
y,, x) > A IBa(0, tx)l t3. Now

{Bd[ x, K(d( Yx, O) + tx) x H}
is a covering of H by open d-balls. By the Covering Theorem, we may choose
a finite, pairwise disjoint subfamily of balls

{Bi} {Bd[xi, K(d(yi,O) + ti)]}
such that

{B;) (Bd[ Xi, kK(d( Yi, O) -I- ti)]}
covers H. Since Bd(X -Jr-Yi, ti) C Bi, the family {Bd(X + Yi, ti)} is pairwise
disjoint. Thus

This gives the required conclusion.

The following is a general result concerning content for the present setting.

LEMMA 4. Let 0 < 6 < r. There exists a positive constant c depending only
on the constants of the pseudo-distance such that, for every e > 0 and bounded
subset H of Rn, there is a sequence of d-balls {Bd(Xi, ri)} such that

(i) EIBd(Xi, ri)l /r < d’(H) + e,
(ii) H c I.J Bd(Xi, cri) and
(iii) for each i, we have Bd(Xi, cri) 0 (Rn \ H) .
Proof Let e > 0 and choose c’ > 2(K + K3). By the outer regularity of

d’, there exists an open set O containing H such that (O) < d(H) + e/2.
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For each y O, let s(y) (2c’)-ld(y,Rn \ 0), where d(y,R \ O) de-
notes the distance of y to the complement of O. Note that for each y O,
the ball Ba[y, c’s(y)] is contained in O. Then by the Covering Theorem,
there exists a sequence of mutually disjoint d-balls {Bd(Yi, c’si)} (where we
denote s(yi) by Si) such that O c LI Bd(Yi, kc’si). Notice that

(7) Bd(Yi,3c’si) q (R \ O) 4: Q for each i.

We shall construct the sequence {Ba(xi, ri)} by taking a subset of {Bd(Yi, Si)}
and another collection of balls {Bd(Zi, ti)} which will be defined after some
preparatory discussion. Suppose that a ball Ba(w, t) intersects each of two
balls Ba(yi, si) and Bd(Yj, sj) for 4: j. We assume, without loss of generality,
that s > s. Select

W Bd(W, t) N Bd(Yi, Si) and wj Bd(W, t) Bd(yj, sj).

Since B(yi, C’Si) (’) B(y, c’s) , we have

2(K + g3)si < c’s < d( Yi, Yj)

+  [a wi,w) + +

< (K + K3)si + Kz(1 + K)t,

so that

t>
( K + K3)si s

K2(1 + K)
> ’

using the fact that K > 1. From this we get

d(Yi,W ) < g[d(Yi,Wi) + d(wi,w)] < g(s + t) < K(K + 1)t.

It follows from the triangle inequality that

(8a) Bd( Yi, c’ksi) Bd[w, K2( c’k + K + 1)t]
and

8b) nd(Yi,3C’Si) C nd[W K2(3c + K + 1)t].
We shall now define the collection of balls {Ba(zi, ti)}. Let U=

I,J Ba(yi, si) O. By the outer regularity of , we can select the sequence
{Ba(zi, ti)} of d-balls which covers U such that EIBa(zi, ti)l /r < (U) /

e/2.
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We select the sequence {Bd(Xi, ri)} from the collections {Bd(Yi, Si)} and
{Bd(Zi, ti)} as follows. Of the collection {Bd(Yi, Si)}, we keep only those balls
Bd(Yi, Si) which are covered by a subset of {Bd(zi, ti)} none of whose
elements meet Bd(Yj, Sj) for any j 4: i. Of the collection {Bd(Zi, ti)} we keep
only those elements which meet at least two of the d-balls of {Bd(Yi, Si)}. We
denote the resulting set of d-balls which we keep by {Bd(Xi, ri)}. Notice that
if Bd(Yi, Si) C U Bd(Zii, til), then since 0 < 6/r _< 1, we have

., IBd(Ziy, ti)[/r>- (E IBd(Zi, ti)l)/r >lBd(Yi, Si)l/r.

It follows that

ElBa(x,, ri)Ia/r <_ ElBa(z,, ti)I/r < a(U) + el2
< -d’(O) + e/2 < -d’(H) + e.

Let c be the maximum of K2(3c + K + 1) and KZ(c’k + K + 1). It follows
from (8) that

H c 0 c U Bd(Yi, ’k$i) C U Bd(Xi, cri).

