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RESTRICTIONS OF FOURIER TRANSFORMS TO FLAT
CURVES IN Rz

JONG-GuK BAK

1. Introduction

Given a smooth (lower-dimensional) submanifold S of Rn and a smooth
compactly supported measure tr on S, one may ask for what values of p and
q an a priori estimate of the form

(1.1) IlfqslIL<) Cp,qllfllzp<Rn) Vf ,’(Rn)

holds, where fqs denotes the restriction of the Fourier transform of f to S,
and a(Rn) is the Schwartz class of functions. Estimates of this type are
known as restriction theorems. Note that if p 1 the estimate holds trivially
(for any q). On the other hand, if p 2 such an estimate cannot hold, since
S has Lebesgue measure zero in Rn. E. M. Stein was the first to observe that
a restriction theorem holds for q 2 and some p > 1 when S is the
n-sphere, or more generally, when an estimate of the form

(1.2) I(:)1 c(] + I:1), v5 Rn

holds with some e > 0 for the Fourier transform of the measure tr on S (see
[F],[S]). The estimate (1.2) holds, for instance, if S is of finite type, namely
each point of S has at most a finite order contact with any hyperplane.
Hence it follows that (1.1) holds for all finite type S with q 2 and a
nontrivial p, that is, some p (1,2). See [S] for more details. Also see
[F],[T], [Z], [C], [DM], [So] and further references cited in those works.
On the other hand, it is well known that a nontrivial restriction estimate

need not hold if the curvature vanishes to infinite order at some point of S in
such a way that (1.2) should fail--we will call such S (infinitely) flat. (So the
surface of a circular cylinder, say, is not fiat, since (1.2) holds for it.) For
example, if S is the fiat curve in R2 given as the graph of the function
y(t) e l/t2 near the origin, then a homogeneity argument shows that (1.1)
fails for every p > 1. However, in this paper we show that an analog of (1.1)
does hold for a class of strictly convex curves whose curvature vanishes, to
infinite (or finite) order, at the origin, where the L" space on the right side of
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(1.1) is replaced by a suitable Orlicz space L*. See Theorem 3.2 for precise
statements. For the example y(t)= e -1/t2 mentioned above, our estimate
may be written as

(1.3)

If( t, e -1/t2)[ q dt < Cq -[- Cq
1 -[- log + ( 1/IfI) ]l/2q

for q > 2. This estimate is equivalent to the norm estimate

If( t, ,(t) )1 q dt < Cq Ilfl[,,

where (P is a Young’s function equivalent to the function 111 +
log/(1/t)]1/2q (see Remark 3.4). The estimate (1.3) is optimal for the given
values of q (see Proposition 3.13 and Corollary 3.14). Our method of proof is
closely related to those in [F] and [Z]. See [W] for an excellent discussion of
this problem and Other problems in harmonic analysis associated to fiat
curves and surfaces. See also [BMO] for a recent study of a related problem.
The organization of the paper is as follows: In section 2 we collect some

facts and definitions in the Orlicz space theory that will be useful in the
paper. In section 3 we state the results and give a few examples. Section 4
contains some lemmas and proofs of the main results.

Acknowledgements. This paper is based on the author’s Ph.D. thesis at
the University of Wisconsin-Madison. I would like to take this opportunity to
thank my advisor Professor Steve Wainger for all his encouragement and
help and also for suggesting the problem to me.

2. Orlicz spaces

In this section we recall a few definitions and facts from the Orlicz space
theory which will be needed in later sections. For more details see [JT], [R].
We say that the function (P: [0, oo) [0, o] is a Young’s function provided
that (P is convex, increasing (= non-decreasing), nontrivial (0 (t) o for
t > 0), and P(0) 0. Given a Young’s function q, the Orlicz space L’I’(Rn)
is the Banach space of (equivalence classes of) measurable functions f such
that

f (Ifl/1) dx < for some constant > 0.
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L’(Rn) is equipped with the norm

(2.1) Ilfll--inf{l > 0: f >(Ifl#)dx 1} (Luxemburg norm).

