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To the memory of M. Raimondo

Introduction

Let X c n be a real algebraic set, and let (X) denote the ring of
polynomial functions on X. Recall that a subset S c X is called semialge-
braic if there exist polynomials fij, gi (X) such that

p

S U {x .g’. fil(X) > 0, gi(x) 0}.
i=1

As is well known, if S is open the gi’s in this expression can be omitted.
Recall also that an open semialgebraic set is called basic open if furthermore
p 1. These basic open sets have attracted a lot of interest in recent times,
till the proof of the beautiful theorem that states that a basic open set S has
always a description

s x. > 0,..., > 0}

with s < dim(x); see [Br2,3, 4], [Sch], [Mh], [AnBrRzl]. However, the prob-
lem of understanding when a given semialgebraic set is basic open and, in
that case, how many inequalities are needed to generate it, is far from solved.
An immediate remark is that if S is basic open, then S
where stands for the euclidean closure, and -z for the Zariski closure.
The only full characterization available is due to Br6cker and Scheiderer. To
state it properly, let us say that a semialgebraic set S is s-basic if there are s
polynomials fl,..., f (X) such that S {fl > 0,..., f > 0}, and that
S is generically s-basic if it is s-basic up to codimension 1, that is, there are s
polynomials fl,..., f .(X) and a nowhere dense algebraic subset Z X
such that

s\z {f, > 0,...,L > o} \z.
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Now let S be an open semialgebraic set such that S (\ S)z= i; the
Br6cker-Scheiderer criterion for the generation of basic sets can be stated as
follows:

THEOREM 1. The set S is s-basic if and only if for every irreducible subset
Y c X the intersection S Y is generically s-basic.

Since the dimension bounds the number of inequalities needed to generate
any basic set, being basic is equivalent to being d-basic, where d dim(X).
Hence the previous theorem has the following corollary:

COROLLARY 2. The set S is basic if and only if for every irreducible subset
Y c X the intersection S N Y is generically basic.

Thus we come to the problem of whether there exists a distinguished
family of subvarieties which suffices to characterize basicness. In fact, in
[AnRzl] we proved:

THEOREM 3. The set S is basic if and only if for every irreducible surface
Y c X the intersection S Y is basic.

Since in dimension 1 every semialgebraic set is 1-basic, this was the best
possible result concerning dimension, and the first suggestion that obstruc-
tions to the generation of basic sets should appear in the smallest predictable
dimension. According to this idea, if a basic open set requires s inequalities,
we should recognize it exactly in dimension s + 1, because in dimension < s
it certainly can be generated by s inequalities. The goal of this paper is the
confirmation of this conjecture. We will prove:

THEOREM 4. Suppose that S is basic. Then S is s-basic if and only if for
every irreducible subset Y X of dimension s + 1 in intersection S Y is
generically s-basic.

The proofs of these results are always a combination of the theory of fans
in spaces of orderings of function fields and the theory of the real spectrum.
Fans are special sets of orderings which quite surprisingly play a dramatic
role in the study of the previous questions and results. The definitions and
basic properties of the theory of fans are collected in Section 1. What makes
possible the improvements concerning dimension in Theorems 3 and 4 is a
better analysis of the valuation theory behind the scenes. One key fact is that
we can restrict our attention to discrete valuations of maximum rank, which
lead to a special type of fan, defined by means of power series. These fans
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are called algebroid, and we prove that any fan can be arbitrarily approxi-
mated by an algebroid one (approximation theorem for fans).
The interest in valuations is not new in real algebraic geometry; see [An],

[BrSch], [Rb], [Rzl] and the forthcoming [AnRz2]. Here we exploit systemati-
cally the notion of compatibility of a fan with a valuation, that is, the
simultaneous compatibility of different orderings, as well as the general
interplay between valuations and fans. Two essential tools in our proofs are
resolution of singularities and Bertini’s theorem. As a matter of fact the
failure of the latter in the Nash or analytic category is the reason why our
results do not extend to those categories (see the counterexample in [AnRzl]).
Despite this failure, many interesting things can be said in the Nash and
analytic case using the techniques of this paper. However, here we work only
in the algebraic case and refer the reader to [AnBrRzl], [Rz2] and the
forthcoming [AnRz3], [RzSh] for the other two.
The paper is organized as follows. Section 1 contains the definitions and

some general facts concerning fans needed later. Section 2 describes the
trivialization of fans by real valuations and the connection with power series.
Section 3 is devoted to the approximation theorem for fans of function fields
over the reals, which is the first step towards Theorem 4. In Section 4 we
review the theory of the real spectrum that makes the connection between
spaces of orderings and algebraic varieties. Finally, Section 5 contains the
proof of Theorem 4.

1. Fans and basic sets

The abstract theory of spaces of orderings was developed by Marshall in
the series of papers [Mrl-5]. A self-contained new presentation will appear in
[AnBrRz2]. Here we only outline some basic facts.

Let K be a field, and consider its space of orderings E Specr(K). Given

f K and tr , we can see tr as a signature tr: K {- 1, + 1} which maps
the element f to + 1 or 1 according to whether f is positive or negative in
the ordering tr. To give a geometric meaning to the notation, we will write
f(tr)<0 instead of tr(f)= +1 and f(tr)<0 instead of tr(f)= -1. A
constructible subset of E is a set of the form

P

U {0" (EE " fil(O’) ) O,...,fir,(O’)
i=1

where fij K. Such a set C is called basic if p 1. The basic sets form a
basis of the Harrison topology of .
A (finite) fan of K is a finite set F c E such that for any three orderings

tr1, tr2, tr3 F,, their product tr4 tr tr2 tr3 is a well-defined ordering and
belongs to F (we multiply orderings as signatures). Thus, subsets consisting
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of one or two orderings are always fans and are called trivial fans. A basic
fact is that a fan F has the structure of an affine space over the field of two
elements :2 {--1, q-1}, or, equivalently, for any tr0 F, the set tr0F is a
vector space over :2 {-1,--1}, with the product of signatures as inner
operation and the natural scalar multiplication. In particular, it follows that
#(F) 2k, where k is the affine dimension of F, that is, k + 1 is the
minimal number of elements tr0,..., trk F such that any tr F is the
product of a (necessarily) odd number of tri’s. An important property is that
if F’ is an affine subspace of F, then F’ is again a fan.