We also conclude from (8) that for each there exists j such that

Bd(Xi, cri) 0 (Rn \ O) D Bd(Yi,3c’si) N (R \

which by (7) is nonempty. This completes the proof.

Lemma 4 and Proposition 2 allow us to modify the technique by Sueiro in
[Su2] to obtain the proof of Theorem 1. Lemma 4 replaces Sueiro’s use of the
Whitney decomposition.

Proof of Theorem 1. Let e > 0 and H {x Rn. ,/a, ou(x) > A}. By our
assumption on u, the set H is bounded. By Lemma 4, there exists a positive
constant c depending only on the constants of the pseudo-distance, and a
sequence of d-balls {Bd(Xi, r/1/)} such that

(9)

the collection {Bd(Xi, cril/)} covers H, and for each i, the ball B(xi, cr]/)
has nonempty intersection with R \ H.

Let /a,tu(x) > A. Then there exists a point (y, t) 1/such that

u(x + y,t) > ,XIB,(O, t) .
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For each point z Bd(X + y, tl/a), we have

>_
u[z+(x+y-z),t]

IBd(O,t)l

so that

(10) Bd(x + y, 1/a) c H.

In particular, x + y Bd(xi, cr.1,/a) for some i. If d(z, xi) < cari, then

d(z, x + y)a <_ 2a_lKa(d(z, xi) + d(xi, x + y)a) < 2aKacari"

Thus Bd(Xi, crl/a) is a subset of Bd(x -!- y, 2Kcr/a) but, according to (10) it
is not a subset of Bd(x + y, tl/a). It follows that < 2aKacari Thus

d(x -x, y)a < cari < (C + 2aKaca)r t.

This implies that (X X, (1 + 2aKa)cari) fla" We have thus shown

{X" ,/I-I,U(X) > 1} C U {Xi- aa[(1 "[- 2aKa)cari]}"

By Proposition 2, fa is (a,/37, 1)-admissible. Thus

where c’ depends only on a and the constants associated with the pseudo-
distance d. Thus, by (9), there exists a positive constant c independent of h,
u, and e, such that

> ,1)_< +

Since e is arbitrary, (4) follows from this and Lemma 3. We obtain (5)
immediately. 1

The next result concerning the "lim sup" maximal function is an immediate
corollary to the proof of Lemma 3. We do not know if this holds in general
for .’,.
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COROLLARY. In the setting of Lemma 3, we have

((X " Rn" *otflu(X), )) - C
[[u]]y

To prove the corollary, the same proof can be used as in Lemma 3 except
that for an arbitrarily prescribed number s > 0, we make the requirement
that x < s for each x H. This is possible because a "lim sup" appears in
the definition of ,, instead of the "sup" of ’,, .
COROLLARY. Consider the setting of Theorem 1. Let v be a Borel measure

such that, for every d-ball Bd(X, t), V[Bd(X, t)] < [Bd(0, t)[ "t. Then

V({X Rn" ,[’f,13U(X) > A}) _<C

Proof. Let K be a compact subset of {x: /a,tu(x) > h} and let e > 0.
There exists a sequence of d-balls {Bd(Xi, ri)} which covers K such that
Y’.IBd(Xi, ri)[ al3/ < ((K) + e. By the theorem,

v(K) <_ EV[Bd(Xi, ri) < .,[Bd(Xi,,i)l < -d’a(K) + e < c,,U,,

As e is arbitrary, the result follows.

More can be said in the case that we are working with measures on Rn (so
that y 1).

THEOREM 2. Let a > 1 and 0 < fl < 1/a. Let 1 be an a-admissible
subset of R_+ 1. Then, for every Borel measure Ix on Rn, we have

oaflr((X -- Rn" a,].lb(X) 0)) O.

Proof. Fix h > 0. Let

g(d#, h) {x Rn" a,/3/z(x) >

It suffices to show that a/3r[E(dlz, h)] 0. Let e > 0. Let K be a compact
subset of E(dlz, A) and let v be a measure with support in K such that

(11) [Bd(X,t)] <_lBa(x,t)l, x R", > O.

By Frostman’s Theorem (Proposition 1 (iv)), it is enough to show that
Ilvll < ce, where c depends only on a and /3. Let d/x g dv + dto be the
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Jordan decomposition of /x with respect to v, where g Ll(dv) and
0) is singular with respect to v. Let f be a continuous function such
that Ill-gllL(a)< cA. Since a > 1, it follows easily from (11) that
E(fdv, h/2)= . With C as in the second corollary of Theorem 1, we get

C
(12) v[E(gdv, A/2)] <_ v[E((f g) dv, A/2)] <_ llf- gllzl(a,o Ce.