For example if (t)=tP, when l<p <o% or (t)=limr__,otr, when
p 0% we have Ilfll Ilfllp. The Young’s complement of is the Young’s
function xI, defined by

(2.2) ( ) sup st (s) 1.
s>_O

If is given by (t) fdd(s)ds, where b is a strictly increasing function,
then it may be shown that is given by (t) fdb-l(s)ds.
From (2.2) it follows that

st < dP(s) + xlt(t), for s, > 0 (Young’s inequality).

Young’s inequality implies H61der’s inequality

(2.3) flfglax <_ 211fll,i,. Ilgll,I,.

There is another norm on L* given by

(2.4) Ilfll sup ffgdx (Orlicznorm),

where the supremum is taken over all g such that f(lgl)dx < 1. The two
norms are equivalent:

This together with (2.4) and Young’s inequality gives

(2.5) Ilfll < 1 + feD(Ill)dx.
The following extension of the Hausdorff-Young inequality to Orlicz spaces
is in [JT] (see Theorem 3.2 there).

THEOREM 2.6. Assume that v is a positive, continuous and strictly increas-
ing function on (0, oo) such that v(s)/s is increasing. Let

m(t) 1/[v -1(i/t)], N(t) v(s) ds,
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and

Then for all f LM(Rn),

M( t) fm( s) ds.

IlfqlN 211filM.

3. Statement of results

In this paper we consider the curve {(t, 3’(t)): > 0} in Rz, where
satisfies the following basic hypotheses.

(3.1) Basic hypotheses on 3". We assume that 3’: [0,) [0, ) is a
twice-differentiable, strictly convex function such that y(0)= /’(0)= 0 and
3"(t)/t 3 is increasing for t > 0.

Notation. Given 3’ and 1 _< q < we define the function by /q(t)--
tq-l" 3’(tq). Note that the convexity of 3’ implies that of 3’q, hence the
inverse function 3’-1 of 3"q is concave. Given a nice function h on R2 we
often abbreviate the norm

Ih( t, 3"( ) )l q dt

of the restriction of h to F by IIh lifo<r) or IIh I1, where

r r. {(t,3’(t)). 0 < < }.

Also, II. II/o,r)--I1" Ila,b will denote the Lorentz norm taken with respect
to the measure dt on F (see [SW]). If q [1, ], q’ denotes the conjugate
exponent of q, that is 1/q + 1/q’= 1. We let C denote a finite positive
conjugate exponent of q, that is 1/q + 1/q’ 1. We let C denote a finite
positive constant which may not be the same at each occurrence, f _< g will
mean there exists a constant C such that f(x) < Cg(x) for all relevant x,
and we writef=g iff_<g and g_<f.
We now state our results in the following three theorems.

THEOREM 3.2. Suppose that 3" satisfies (3.1) and that 3""(t)/t is increasing
on (0, 8) for some > O. Then for 1 <_ q < oo and 0 < d < 1 there exists a
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constant C Cd, q such that for all f a(R2),

(3.3) If( t, T ( t))l q at _< C -I- C 2If] 3’; l(If])
d
dXo

Moreover, the estimate (3.3) fails for every q if d > 1.

Remark 3.4. We remark that (3.3) is equivalent to the norm estimate

(3.5) Ilfql(r CIIfll,

where is the Young’s function defined by

f(t) fot[ll(s)] d
dSo

To see this first observe that the fact that 3,q
-1 is increasing and concave

implies

(3.6) dP(t) t[3"l(t)] d,

since

d
(I)(t) [3’q- I(S)] t 1( d

ds >_ - 7; t/2)] > t[Tl(t)] d

Now from (2.1) and (2.5) it follows that (3.5) is equivalent to

IIflzq<r) C + cf(Ifl ) dx,

which is equivalent to (3.3) because of (3.6). Also note that (3.3) is equivalent
to

13( t, 3’( t))lq dt <__ C "[- cfR2[f[ [3"1([f[ /k i)]"

which may be obtained by combining (3.3)with the trivial L L estimate
(see Step 3 of the proof of Theorem 3.2). (Thus, only the values of 3’ near the
origin are relevant for our (local) problem.) Here If[ A 1 stands for
min{ Ill, 1}. Similar remarks can be made about (3.8) and (3.12) below.
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THEOREM 3.7. Suppose that y satisfies (3.1) and that T"(t)/e -t-a is
increasing on (0,) for some constants a > 0 and 0 < < 1. Then for

(3.8) IIflo,=(r) < C + cfi=lfl (Ifl ) dx.