In connection with basic sets, let us remark the immediate fact that for
every basic set C c E, the intersection F’ F N C is again a fan, and so
#(F’) 2t, for some _< k.
Here is fundamental result concerning our problem.

THEOREM 1.1. Let C be a constructible subset of ,. The following asser-
tions are equivalent"

(a) There are s elements fl,..., f K such that C {fl > 0,..., f > 0}.
(b) For every fan F c , with #(F) 2k and F C 4: we have #(F (3

C)=2 with O <_ k <_s.

Somehow suprisingly, 4-element fans are enough to check whether or not a
set is basic.

THEOREM 1.2. Let C be a constructible subset of ,. The following asser-
tions are equivalent:

(a) C is basic.
(b) For every fan F c , with #(F) 4 we have #(F C) 3.

We will not use Theorem 1.2 here, since we are interested in the quantita-
tive question. Let us remark that Theorem 1.1 is only a reformulation of the
usual statement, and we still need a further modification.

COROLLARY 1.3. Let C be a basic constructible subset of ,. The following
assertions are equivalent:

(a) There are s elements fl,..., fs K such that C {fl > 0,..., f > 0}.
(b) For every fan F i, with #(F) 2k and #(F C) I we have k <_ s.

Proof. Since (b) is a particular case of (b) of Theorem 1.1 we only must
prove (b) (a). For this, suppose F c E is a fan. Since C is basic, the
intersection F’ F t3 C is a fan, say generated by trl,..., trl/ 1, and #(F’)
2. Now, we can add to these tr’s some others to get generators trl,..., trk+
of F. Finally, consider the fan F" generated by try+l,..., trk+l; clearly,
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#(F") 2k-1. Moreover, F" N C F" N F’ {tr/+ 1} because these two in-
tersections are affine subspaces of F of complementary dimensions contain-
ing the point trt+ 1, and both together generate F. Hence #(F" N C) 1 and
by (b), k < s. Now the result follows from Theorem 1.1. El

2. Fans and valuations

Let K be field and 5; its space of orderings as in Section 1. Let A be a
subring of K and la an ideal of A. An ordering tr E makes convex if
from 0 < f < g, f A, g la it follows f la. This implies that tr induces a
unique ordering - in the residue field K(IJ) of la such that for every

f A \ la, f mod > T0 if f > 0. In this situation, we say that tr specializes
to or that z is a specialization of tr, and we write tr z. The proper setting
for this specialization relation is the theory of the real spectrum as we will
see in Section 4. However this notion was first studied in the context of
valuation theory which we discuss here. A valuation ring V of K is compati-
ble with an ordering tr 5) if tr makes convex the maximal ideal mv of V.
Then tr specializes to an ordering - in the residue field kv of V: tr--, ’.

This kind of specializations are well understood by means of the Baer-Krull
theorem [BCR]:

THEOREM 2.1. Let F denote the value group V, and an ordering of k V.
Then there is a bijection between the set of orderings ofK compatible with Vand
specializing to - and the set of group homomorphisms b" F - + 1, -1}.

Note that this implies that V is compatible with some ordering if and only
if its residue field is formally real. In that case we will say that V is a real
valuation ring.
A particular situation in which the Baer-Krull theorem will be often

applied is the following:

Example 2.2. Let B be a regular local ring with residue field L and
quotient field K. Suppose dim(B) m and consider a system of parameters
Xl,..., Xm. By induction on m, we define a valuation um in the quotient field
K of B which has residue field L and value group Zm.

Indeed, if m 1, then B is a discrete valuation ring and we have the
corresponding discrete rank one valuation v 1. For m > 1, we consider
the discrete valuation ring W B(xm), whose valuation is denoted by w.
Then, the residue field k’ of W is the quotient field of the local regular ring
B’ B/(Xm) and by induction we have in K’ a valuation Vm_ with residue
field L and value group Zm- 1. Finally, we define um as the composite of w
and vm_ 1, and denote its valuation ring by Vm.
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Now we fix an ordering r in L and look for the set F of orderings o- of K
compatible with Vm and specializing to z. We claim that #(F) 2m, and that
every tr F is completely determined by the signs in tr of the variables
Xl,..., Xm. Indeed, by the Baer-Krull theorem (Theorem 2.1), we only have
to exhibit 2m orderings specializing to r and having different signs at the
parameters. Again this follows by induction (we use the notations introduce
above). If 3’ is an ordering of K’ compatible with Vm_ 1, we can lift it to two
orderings y+, y_ of K compatible with B(xm) as follows: every f n(xm) can
be written as f UX"m, where u is a unit of B(xm) and we define,

3’+(f) T(),

T-(f) T()(- 1) n,
(here R stands for the residue class of u in K’). Since Vm is the composite of
l/m--1 and B(xm), 3’/ and 3’- are compatible with V,, and specialize to 3’.

It can be checked directly that F is a fan, which can be identified with the
affine space whose associated vector space is {-1, + 1}m. In fact, since any
tr F is completely determined by the values tr(xl),..., tr(Xm), the map

’o’0F --) 1, + 1}m; o’0o" (o’(xl),... ff(Xm)),

where tr0 is given by O’0(X 1) O’o(Xm) + 1, is an isomorphism. With
this identification, the elements tr0, trl,..., trm defined by the following table
form a minimal system of generators of F (. can be either + 1 or 1).

In other words, keeping in mind that in F2 + 1, 1}, + 1 is the zero and
-1 is the unit, geometrically we are taking tr0 as the origin of F and the
matrix of coordinates of tr0trl,..., tr0tr, is triangular, so that they are a basis
of tr0F. All this can be seen as a particular case of a general situation which
we describe now very briefly. E3

We say that the valuation ring V is compatible with a fan F c Y_, if V is
compatible with every ordering tr F. It is easily checked that the specializa-
tions of the orderings of F form a fan in k r., possibly trivial. In fact, the main
result concerning fans and valuations is the so-called trivialization theorem
([Brl], [AnBrRz2]):

o-o
o"

0-

O"

Table
x Xm_2 Xm-1 Xm
+1 +1 +1 +1
+1 +1 +1 --1
+1 +1 --1 *
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THEOREM 2.3. Let F be a fan of K. Then there exists a valuation ring V of
K compatible with F such that the orderings of F have at most 2 distinct
specializations in the residue field k V.