Since o is singular with respect to v, there exists a set A such that
0)(Rn \ A)= 0 and v(A)= 0. Let L c A c U where L is compact, U is
open, v(U) < e, and 0)(A \ L) < cA. Let v v + v2 and 0) 0)1 + 0002
where /1 =/lv, /z--vlw’\u, 0001 r.OlL, 000 2 "-0)[A\L. Clearly (Rn\ U)O
E(d0)a, A/4) Q. Again by the second corollary of Theorem 1, we get

(13) v[E(d0),A/2)] vl[g(d0),A/2)] + v2[E(d0),A/2)]
< v(U) + v2[E(d0)l,h/4)] + v2[E(d0)2, h/4)]

C
_< v(U) / Tllo2ll
< (1 + C)e.

It follows from (12) and (13) that

Ilvll v(g) v[E(dt,)]
< (1 + 2C)e.

< v[E(gdv, A/2)] + v[E(d0),A/2)]

This completes the proof.

5. Intermittent growth of functions defined
by integral representations

In this section we apply our results to study the intermittent growth of
functions of the form (1), where /x is a regular Borel measure on Rn. The
kernel K: Rn X (0, o) X Rn -- [0, oo) is assumed to be measurable in the last
variable and satisfy the following additional conditions:

(i) fK(x, t, y) dy 1 continuously as (x, t) (x0, 0) for each x0 Rn.
(ii) For all points (x, t) Rn+ 1, we have

dp[d(x, y)/t]
K(x,t, y) _<

IBd(O,t)l

where b is a bounded, decreasing, real-valued function on [0, o) for which
E,r(2/+1)(2/) < .
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(iii) For each point x0 Rn, open set W containing x0, and T (0, oo],
there exists a point (Y0, So) R" (0, T) and open sets U 3 V x0 such
that U c W for all x V, y Rn \ U, and for all sufficiently close to 0,
we have K(x, t, y) < t(t)K(y0, s0, y) where t(t) 0 as t 0 +.

(iv) There exists a positive constant c such that for all x R and t > 0,
we have

fB K(x,t, y) dy > c.
(x,t)

Functions of this form were studied in [MS] where certain almost every-
where limit results were established. Such functions include positive har-
monic functions and a wide class of positive parabolic functions on the upper
half space as well as positive solutions of the heat equation on the right half
space. These are described in detail in [MS]. In the next result we apply the
results of 4 to functions representable in the form (1) to obtain
Samuelsson-type results with respect to generalized Stein-Nagel regions
allowing greater tangencies.
For f an approach set and /3 > 0, define

,(Xo) suP(ISd(O,t)l-(Xo / x,t)" (x,t) a, < 1),
and

Jn,t/Z(Xo) lim sup (l Bd(O, t) ll-tJUlX( Xo + x, t)" ( x, t) 12).
tO

THEOREM 3. Let 1) be any approach region in R_+1 such that l)(s)
if s < t. Then there exists a positive constant C such that for any measure Ix on
Rn_and fl > O, we have JUa,/x(xo) _< C.’a,t/x(xo) and Jga, t/x(xo) _<

C’a,t/x(xo) for each xo R where /g’a,t/X(Xo) <

By making use of the results of 4, the proof is similar to the proof of
Lemma 2.5 in [MS], and we omit it. We thus obtain analogues of Theorem 1
along with its corollaries, and Theorem 2 for J and J.

6. Converse results

In this section we prove results converse to those given in 5. Since our
primary interest is in measures and functions defined as in (1), we restrict
ourselves to 3’ 1, although analogous results are easily deduced by insert-
ing suitable powers of 3’. We begin by showing why we have restricted
ourselves to the case where aft <_ 1.
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PROPOSITION 4. Let a > 1, /3 > 0, and a[3 > 1. If fl is a-admissible but
not 1/fl-admissible, then there exists a finite measure Ix such that for almost all
y Rn, we have ,l(Y) oo.

Note that if we take 12 to be the normal N0, then l is the a-standard
region a-Sd(0 0). This is, of course, a-admissible but not 1//3-admissible.