Note that when q > 2 the estimate (3.8) is stronger than (3.3) with d 1,
since Lp’r c Lp,s if r < s (see p. 192 in [SW]). In particular, (3.3) holds for
q > 2 and d 1 under the hypotheses of Theorem 3.7. See Corollary 3.14
below.

THEOREM 3.9. Suppose that y satisfies (3.1). In addition assume that for
some real number k > 3,

(3.10) 3’"(t)/t k- 2 is increasing on (0, ) for some > O,

and for -1 < a < 1,

(3.11) 7(t) a 3/’(t( +a)/(k- 1)) if 0 < < 1.

Then for 1 < q < o and

b.-- 2
(k + 1)q + 2’

we have

(3.12) Ilfqlo,(r C + cfielfl 7l(Ifl ) dx.

In particular, (3.3) holds when q > 2k/(k + 1) and d 1.
Theorem 3.2 applies to both fiat and nonflat curves, whereas Theorems 3.7

and 3.9 concern the (endpoint) case d 1 for some sufficiently fiat curves
and nonflat curves, respectively. The fact that the estimates in these theo-
rems are sharp or nearly sharp is expressed in the following proposition (a
necessary condition).

PROPOSITION 3.13.

Ilfql za(r C Ilfll.

(or equivalently IIf’]l(r)< C + Cfl=(Ifl)dx) holds for all f ,_,’(R2) for
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some 1 < q < and a Young’s function , then

forO<_t <_ 1.

If 1 < q < o we may replace the norm [[flL,(r) above by [[f[L,,=(r) and obtain
the same conclusion.

Proof We use a variant of the infinitesimal homogeneity argument due to
A. W. Knapp (see e.g. IT]). Let

f(s,t) ee-(s)2" y(e)e-(v()t)2 for e > 0 and s,t e R.

Then

f(u,v) e-=(u/)2" e -=(v/r))2.

Ife <6,

X[0, el dt
1/q

el/q

Next we show that IILII. < e3;(e)/[-(e"/(e))] -" l for e sufficiently
small. (We may assume is strictly increasing near 0, so that -1 is defined
there.) We have

<_ fe-’)2-(()t)2 dP(dP-l(’),())) dsdt

fe -=(")-=((’t): er(e) d dt

fI2e-’tr(s2+t2) dsdt 1.

The last inequality is a consequence of the facts that is convex, (0) 0,
and e -r(es)2-r(3’(e)t)2 _< 1. Therefore, by the definition (2.1),

IILII -< 1 (I)- I(ET(E))
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Thus, the hypothesis Ilfql(r> CIIfll Vf ,a(R2) implies

e1/q < C e’y(e)
for small e.

Putting e sq and rewriting the inequality gives

s,(s) I,(C/(s)) for small s.

Finally, letting u Cyq(S)we get

for small u.

This gives

P(u) >_ u’(u) for 0 < u < 1,

since the concavity of ya-1 implies that q-l(u/C) , ’-l(u). I’-I

It is easy to see that Theorems 3.7, 3.9 and Proposition 3.13 imply the
following result.

COROLLARY 3.14. Suppose that dp is a Young’s function and assume one of
the following:

(1) The hypotheses of Theorem 3.7 hold and 2 <_ q <
(2) The hypotheses of Theorem 3.9 hold and 2k/(k + 1)

Then the a priori inequality Ilfqtor) -< CIIfll holds if and only if dp(t) >_ t

yl(t) for 0 < t < 1.

3.15 Examples. In the first three of the following examples it is to be
understood that y(0)= 0 and y is defined by the given formula on a
sufficiently small interval (0, 6), and extended suitably for t > .

_t-a(1) y(t) e with a > 0. Then Tq--l(t) [’y l(t)]l/q [log(l/t)] 1/qa

(for small t). Theorem 3.7 applies here and in this case (3.8) may be rewritten
as

Ill(3.16) IIfl,o,=r) < C + C
[1 + log+(1/lfl)] 1/qa dx.