Conversely, given a fan F in k v, the set of orderings of K which are
compatible with V and specialize to an ordering of F is a fan called the
pull-back of F. This is extremely useful, since it gives an easy method to
construct fans starting from trivial ones. For instance, the fan F constructed
in Example 2.2 is the pull-back of the trivial fan of L consisting of the single
ordering r. We develop now a second example which will be very important
later.

Example 2.4. Let L be a field and Xl,..., Xm indeterminates. Consider
the ring of formal power series L[[Xl,...,Xm]] and its quotient field
L((Xl,..., Xm)). We set m (Xl,..., Xm). Let Vm be the valuation ring of
L((Xl,..., Xm)) constructed as in Example 2.2, that is, Vm is the composite of
the discrete valuation ring L[[Xl,... Xm]](xl) with the valuation ring Vm_ of
the residue field L((x2,... Xm)).

(a) Fix an ordering r in L and let F be the set of orderings tr of K
compatible with V that specialize to -, that is, F, is the pull-back of r by
Vm. We mentioned in Example 2.2 that every tr F is completely deter-
mined by - and the signs tr(Xl),...,tr(Xm). To make this precise, let
f L[[Xl,..., xm]]. We look at f as a series in x with coefficients in
L[[ x2, Xm ]]’ say

f xl(gl0 4-

_
glX),

1>1

with 0 : gl0 L[[x2,’",Xm]]" In particular gl0 4-S,gx is a unit in
L[[Xl,..., Xm]]xl), namely, it coincides with gl0 (mod Xl). It follows that

O’(f) tr(Xl) v’T(glo )

where y is the specialization of tr in L((x2,... Xm)). Now, to determine
Y(gl0) we look at it as a series in x2 and proceed as above. In this way, by
induction we get

tr(f) o’(x1)Vlo’(x2) v20 O’(Xm)VmO"l"(Uvo )

where u0 L and UoX[O x,m is the initial form of f when we consider
in Nm the lexicographic ordering. In other words, the sign of f is completely
determined by the sign of its initial form. In particular, if f and g have the
same initial form (what happens if h =- f (mod m) for , high enough), then
o-(f) tr(h).
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(b) Now, we fix two distinct orderings 71, Y2 in L. Let stand for the set
of all orderings of L((Xl,...,Xm)) which are compatible with Vm and
specialize to either of the 3’i’S, that is, is the pull-back of {71, 3’2} by Vm.
Then is a fan with 2.2m 2m+l elements, which is the union of the two
fans Fvl and Fv2 described in (a). In particular, if FI is generated by
tr0,..., trm, and trm + F2, then is generated by tr0,..., trm, trm + 1.

After this preparation we introduce a key notion for our work.

DEFINITION 2.5. Let A c K be a subring of K and F a fan of K with
#(F) 2k. We say that F is algebroid if there is an embedding K
L((x1,..., Xk-1)) into a power series field such that F is the restriction to K
of the fan of Example 2.4(b). We also say that F is parametrized over
3"1, 3’2 in L, and that L is the coefficient field of F. Finally, we say that F is
finite on A if A c L[[Xl,..., Xk_ 1]] under the above embedding.

A typical situation where we can construct algebroid fans is the following:

Example 2.6. Let B be a regular local ring with residue field L and
quotient field K. Suppose dim(B) k 1 and consider two orderings 3’ 1, 3’2
in L. Fix any system of parameters x1,..., xg_ 1. Then the adic completion/
of B is isomorphic to L[[xI,... Xk_l]] and this gives an embedding K
L((xl,..., Xk-1)). In the latter field we have the fan of Example 2.4b) and
its restriction F to K is obviously an algebroid fan parametrized over 3’1, 3’2
in L. Clearly F is finite on B.

3. Approximation of fans

Again, let K be a formally real field and E Specr(K). Fix an integer
k > 0. Any fan of K with 2k elements can be seen as a 2k-tuple in the
product

E

Now the set k of all fans of K with 2k elements can be seen as a subset of
Ek. This identification is not bijective, unless we identify the tuples in k Up
to permutations, but we will not care about this technicality, because it is
irrelevant for our purposes. Anyway, the set Eg carries the product topology
of the Harrison topology of each factor space and, under our identification,
the set (I)k is endowed with the corresponding subset topology, which we still
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call the Harrison topology. Thus, the set (I)k Of all fans with 2k elements is a
topological space, and we can discuss approximation properties.
Assume now that K is a finitely generated extension of R. Then K is a

function field and its dimension is its transcendence degree over R. The
terminology comes from the fact that if X c Rp is any irreducible algebraic
set whose field of rational functions JU(X) is our field K, then the dimen-
sion of K coincides with the topological dimension of X; such an X is called
a model of K. As is well known, any formally real finitely generated
extension of R has a model. A useful remark which will be needed later is
that we can always find a compact model. This is immediate by taking the
projective closure of any given model; another way to see it is to take the
one-point compactification, which is possible in the real case [BCR].

In this section we will show the following:

THEOREM 3.1. Let K be a function field of dimension n and X a compact
model of K. Let k >_ 2 and F fk be a fan of K with 2k elements. Then F
can be arbitrarily approximated in the Harrison topology by an algebroid fan F’
finite on (X) and parametrized over a function field of dimension, n k + 1.