Proof Without loss of generality, we may restrict y to lie in a bounded,
measurable subset F of R". Since fl is not 1//3-admissible, there exists a
sequence {ti} decreasing to 0 such that Ifll/(ti)l/IBa(O, t/)[ --> oo as --> oo.
Note that [l/o(ti) c [-a(ti) if < 1. By passing to a subsequence, we may
assume that there exists a sequence of positive numbers {Mi} converging to oo

such that

(14) _,M Bd(O’ ti) 18
la(ti)

<oo.

Let [[. ]] denote the greatest integer function. According to the proof of
Theorem 1.2 of [MPS2], there exist a measurable subset H of F with
IF \ HI 0 and, for each i, a finite set of points {x: j"
1,...,[[ll’l,,(ti)l-1]]} with the following property: for every point y H,
there is an infinite set of indices and j such that y is contained in the
translate Xij- a(ti) of a(ti). On each ball Bd(Xij, ti) place Lebesgue
measure normalized so that the total mass is MilBd(O ti)l IJ. Let/x denote the
sum of these measures. By (14), the measure/z is finite. It is straightforward
to check that for every point y H, we have /a,/x(y) oo as required.

In the next result, we see that the exceptional set of Theorem 1 is of the
correct size.

THEOREM 4. Let a >_ 1 and 0 < fl <_ 1/a.
ar. Then there exists a finite measure

:,(x) }.

Let dr(E) 0 where
such that E G {x Rn:

Proof. Let be a positive integer. By the Covering Theorem, there exists
a sequence of mutually disjoint d-balls, {Bd(Xij, rij)}’, such that E c

U yBd(Xiy, kriy), rij < l/i, and ,ylBd(xiy rij)l3 < 2 -i. Let i be the mea-
sure defined by

E (3/2)’lBa(x, ri)l(0-1)ftij,
J
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where [ij is the restriction of Lebesgue measure to Ba(xij, k"ri). Put
/x Y’./x i. Then/x is a finite measure. Let x E. For each there exists an
index j such that x Bu(xij, kri). Putting y xi-x and t k"rij we
have d(y, 0) < < l/i, and

Bd(0, t)11-/3,b//.(X -[- y, t) --[ Ba(0, karit)11-/3,(Xij kari)

>_ Ba(O, k"ri ) 1- fK( xi, krij y ) dlzi( y )

>_ Bd(O, )[1-/3 (3/2) i] Ba ( xij, rij )
a(/3 1)

>( fB K(xij’ t’ y) dY
d(Xij, t)

>__ C(3/2)iT(CaCakr) 1-/3

where c is defined in condition (iv) of 5. It follows that

Kff’a,/3lJ,( X ) (3/2) i( clCakar) (1-/3T)/T.

Letting 0% we see that

In the next result we show that one can only obtain maximal inequalities as
in the second corollary of Theorem 1 if the approach region is a-admissible.

THZOREM5. Let a and satisfy a >_ 1 and 0 < <_ 1/a. Let f be an
approach set that is not a-admissible. Then there exists a Borel measure and a
sequence {/zi} offinite measures such that for every d-ball Bd(x, t), we have

v[B(x,t)] <_lBa(x,t)l

and

lim Iltxill - Rn"/2[{X ( ,.l-la /3fi(X)> 1}]--oo
i--,oo

Proof Fix X0 - Rn. It follows from the fact that 1 is not a-admissible
that there exists a sequence {ti} decreasing to 0 and a collection of d-balls
{Bi} such that, for every i, the family {Bij} is mutually disjoint and is
contained in the set xo .(ti),

IBd(O, ti) l-/3( j [Bi1[) > 3,
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and

1E Iniil > z(k) I(t)l’
J

where k is as in the Covering Theorem.
Let i be the measure obtained by placing normalized Lebesgue measure

on the ball Bd(xo, i) of total mass c-llBa(O, ti)[, c as in (iv) of 5. Then for
every point x xo fl,(ti), we have

n,/zi(x) >lBd(O, ti) l- fs K(xo, ti, Y) dli(y ) > 1.
d(Xo, ti)

Let /i be a multiple of Lebesgue measure on U jBij normalized so that

IIvll i-2(EIBvl). Then for every d-ball Bd(X, t),

li[Bd(X,t)] <-- i-2(j E IB, (x, t) c nij
J

< i-l Bd(X, t)l’.
Let v E(6/Tr2),i. Then P[Bd(X t)] _< IBd(X, t)l". Finally,

Ilb/,ill-ll({x Rn" lla,i(X) > 1}).> llill -I

> ci.