More generally we may take

r(t) (exp)k(t -a)
with a > 0 and k 1,2,...,
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where (exp)k denotes the composition of k copies of exp(t)= e t. Then a
similar conclusion holds:

[[fq[Lq,2(r) < C + C
2[ 1 + (log+)k(1/lf[)]l/qa

Here (log+)k is the k-fold iteration of log +.
(2) 3,(t) e -[lg(1/t)]a, a > 1. Theorem 3.2 applies. Note that this curve is

fiat at the origin, but not as fiat as the ones in (a).
(3) y(t) t k. [log(i/t)] with k > 3, a R or k 3, a < 0. Theorem

3.2 applies here. If k > 3 and a < 0, then Theorem 3.9 applies and we get
(3.12).

(4) Let y(t) = k (k >_ 3) satisfy, say, the hypotheses of Theorem 3.9. In
this case (3.12) reduces to

(3.17)

with 1 < q < 0%

and

b 2(k + 1)q/[(k + 1)q + 2],

p (k + 1)q/[(k + 1)q- 1],

since P(t) = T-l(t) = (k+l)q/[(k+l)q-1]. An application of the
Marcinkiewicz interpolation theorem for Lorentz spaces (see [H],[SW]) to
(3.17) yields the stronger estimate (for the same p, q)

(3.18)

The estimate (3.18) is proved in [So] under a different hypothesis, where it is
also proved to be sharp in the sense that the Lq’p norm on the left side
cannot be replaced by an Lq’s norm for any s < p. This also shows that at
least in some cases (3.3) fails for d 1, although a Lorentz norm version like
(3.12) may still be true in all cases.

4. Proofs of Theorems 3.2, 3.7 and 3.9

First we prove some lemmas which will be used in proving the theorems.

LEMMA 4.1. Suppose that a and fl are strictly increasing functions, contin-
uous on [0, 6) for some > O, differentiable on (0, ) and a(O) [3(0) O. If
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the function a’(t)/fl’(t) is increasing on (0, 6), then

(4.2) a-a(a(t)-a(s) __> -1( 3(t)-(S))D
for every D > l and O < s < <6.

Proof. Fix a number D > 1 and define

F(s t) a(t)
D a fl( ( fl(t) fl(s)

for 0 < s < < 8. Then (4.2) is equivalent to F > 0. Since F(s, s) 0, the
conclusion will follow from

OF
O---i-( s, t) > OforO < s < < 6,

that is,

a’(t)D a’( fl-1 ( fl(t)
D

1

D
D >0,

which may be rewritten as

t)-t x)’

with

x [3_l( fl(t ) fl(s) )D

But the last inequality is true, because

X fl ( [3 ( ) fl ( $ ) ) jO (fl(t) --fl(s)) </3 l(fl(t))

and a’(s)/13’(s) is increasing on (0, 6). []

LEMMA 4.3. Assume y satisfies (3.1). For 1 < q < oo and 0 < d < 1, let

(t) =t’(y-(t))a
and n(t) tl-1/q(-l(t))1/q
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Then there exists a constant b > 0 such that

(4.4) [y,(t)] d -1>q (t) forO<t<b.

Proof Recall the notation yq(t)= q-1. y(tq). Clearly the functions
:, r/and their inverses are increasing. Hence, (4.4) is equivalent to

Letting u yq-l(t) and rewriting the inequality we get

-l(uq-l+d (uq))
__

u(q-1)(1-d) ]/(uq).

A straightforward calculation shows that the last inequality is equivalent to

( uq ) . U(q- 1)(l-d) (uq),

which holds for u < 1, since q> 1 and d< 1. Hence (4.4) holds with
b yq(1), c3

LEMMA 4.5. Let a, b (0, ) and 0 < 6 < 1. Then

Proof.
gral,

allog(1 e(t-"-s-a))lb dt ds < .
By making the change of variables u t a s a in the inner inte-

J-- foSfoSa--sallog(1- e-U(u+sa)-l’s-a)lb (U q-sa) l/a-1 duds

K1 + K2.