Proof. Since X is compact, every polynomial is bounded on X, from
which it follows that every real valuation ring of K contains the ring (X)
of polynomial functions of X. Let F (tri: 1 < < 2k) be the given fan, and
U U1 "" U2k an open neighborhood of F in k, with U/= {fil >
0,..., firi > 0}, fij ?l(S). After shrinking the U/’s we may assume that
they are pairwise disjoint, and we will say that the fij’s separate the orderings
of F. By Theorem 2.3, there is a valuation ring V of K such that the tri’s are
compatible with V and induce two orderings 7-1, z2 in the residue field kV of
V (possibly 7-1 7"2); as remarked before, V D (X).
Now we apply resolution of singularities I and H [Hk], so that after finitely

many blowings-up we may assume that X is non-singular and all the fij’s are
normal crossings. Let la c (X) be the center of V in (X): la mV n
(X), where mV is the maximal ideal of V. Then A .(X) is a regular
local ring of dimension, say, d, and has a regular system of parameters
x,..., xd such that for all i, j

fij Uijxijl Xijd

where the Uij are units of A and the Olij are non-negative integers.
In this situation the residue field K(Ia) of A is a subfield of the residue field

k. of V, and we denote also by 7"1, 7"2 the restriction to K(Ia) of 7"1, 7"2. Notice
that for each p 1, 2 the signs of the elements fiy in an ordering tr 7", are
completely determined by the signs of the parameters x in tr and the signs
of the units (or more properly of their residue classes) in 7".
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Next we split F into two disjoint sets F1, F2 as follows:
If "/’1 7"2, we pick generators tr0,..., trk of F, and choose as F the fan

generated by tr0,..., trk_l, and F2 F \F1. Note that #(F1) 2k-1
I#(F).=-
If 7"1 := 7"2, take as F the fan FI consisting of all orderings of F

specializing to 7"1 and F2 F2. By the Baer-Krull theorem (Theorem 2.1)
there are as many orderings specializing to 7"1 as specializing to 7"2, so that

#(F) 2k-#(F1) #(F2) g As above we may assume that F is gener-
ated by tr0,..., trk_ 1, and that trk F2, so that tr0 ,trk_ 1, trk generate the
whole F.

CLAIM. After some additional blowings-up, we find a regular local ring B
dominating A, with the same residue field, and a regular system ofparameters
Y 1,’’’, Yd ofB such that all fij’s are normal crossings in B with respect to them
and for all 0,..., k we have

ifl<j<d-i
ifj=d-i + 1

(compare Table 1).

In fact, first, after changing x. by -x if necessary, we may assume that
tr0(x.) + 1 for all j. Now, notice that since the functions fi separate the
orderings of F and all these orderings specialize to 7"1, two different
tr, tr’ F cannot have the same sign at all the parameters x1,..., xd. In
other words, the map

qo" o’oF --+ +1,-1}

defined by

0"00" (IT(X1),...,O’(Xd)),

is a monomorphism of F2-vector spaces.
Thus, there is some j such that O-l(Xj) :/= O’o(Xj). We reorder the parame-

ters so that trl(x/)= +1 for l_<l<r and trl(Xt)= -1 for r_<l_<d.
Consider the extension

A(1) A[ Xr/Xd,... Xd_l/Xd](x Xr_l, Xr/Xa Xd_l/Xd, Xd).

(1)We set x)1)
--xj for 1 <_j <_ r- 1, xi =xJxd for r _<j _< d- 1 and

X(d1) Xd. Then A(1) is a regular ring dominating A, the residue fields of both
rings coincide and x1), (1) (dl)Xd_l, X is a regular system of parameters of
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A(1). Furthermore the expression

fij Uijxijl Xijd

can also be written as

fij Uij(xl)) tijl _1) x’J(d 1)( X(dl)) ltjr+ +otijd

This means that the fij are still normal crossings in A(1), showing that all
conditions verified by A are similarly verified by A(1). Moreover, we have
O’l(X}1)) d 1 for 1 < < d- 1 and (1)]trl(xa -1, so that we have com-
pleted the first step in the induction process. Assume now that we have
already found a regular local ring A(p) dominating A with the same residue
field that the latter and a system of parameters xP),..., X(dp) such that the
fij’s are normal crossings for them in A(p) and for all 0 < < p it holds
O’i(X}p)) + 1 if 1 _< j <d- 1 and o’i(X(dP)__i+ 1)= --1. We construct A(p+I)

as follows:
Consider %+ 1. We claim that there is j < d -p such that %+ a(xj) -1.

For otherwise, a look at Table 1 shows at once that or0% + would be in the
subspace generated by r0Crl,..., or0%, against our assumption that or0,... rk
were affine independent. Then, after reordering x’),..., X(d, we may
assume that O-p(Xj)-- --1 for 1 _< j < r and O-l(Xj) -1 for r _< j _< d- p.
Consider the extension

and set x)p+ 1)= x(.p)for 1 < j < r- 1, x}p+ 1)= xSP)/X(dP)__l for r < j < d-
p- 1, and x)p+I --X}p) for d-p _< j _< d. An immediate computation
shows that for 0 <i<p + 1, r(x}p+I)= +1 if l<j <d-i and
(x(p+ 1 ) 1, so that we have completed the step p + 1 Therefore, the, d-i+

claim is proved.

Once this is done, consider any r F. There are two possibilities:

o- F1. Then r 1/.1 O-is with 0 < < < i, < k 1, and s is
necessarily odd. Let 1 < < d- k + 1; since O’il(Yl) O’i,(yl) + 1
we get o’(y/)= + 1.

r F2. Then r Oil O.is "Ok with 0 < < < i, < k 1, and
s is necessarily even. Let 1 < < d k + 1; we get r(y)
ok(y/) ok(y/).



314 CARLOS ANDRADAS AND JESIS RUIZ

In conclusion, for tr F we have tr(y:)= + 1 for 1 < j < d- k + 1,
while for tr F2 we have tr(y:)= O’k(y:). This implies that we have two
bijections qp: Fp {- 1, + 1}k-1 given by tr (o’(Yd_k+2),..., o’(Yd)), p
1, 2. In fact, since the functions fi separate the orderings of each F,, the
argument above shows that , is injective, and since all sets involved have
2k- elements, the mappings are bijective.
Now we consider the following diagram

B C B(yd_k+ yd) c K

B/(y_+,..., y) ----, kc

kA kB

where kB, kc stand for the residue fields of B, C respectively. By construc-
tion, these two residue fields are finitely generated over R. Now let k be a
quasicoefticient field of B, that is, a subfield k c B such that the extension

k ko induced by the canonical homomorphism B ko is algebraic (even
finite in our case). Then, since kc is the quotient field of the ring
B/(Yd-k/2,’’’, Yd), which is local regular of dimension d- k + 1 and

kn kA (), we get

tr deg[ kc" R] tr deg[ kc" k] + tr deg[ k" R]
> (d- k + 1) + trdeg[c(la)" R]
(d- k + 1) + dim(9(X)/)

(d k + 1) + dim((X)) ht(la)

(d-k+ 1) +dim(K)-dim(B)
=n-k+l.