This establishes the theorem.

In the following result, we let d denote the usual Euclidean distance on
the real line. In case a,/3, and n are all equal to 1, it was proved in [MPS2]
for a general non-a-admissible set fl. In the present context, we can prove
the result in case the sections, fl(ty), are all intervals.

THEOREM 6. Suppose that 12 is an open approach set in RE+ bounded by
the vertical axis NO {(0, t): > 0} and a nondecreasing curve in the first
quadrant passing through the origin. Suppose that there exists a sequence {ti}
decreasing to 0 such that ll2(ti)l/tli/ as - o. Then, for all values of
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the parameters a and fl with a >_ 1 and 0 < fl <_ l/a, there exists a finite
measure tz such that ,a,o/.(x)= on a set of positive a-Hausdorff
measure.

Proof. By assumption, for each positive integer i, the set (ti) is an
interval. Let us denote its measure by fl i. Define fl0 1. By passing to a
subsequence, we may assume without loss of generality that there exists a
sequence {Mi} oo as oo such that

(15) EMiD;t < oo,

and [-i/[’i_l "-> 0 as i--* oo. To simplify notation, we shall assume that
{(ll/_ 1/fli)": > 1} is a sequence of integers. The changes necessary for the
general case are easily made.

Partition the interval [0, 1] by equally spaced points which divide it into
intervals I1, j, j 1,..., fl-’. Divide each I1, into two subintervals, the left
one denoted by Jlj such that IJl, yl 121. Let fl(t) be the unique continuous
function on [0, 1] such that fl(0) 0 and f;(t) l-l-1 for all LI Jl, j,

with fl constant otherwise.
Suppose now that for each i> 2, we have defied {Ii-l,j}, {Ji-l, j}, and

fi-l(t), for 1,..., fl-f. For each i, partition Ji-1 so as to divide it into
([’i_l/’i)a subintervals each of length 122127.

’j

Call this collection of
intervals {Ii,: j 1,..., fl-"}. Divide each Ii, into two subintervals, the
left denoted by Ji, such that I1,.1 --fi. Let fi be the unique continuous
function on [0, 1] such that fi(O) 0 and f[(t) fiT-1 for all t 13 jJi, j,

with fi constant otherwise. Then {fi} is a nondecreasing sequence of nonde-
creasing functions. Let f(t) denote the limit function.
For each pair of positive integers i, j, where j 1,...,(i_l/i)al3,

define

gji(t) (t- (j- 1)fl_-/fl/)/ + (j- 1)flt

for

We claim that t-"gji(t) is bounded, independent of j and i. Elementary
calculus shows that t-gji(t) is nondecreasing. Thus

gji(t)[ ([’i,)
afl(1-a)"

<j-’ 1 + (j- 1) hit/

[-i aft(l-aft) i-1< max x-s 1 + (x 1) i--i 1 _< x _<
[i
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Again by elementary calculus,
("i_l/’i)af, or, in case a/3 < 1,

this maximum occurs at x 1, x

X

af(1 -aft)

A simple computation shows the value of t-afgik(t) at each of these points is
bounded by a constant depending only on a and /3. This proves the claim.
We show now that t-"ffi(t) is bounded on 0 < t < 1 independent of i. By

symmetry, t-ffi(t) is bounded on the interval 0 < < ff if and only if
fi(t)/gjl(t) is bounded on the interval (j 1)ff < < jff. Since t-fgjl
is bounded independent of j on the latter interval, it thus suffices to show
that t-ffi(t) is bounded on the interval 0 < < ff. By a similar symmetry
argument, it suffices to show that t-ffi(t) is bounded on the interval
0 < < f-fff. Repeating this argument times, we see it is enough to
check that t-ffi(t) is bounded on the interval 0 < < cl-fcf and, ofi_ a"i

course, by construction and the concavity of the mapping f, this is
bounded by 1.

Let

E N U {Jj, "j= 1,..., 127, ’f, i> 1}.
j

Since t-ff(t) is bounded, we have by Frostman’s theorem (Proposition 1
(iv)) that f(E) > 0. Let /-i be the measure obtained by placing the mass
Mit uniformly along the interval of radius centered at the right endpoint
of each of the intervals Ji,, J 1,..., f-’f. Let/x E/x i. Then by (15),/
is finite and, by construction and the fact that each i is an interval,
a,f/x(x) o at each point of E. m
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