If u < s 2a, then

.(u + s")
U.s-a=
S2a l + U/Sa >-- " 1-- "-

hence

e-U(U +sa)--I’s
__

e--U’s-2a(1--u/sa)

u( u)_<1--’s2"--" 1-- -a" =1--
2s3a
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Thus,

g
logK < S2a

"o u) (U + sa) l/a-1 duds

2a S 3a

U Sa
(U + sa) l/a-1 duds.

which is easily seen to be finite (for e small enough).
Next, if u [s 2a, a sa], then

so that

U(U d- sa) -1 -as >
2a

( S 2a + Sa) Sa
1

1 + Sa >-" 1- sa

Hence,

--U(U +sa)--I’s <__ e-(1-sa)
1 a)2< 1 (1 sa) 4;- -(1 s

K2 <
2a

log
1 $2a

b

(U d" sa) l/a-1 duds

fof 1/a, ( U dr" S a) duds

We are now ready to prove the theorems. The proof of Theorem 3.2 is
carried out in three steps. (As we remarked already, the fact that (3.3) fails
when d > 1 follows from Proposition 3.13.) In Step 1 we reduce the problem
to that of estimating an integral. In Step 2 we establish the case q 1; and in
Step 3 we use (Orlicz space) interpolation to deduce the cases 1 < q < .
The proofs of Theorems 3.7 and 3.9 are based on a similar reduction and
slightly more refined estimates which depend on the additional hypotheses.

Proof of Theorem 3.2. Step 1 (reduction of the problem).
to prove (3.3)we may show

(4.6) Ilfql(r < CIIfll,

where (t) fdb(s)ds and th(s) []/-l(s)]d. Let

By Remark (3.4),

Tg() fo
g

2"n’i[glt+g2y(t)]g(e t) dr,
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for (1, 2) R2 and g e5 C([0, 6)). (T is the adjoint of the restriction
operator Rf jetr.) By dualization using (2.4) and H61der’s inequality (2.3),
(4.6) will follow from

(4.7) IlZgll. CIIgllq,,

where 1/q + 1/q’ 1 and is the Young’s complement of given by

XXl’(t) (S) dS, I(S) -1(S) /q(S1/d).

Clearly we may also assume that g > 0. If we put N(t)= (VC/), it is
immediate from (2.1) that

IITgll II(Zg)211g.

Note that N is a Young’s function, since

1
v(t) "- N’(t) 2V

7q(t 1/2d)
2V7

1 /2d) 1-(1 +d)/q
"(t q 3/(ta/2d),

and so v is strictly increasing by the assumption that y(S)/S3 is increasing
(see (3.1)). Now

fo f:e2zri[(s+t)g+(/(s)+’(t))gZ]g( t) g(S) dt ds

2fae2i[(s+t)+((s)+v(t))2]g(t) g(s) dt ds.

where A --" {(s, t): 0 < s < < 8}. Since the strict convexity of 3’ implies that
the transformation (s, t) (x, y) (s + t, y(s) + y(t)) is one-to-one on A,
we get

fa= JR
ei(x+Y)g(x, y)lJ1-1 dxdy (g" Ij[-1) ^ (:1, :2),

where g(x, y) g(t)g(s) and

IJI o(x, y)
O(S,t) 7’(t) 2"(s).
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Observe that the function

v(t) 1 1-(1+3d)/q /2dg(tq/2a) T( tq )

is increasing, since T(t)/t 3 is increasing and 1 (1 + 3d)/q > -3 if q >_ 1
and d > 1. Therefore, we may apply Theorem 2.6 to obtain

II(Zg)211N 211(g" IJI-)^IIN 411g" IJI-111M,

where M(t)= fdm(s)ds and re(s)= 1/[v- l(1/s)]. Hence, to prove (4.7) it
suffices to prove that there exists a constant C such that

fM(#. I11-1) ddy C.

for all g > 0 with Ilg II, 1, because of (2.5) and the linearity of the operator
T and the fact that I1" I1 is a norm. Since v is increasing, so is m, and
hence

M(t) < t re(t).
So

larl- ) dy _< fa. IJ1-1" m(. IJ1-1) dX dy

fsg(t)g(s) m(g(t)g(s)lJ1-1) dtds

by reversing the change of variables made above. It remains to estimate K,
assuming Ilgllq, 1.