Now, we chase orderings through the diagram, starting in ka
7"1’ 7"2"

(p) with our

Since B/(Yd_k+2,... Yd) is local regular with parameters Yl,.--,
Yd-k+l, we can lift 7"1 to an ordering Yl of kc such that yl(Xt)= + 1 for
1 < < d k + 1 (Example 2.2). Also we can lift 7"2 to an ordering Y2 of kc
such that y2(Xl) trk(Xl) for 1 < < d k + 1.

Since C is local regular with parameters Yd-k+ ,..., Yd, we can built up
an algebroid fan F’ of K parametrized over the two orderings y, Y2 in kc
(Example 2.6). Let F be the set of orderings of F’ specializing to yp, for
p 1,2. Now, we also have two bijections
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(O"(Yd_k+2),...,tr’(yd)) p 1,2, and consequently we obtain bijections
Fp - F: tr tr’ such that:

(a) tr(y/)=tr’(yl) ford-k+ l<l_<d.
(b) If p 1 and tr FI, we have tr(y/)= + 1 )’I(Y/)= tr’(y/)for 1 _<

l<_d-k.
If p 2 and tr F2, we have tr(y/) Ok(Y/) tr’(y/) for 1 _< _< d

k+l.
(c) r, r’ -/p.

This gives another bijection q: F F" tr tr’, such that tr(y) tr’(y) for
1 _< _< d and tr(u) tr’(u) for any unit u B. Consequently, tr(fi)
tr’(fi) for all i, j and since the fit’s define the neighborhood U c Ck of F
fixed at the beginning, we conclude F’ U, which completes the proof.

We finish this section by pointing out that the restriction to compact
models in the last theorem is essencial, as Example 4.5 will show.

4. Review on real spectra

In order to progress further we need the theory of the real spectrum. Here
we just review the more basic facts, relying on [BCR] as general reference.

Let A be any commutative ring with unit. The real spectrum Specr(A) of
A is the set of all pairs a (la d, < ), where p is a prime ideal of A and

< is an ordering in the residue field K(la); we denote by K(a) the real
closure of (p)with respect to <, Then, a can be seen as a homomor-
phism a" A A/p c (p,) c (a): f f(a). Now, let a,/3 Specr(A).
We say that a specializes to , or that /3 is a specialization of a, and write
a /3 if f(fl) > 0 implies f(a) > 0 for f A; more algebraically, a /3 if
and only if p c pt and the canonical map A/p --* A/p sends elements

> 0 to elements >-t 0. Of course, this is the same specialization intro-
dueed earlier in Section 2.

In the setting of the real spectrum we can impose sign conditions on the
elements of A and use notations like {fl > 0,..., fs > 0} c Specr(A) for
{a Specr(A): fl(a) > 0,..., fs(a) > 0}. Then we define in the obvious way
the constmctible sets, which are the sets of the form

P

C U {fil > 0,..., firi > O, gi 0},
i=1

and, among them, we distinguish the basic open sets, which are the con-
structible sets of the form

C-- {fil > 0,..., firi > 0}.
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These basic open sets generate a topology, the Harrison topology of Specr(A),
in terms of which the specialization relation introduced above behaves as a
limit. For instance, if C is an open constructible set,/3 C and a /3, then
aC.
We also define the Zariski topology of Specr(A) by analogy with the

Zariski prime spectrum: a subbasis consists of all sets of the form {f 4: 0}; we
distinguish the operations in this topology with an index Z.

If .4 is a field we find again the space of orderings described in Section 1.
It is clear from the definitions that

Specr(A) [,.J Specr(t(/)),

where the p’s run among the prime ideals of A. This simple remark supports
the idea of patching the informations obtained from the residue fields of A
to learn about A itself. Actually, this method gives"

THEOREM 4.1. Let A be a commutative ring with unit and C an open
constructible subset of Specr(A) such that S t (\ c)Z= f. Let s be a
positive integer. Suppose that for every prime ideal la ofA there are g1,..., g
A such that

C N Specr(K(Jp)) {gl > 0,..., gs > 0} O Specr(K(p)).

Then, there are fl,.-., fs A such that C {fl > 0,..., fs > 0}.

This theorem has a long history. It was first obtained by BrOcker [Brl], in
case A was an algebra finitely generated over a real closed field R, but he
could not control completely the number of equations involved. This was
solved by Scheiderer in [Sch], who already remarked that the argument
worked for any excellent ring A. At the same time BrOcker found a proof
that only required A to be noetherian [Br3]. Finally, Marshall discovered
how to modify all those proofs to obtain the result for arbitrary A [Mr6].
Now, let A (X) be the ring of polynomial functions of a real algebraic

set X c Rn. The tilde operator S S is the map that sends a semialgebraic
set S c X to the constructible set Specr(A) defined by any formula that
also defines S. By Tarski’s principle, this definition is consistent and we
obtain a bijection that preserves inclusions and topological operations. This
tilde operator is the main tool to translate semialgebraic problems and
statements in terms of the real spectra.

Finally, suppose that X is irreducible and let K JU(X). Then
Specr(K) Specr(A), and the tilde operation induces a mapping S S
Specr(K), which is generically, injective: if S, T c X are semialgebraic sets
such that Specr(K)= TNSpecr(K), then S\Z=T\Z for some
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nowhere dense algebraic set Z c X. In this way we can mix the geometric
and algebraic settings to study our problem. For all of this we refer to [BCR],
[Br], [AnBrRzl, 2]. For instance, Theorem 1 of the introduction is just a
translation of Theorem 4.1. We also use this strategy to deduce directly from
Theorem 1.2 the following statement.