Step 2 (proof of the case q 1 of (3.3)). In this case we get

1,’( t) t-1/2 T(tl/2d)

"tl 1/2 t 1/2d "2,’( t 1/2d) (by the convexity of 3’)

< y’( t 1/2d) forO < < l,if d < 1.

So

l-l(t) >__ [(T’)-l(t)] 2d
for < o.
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Hence,

(4.8) m(u)
1 y, -1

-l(1/u)
-< [( ) (l/u)] -2d

foru >u0> 0.

Since Ilgll Ilgllq, 1,

K < m(IJI-1) dt ds

6 -1 ,( ’(
-2d

_< [(y’) (y t) y s))] dtds by (4.8).

Now we use Lemma 4.1 with a(t) y’(t) and fl(t)= 2 and D 1. Note
that a’(t)/fl’(t) y"(t)/2t in increasing on (0, 8) by hypothesis. Hence,

-2d
K _< (V/’ 2 s 2 ) dt ds < "

since d < 1. This finishes the proof of the case q 1.

Step 3 (proof of the case 1 < q < of (3.3)). Here we use an extension of
the Riesz-Thorin interpolation theorem due to M. M. Rao [R]. The case
q 1 of (3.3) can be rewritten as

Ilfqllr) < CIIfll,,

where (I) is a Young’s function with l(t) t" (T-l(/))d (for any fixed
0 < d < 1). Interpolating with the trivial estimate Ilfql={r) _< Ilfllob, using
Theorem 1 in [R], gives

(4.9)

where dp{/)q(t) tl-1/q(dPl(t))l/q. Since (I)l(t) < t(T-l(t))d so(t), we have

dp{/)q(t) tl-1/q(dp;l(t))l/q > tl-1/q(;l(t))1/q= rl(t).

Hence,

(4.10) dPl/q(t ) < /-l(t) < t(yl(t))d, 0 _< _< 1,
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because r/- l(t) __< t(y- l(t))d, for 1 _< t _< b, by Lemma 4.3. Writing f fl +
f2, where fl f" Xtlrl u, we obtain

Ilfql .<> IIf II .<> + IIf II
< C11f111,/ + CIIf211 by (4.9)

< C + Cfl/q(Ifll) dr + CIIfll, by (2.5)

< C + Cf [fl(yq__ ,(if[) )a dx + Cf If[ dx by (4.10)
Ill < 1} Ifl > 1}

C -[- cfR2lf[ (/- l([f[ / 1))a dx

C -" cfR2lfl(’}tgl(lfl))d dx.

This completes the proof of Theorem 3.2.

Proof of Theorem 3.7. By repeating the arguments in Step 1 of the proof
of the previous theorem (and using the same notation) it suffices to prove

fsg(t)g(s) m(g(t)g(s) Ill -1 ) dtds < C.

assuming Ilgllq,,2 1 and g > O. Since d 1 here, we have v(t)=
Va(ff)/[2]. So

v(t) <_ y’(tq/2), <_ 1.

Hence,

m(u) _’1(
1 _,( -2/q

v 1/u) < ((y’) l/u)) ,u > uo > 0.

Now

where

B {(s,t) A: g(t)g(s) >_ 1}
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and

B2 A \B {(s,t) A. 1 > g(t)g(s) > 0}.

As in the proof of Theorem 3.2,

K2 <_ m(Ij[-1)dtds <_ [(y’) (y’(t) -y s))]

SoiSsi( 2)
-2/q

<_ 2 S dt ds < since q > 1.

Also,

KI < fBlg(t)g(s) (y,) g(t)g(s)(t) y s) dt ds

,g(t)g(s)
fl( ) fl( )
g(t)g(s)

dt ds

<-- fBg(t)g(s)[lOg( e
g(t)g(s) )]21qat- dt ds

--e-

_t--aby applying Lemma 4.1 with a(t) y’(t) and/3(t) e Thus,

gl "’( fBlg (t)g(s)[log(g(t)g(s))] 2/aa dtds

/ fag(t)g(s)(t-a)2/aa dtds

+ fag(t)g(s)llog(i et-a--s-a)12/qa dtds

K3 + K4 + K5.

By H61der’s inequality for Lorentz spaces (Theorem 3.4 in [O]),

K3 < fBg(t)g(s)[g(t)g(s)]2/qa dtds

< g(t) l+2lqa dt Ilgllo

< CIIgll c "11111 c
q’,oo r,p

< CIIg IICq’,2 C

dt ds



where p 1 + 2e/(qa) and e > 0 is chosen so small that p < q’, and r is
chosen so that 1/p 1/q’+ 1/r. To estimate K4 we use Lorentz norm
inequalities of R. O’Neil [O], following [So].

g
4 fag (t) g(S) -2/q dt ds

<- fAg(t)g(s) (t s)-l/q t- 1/2q S 1/2q dt ds

(4.11)

1/2q fsSg( 1/2q 1/qg(s)s- t)t "(t s) dtds

< IIg(s) s-1/2qllL,2q)’,2(ds)

(4.12)

(4.13)

g(t)t-1/2q(t S) -1/q at

2_< C IIg (t) t- /2q l]<2q)’, 2

< C Ilg 2 1/2q 2
q’,2" lit ll2q,oo
2< Cllgllq,,2 C.

L2q, 2(ds)

The inequalities (4.11), (4.12), and (4.13) are consequences of Theorems 3.5,
2.6, and 3.4 in [O], respectively. Finally, by H61der’s inequality and Lemma
4.5, if 1 < p < q’ and 1/p 1/q’ + 1/r, then

t-a--s-aK5 < (g(t)g(s)) dtds Ilog(l e )[2p’/qa dtds

< Cllgll2 < Cllgllq2’, Illll 2 2
r,p Cllgllq,,2 C.

Proof of Theorem 3.9.
prove

As in the proof of Theorem 3.7, it is enough to

fsg(t)g(s.) m(g(t)g(s)ljl-1) dtds < C,

assuming Ilgllq,,b, 1 with 1 < q < o and b’= 2(k + 1)q/[(k + 1)q- 2].
Now

It(t)
]/q([-{) 1 1--2/q q/2

2v/ -( tq/2) T(t )

<_C]/’((tq/2)(k+l-2/q)/(k-1)) t<l
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by the hypothesis (3.11) with a 1 2/q. So

2(k- 1)/[q(k + 2/q)]

( [(T,)-I(1)] -2(k-1)/[(k+

u>u0>0.

Hence

[ ( )]-2(k-1)/[(k+l)q-2]K < fB (s). (y g(t)g(s)lg(t)g ,)-1 ’)t’(t) ’(S)

+ fB [(/’)-l(/’(t) 7’(S))]-2(k-1)/[(k+l)a-2ldtds
-K +K2,

dt ds

where B and B2 are as in the proof of Theorem 3.7. By (3.10) and Lemma
4.1 with a(t) y’(t) and/3(t) k-l, we obtain

K1 < fB (t)g(s)( tk-1 sk-1)
[1/(k-1)][-2(k-1)]/[(k+l)q-2]

g
g(t)g(s)

dt ds.

Since

k-1 Sk-1 >_ (t S) (k-2)/2. s(k-2)/2 > 0

on A={(s,t):0<s<t <6},wehave

--P2 ag Pl --P3K1< g(s)O’s (t) "t-2"(t-s) dtds,

where Pl (k + 1)q/[(k + 1)q- 2], P2 "-(k- 2)/[(k + 1)q- 2], and P3
2/[(k + 1)q 2]. By Theorems 3.5 and 2.6 in [O],

K < [[g(s) pl" s-P2llLr,2(as)" g(t)Plt -p2" (t s) -p3 dt
Lr’,2(ds)

_< Cllg(s)1" S-2[lr,2 IIg(t) 1" t-P2llr,2 IIt-lll/o,oo
_< Cllg(s) pl" s-zll 2

if 1/r’= 1/r + p3 1, i.e., r [(k + 1)q 2]/[(k + 1)q 3]. Finally, by
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Theorem 3.4 in [O],

since 1/r Pl/q’ + P2 < ] and b’ 2pl. So K < C. The estimation of K2
is similar. El
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