COROLLARY 4.2. Let S be a semialgebraic subset of an irreducible real
algebraic set X c Rn. Then the following assertions are equivalent"

(a) S is generically basic.
(b) For every fan F of the field oTU(X) with #(F) 4 we have #(F ( ) 4

3.

This was our starting point in [AnRzl] to prove Theorem 3 of the
introduction. Here we will work similarly to prove Theorem 4, using the
following consequence of Corollary 1.3

COROLLARY 4.3. Let S be a generically basic semialgebraic subset of an
irreducible real algebraic set X Rn. Then the following assertions are equiva-
lent"

(a) S is generically s-basic.
(b) For every fan F of the field JU(X) with #(F) 2k and #(F N ) 1

we have k < s.

The next step towards the proof of Theorem 4 of the introduction is the
following result.

PROPOSITION 4.4. Let S be a generically basic semialgebraic subset of a
compact irreducible real algebraic set X R of dimension d. Then the
following assertions are equivalent:

(a) S is generically s-basic.
(b) For every algebroid fan F of the field (X) finite over 6(X) and

param etrized over a function field of dimension
d k + 1 such that #(F) 2k and #(F O ) l we have k < s.

Proof We only have to prove (b)= (a). So, suppose that S is not
generically s-basic. By Corollary 4.3 there is a fan F of the field JU(X)with
#(F) 2k and #(F ) 1, but k > s. Now let fl,-.., fr be the functions
appearing in a description of S. For every tr F we put ei tr(fi),
1 _< _< r, and U {erlf > 0,..., erfr > 0}. Then U 1-ItrFUtr is a
neighborhood of F and by Theorem 3.1 there is an algebroid fan F’ U
finite over (X) and parametrized over a function field of dimension
d- k / 1. It is obvious from our definition of U that #(F’ S)=
#(F ) 1. Since k > s, we are done. t3
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s

FIG.

Example 4.5. We construct a semialgebraic set S c R2 which is not
generically basic, but the obstruction can only be read through fans compati-
ble with valuations of (R2) R(x, y) that are not finite on (R2)
R[x, y ]. Consequently those fans cannot be approximated by others finite on
R[x, y].
To define S consider the sets (Figure 1)

S1

S2

{xy >_. 1}, S- S {X _. 0}, S S {X 0},

{xy< -1},S =S2 {x>_.O},S- =S2t {x<O},

and put S S U S- We will denote by 1 the constructible subset of the
space of orderings of Jf’(R2) defined by the same equations as $1, and
similarly ;-, q;-, etc.
Now, to prove our previous claim, let F {0-1, 0-2, 0-, 0-4} be a fan with

#(F n g)= 3. Since S is generically 1-basic, #(F n $1)= 0 or 2; analo-
gously, #(F q2) 0 or 2. Since S is generically basic, #(F ) 0, 1
or 2. Hence #(F 1). 2 and #(F q) #(F n q-) 1, say 0-1, 0"3
1, 0"2 q- and 0"4 S-. Suppose now that there is a valuation V of R(x, y)
compatible with F such that R[x, y] a V. Then the maximal ideal mv of V
lies over a real prime ideal la of R[x, y], and the 0"i’s make la convex and
specialize to at most two orderings z 1, z2 in the residue field K(p). Now we
will argue using the real spectrum of the ring R[x, y]. We distinguish two
possible cases:

ht(la) 2. Then la is a maximal ideal, that is, the ideal of a point z R2.
If z Sj, since Sj is closed, no 0"i would be in S.Hence z S t S2

,
which is absurd. Thus this case is impossible.
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ht(la)= 1. Then la is the ideal of an irreducible curve Z. Suppose that,
say, er4 -* 7.z. Then 7.2 is not an inner point of , for otherwise, since the
interior of S is an open constructible set, the generization era would belong
to too. Also, we have eri 7.2 for some other tri, say erl. Since erl 1 and
1 is closed,.it foll.ows that 7.2 1. Although, we see that z2 belongs to the
boundary 0S1 of $1, which by construction is the hyperbola xy 1 0. This
means that xy 1 la, or equivalently that Z c {xy 1 0}. Now we have
0"2 7"1, and arguing as above we get 7" 0S2, or equivalently Z c {xy + 1

0}. Since the two hyperbolas are disjoint we get a contradiction. The rest
of the cases are treated similarly.

In conclusion, we always come to a contradiction, which shows that there is
no valuation V compatible with F and finite over R[x, y]. Finally we have to
prove that F does exist if we do not require the finiteness condition. To do
this we work in the projective plane with coordinates (Xo’Xl"X2), where
x Xl/Xo, y x2/xo. Actually, we work at the point (0: 0:1), or better in
the affine chart x2 4: 0. We put u Xo/X2 U Xl/X2 and our sets are given
(birationally) by the sign conditions that follow:

S1 { >_ }, s s, { >_ o}, s; s, { _< 0},
{ _< -}, s s { _< o}, s s {u >_ 0},

and of course S S u Sf (Figure 2). Now, we obtain the fan F starting
with a valuation compatible with it. Namely, the discrete rank 1 valuation
R[u, V](u), whose residue field R(v) has two orderings: 7.1, with v positive and
infinitesimal with respect to R, and 7.2, with v negative and infinitesimal with
respect to R. Then F will consist of the four liftings erl, er3 and er2, era of 7.1
and 7"2 defined, by er.l(t)= era(t)--+1, er3(t)= er2(t)=-1. Clearly
0"1, erE, era S and er4 S. Furthermore, there are two valuations compatible

FIG. 2
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with F. One is R[u, V](u), and the other is the composite of this with R[ v](v).
The centers of these valuations are, respectively, the line u 0 and the point
u v 0. In projective coordinates they are the line x0 0 and the point
(0"0" 1), in both cases they are at infinity with respect to the affine (x, y)-
plane.

5. Proof of the main result

Theorem 4 of the introduction will be an immediate consequence of the
following result.

THEOREM 5.1. Let S be a generically basic semialgebraic subset of an
irreducible real algebraic set X c Rn. Let Z c X be any proper algebraic subset
containing the singular locus of X and the boundary of S, OS \ S. Then
the following assertions are equivalent"

(a) S is generically s-basic.
(b) For any irreducible algebraic set Y c X of dimension s + 1, not con-

mined in Z, the intersection S f3 Y is generically s-basic.

Proof Assume first that S is generically s-basic, and let Y X be an
irreducible subset not contained in Z. Denote by la (X) the ideal of Y.
Since Y is not contained in the singular locus of X the localization (X) is
a regular local ring of dimension, say, d, whose residue field is L
qf((X)/p) JC/(Y). Now suppose that S 3 Y is not generically s-basic.
Then, by Corollary 1.3, there is a fan F (tri 1 < < 2k) of L such that
#(F t3 q)= 1 and k > s. This F lifts to a fan F’= (try: 1 <i< 2k) of
JC/(X) with tr/’ tri. Indeed, as we explained in Example 2.2, using a regular
system of parameters Xl,..., xd of (X) we can lift any ordering tr of L
to 2d different orderings of K, each corresponding to a choice of signs for the
given parameters. Hence we fix all parameters positive and lift every tr to tr/’.
It is very easy to check that the tr’s form a fan and of course #(F’) 2k. We
claim that #(F’ n q) 1. Indeed, suppose .%/ q. Since Z does not contain
Y, we have o" ,, and, since OS Z, tr c9S. Thus we have tr/ 0, which
is constructible and open. Since tr/’ tri, we get tr/’ q0 c q. On the other
hand,.suppose tr . Again we have tr ,, so that tr

, U q, and we get
tr/ S. Since this set is constructible and closed, it follows that tr S either.
Whence, #(F n q)= 1 and S is not generically s-basic, as claimed. Note
that for this implication we do not need any special type of fan.

In order to prove the converse implication, we can substitute X by its
one-point compactification or, in other words, assume that X is compact.
Now suppose S is not generically s-basic. Then, by Corollary 1.3, there is a
fan F of J(X) such that #(F) 2 k, #(F r3 ) 1 and k > s. Let us see
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how this leads to a contradiction with (b). We will separate the argument in
several steps.

I. Realization of the obstruction to basicness by an algebroid fan. By
Proposition 4.4 we may suppose that F is an algebroid fan of the field
K J</(X), finite on @(X) and parametrized over a function field L of
dimension d k + 1. This means that F is defined by an embedding

/): K-> L((x1,...,Xk_l))

and two orderings 3’1, 3’2 in L, and that the ring (X) of polynomial
functions of X is contained in the ring L[[Xl,..., xk_ 1]] via b. Now, since L
is a function field, there is an irreducible algebraic set W c Rm whose field of
rational functions JU(W) is L, that is, L is the quotient field of the ring
(W) of polynomial functions on W.

II. Choice of a hyperplane section in the coefficient field of the algebroid fan.
Let H stand for a generic hyperplane section of W and p for the ideal of H
in (W). By Bertini’s theorem [Jn], [BCR], H is a nonsingular irreducible
subset of W, and p a real prime ideal. Note that the field JU(H) of rational
functions of H is the residue field of , that is, the quotient field of
(W)/IJ. With all of this we have the following diagram

c W

where the homomorphism q is the obvious extension of the canonical
mapping (W) JU(H).

Since the ring 9(X) is an algebra finitely generated over R, we can pick
finitely many generators fl,..., fq in (X); we add to these the equations,
say fq/ 1,..., fs, involved in a description of the semialgebraic set S and an
equation of Z. All these functions fi are in df/(W)[[Xl,..., Xk-1]], and so
they have power expansions fi fi(x)- E’,(gi’,/hi’,)x v, where v Nk-1

and gi’,,hi’, . ,_(W). As our hyperplane section H is generic, we can
suppose no gi’,,hi’, vanishes on H (although there are infinitely many
gi’,, hi’,’s, their number is countable, and working over the reals we can use
Baire’s theorem). In particular, hi, la implies that the fi(x)’s are well
defined elements of (W)[[Xl,..., Xk_I]]. Finally, since the fi’s generate
(X) we get <((X)) c ,(W)[[x1,... Xk_l] and consequently we have
a formal homomorphism

’ +6: (X) + J</(H)[[xl,..., xg_l]1.
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Moreover giv q implies that the coefficients of the fi(x)’s are units in
,(W) and so

d/( fi ) q(fi(x)) Et( giv/hi mod p)x

is a non-zero element of JU(H)[[x 1,. Xk_ ]].

III. Perturbation of the hyperplane section to obtain a new algebroid fan.
We set F F t3 F2, where Fp contains the orderings of F that specialize to
yp, p 1, 2. Then every ordering tr Fp is determined by a sign condition e:
{Xl,..., xk_ 1} + 1, 1}. Also we know from Example 2.4(a) that the sign
of fi in any such ordering is completely determined by its initial form (with
respect to the lexicographic ordering in the exponents) say (gioi/hioi)X ’i.
Let (p c Specr(df-d’(W)) be the open neighborhood of yp defined by

{’rllgl,,o/hl,,ol > 0,..., "rlsgs,o/hs,o > 0},

where Tli is the sign of gi,oi/hi,o in yp. Then, the lifting tr’ of an ordering
y’p Gp corresponding to the sign condition e has at the fi’s the same signs
that tr. This implies that for any two orderings y’. G1 and T2 G2 the fan
F’ parametrized over them verifies also #(F’ ) 1 and k > s (cf. Exam-
ples 2.2 and 2.6).
Now, we denote by G1, G2 the two open semialgebraic subsets of W

corresponding to the neighborhoods just constructed. These semialgebraic
sets are Zariski dense in W, which guarantees that we can choose the generic
hyperplane section H to meet both of them. This implies that there are

T G1 and y G2 which make the ideal la of H convex. In other
words, y] and y induce two orderings 7.1 and 7"2 in the residue field of la,
which is JU(H). Next, over 7"1 and 7"2 we parametrize a fan F" of
JU(H)[[Xl,..., xk_ 1]]. We have bijections F F’ - F": tr tr’ tr" such
that tr, tr’ and tr" are all defined by the same sign condition e: {Xl,..., Xk_ 1}

{+1, --1}.
After this preparation, we have the following diagram

,(x)

(W)Ia[[X1,..., Xk_l]] -- Jr(H)[[x1,... Xk_l]]

..(W) ,.(H)

where tr’ and tr" are defined by the same sign condition e, as explained
above.
Now consider the kernel O of the homomorphism . Its zero set is an

algebraic set Y c X with (Y) (X)/la, and dim(Y) dim(X) ht(o).



LOW DIMENSIONAL SECTIONS 323

Furthermore, the fan F" consisting of the tr"’s restricts to a fan F* in J(Y)
such that #(F* 3 )= 1, because by construction the signs of or" at the
q(f.)’s coincide with those of tr’. Consequently, the semialgebraic set S 3 Y
is not generically s-basic. Furthermore, since among the fi’s there is an
equation of Z, and no O(fi) is zero, Y is not contained in Z. Hence it only
remains to show that we can impose the further condition dim(Y) < dim(X)
and from that the proof will end by induction.

IV. Approximation of the algebroid fan by other whose coefficient field has
smaller dimension. In fact, we will approximate the formal homomorphism
q. Notice that since fl,..., fs generate (X), , is completely determined
by the images t(fl),... t(fs). Consider now r power series ax(X),... at(x)

K(3)[[ X 1’ Xk ]] such that ai(x) q(fi) (mod mn) for a suitable n N
and suppose that we may define a new homomorphism

1t" (X) -’ I(()[[XI,...,Xk_I]

by ’(fi) ai(x). Let q’ denote the kernel of ’, and F* the fan induced by
F" in 9(X)/o’. Since the signs are determined by the initial forms, and, for
n large enough, the initial forms of the (fi)’s coincide with those of the
O’(fi)’s, it follows that #(F* n S) 1. In other words, the approximation ’of defines a subvariety Y’ in which S C Y’ is not basic: Y’ is the zero set
of the kernel q’ of ’, and 9(Y’) 9(X)/q’. We will see next that if the
approximation ’ is algebraic, that is, the ai’s are algebraic power series,
then dim(Y’) < dim(X).

Indeed, if the a’s are algebraic we have

tt(,.(X)) c tc(3)[[X1,..., Xk_l]]alg

and ’ induces an embedding

(Y’) tc()[[Xl,... Xk-1]]alg

which extends to the quotient fields J(Y’) K(O)((xl,..., Xk_l))alg.
ing transcendence degrees over R we find

Count-

dim(Y’) tr deg[ J(Y’)" R] < tr deg[ (p)((x,,..., Xk_l))alg" R]
(k 1) + trdeg[k(p)" R] (k- 1) + dim(H)

< (k 1) + dim(W) dim(X)

as wanted.
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V. Construction of an algebraic approximation by the formal homomor-
phism. Let us see, finally, how to construct the algebraic approximation q/.
Consider the prime ideal n q- 1(Xl,..., Xk_ 1) and the corresponding
localization A 9(X)n. The homomorphism q extends to the hensel-
ization Ah. Now, 9(X) is a quotient of a polynomial ring, say,
9(X) R[T11,..., Tm]/ -. We denote by //the ideal of R[T1,..., Tm] cor-
responding to n, and fix a regular system of parameters Z1,..., Zr 1/of
the regular local ring R[T1,...,Tm]r; note that in this situation, Ah=
(R[T1,..., Tml./y)h/,-h. Now, we have

(R[T1,..., Tm])h K(n)[[Z1,.

so that Ah is a quotient of an algebraic power series ring. In fact this can be
seen as follows: By Noether’s Normalization Lemma, we may assume that
R[T1,..., Tm]/./// is finite over R[Tx,..., Tin_r], so that the field K(n) is an
algebraic extension of k--R(T1,...,T,,_r). Thus, we have the two ring
extensions

and

k[Z1,...,Zr] c R[Tx,...,Tm].A/

k[Zl,...,Zr] C l(ll)[Zl,...,Zr](Z Z),

which are both algebraic, since the three domains have the same transcen-
dence degree rn over R. Then, since the henselizations of the two local
regular rings

R[T1,..., Tm]r and (n)[Z,.,..., Z](z, Zr

are the algebraic closures in their common completion (n)[[Z,..., Z]], we
conclude that those henselizations coincide with the algebraic closure of
k[Z1,..., Zr] in (n)[[Z1,..., Z]]. Hence,

(R[T1,..., Tm]r)h (n)[[Z1,.. Zr]]alg

as claimed.
Let qr (n)[[Z1,... Z]]alg (p)[[Xl,... Xk_l]] be the composition of q

and the canonical epimorphism (n)[[Za,..., Zr]]alg - Ah, and let gl,..., gt
be a system of generators of the ideal y-h. We follow the method of [Tg,
Chap. III, Section 5, page 64]. Set zi(x) O(Zi). Then we have

gi(z(x)) =0 for all i= 1,...,m.
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By M. Artin’s approximation theorem (cf. [BCR, Theorem 8.3.1, page 154])
there are

Yl(X),...,Ym(X) tC(P)[[Xl,...,Xk_I]

arbitrarily close to Zl(X),..., Zm(X) in the
r(p )[[ x 1, xk- ]] such that

m-adic topology of

gi(Y(X)) 0 for all 1,..., m.

This means that the homomorphism ’: K(n)[[Z1, Zr]]alg
K(p)[[Xl,..., Xk_l]] defined by Z Yi(X) factors through Ah. In this way we
can approximate arbitrarily by

I’" Ah l((3)[[X1,..., Xk_l]]alg

as required.

We finish the paper with the following:

Proof of Theorem 4. It is clear that if S is s-basic any intersection S n Y
with an irreducible subset Y c X is also s-basic, and so generically s-basic.
Conversely, suppose S is not s-basic. By the Br6cker-Scheiderer criterion
(Theorem 1) there is an irreducible subset X’ c X such that S n X’ is not
generically s-basic. Then, by Theorem 5.1 there is an irreducible subset
Y c X’ of dimension s + 1 such that S c Y is not generically s-basic, and we
are done.
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