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CONJUGATE EXPANSIONS FOR HERMITE FUNCTIONS

J. GosszLIN AND K. STEMPAK2

1. Introduction

In the last chapter of [St], Stein discusses the notion of a Hilbert transform
associated with a general Sturm-Liouville operator. In particular, let

with a’(x) < 0 and let

q(x) exp a ( ) dt

Let {(0n} n > 0, be a complete orthonormal set of eigenfunctions of L with
eigenvalue -A2 for the Hilbert space L2(R, q(x)dx). Then Stein points out
that

is also an orthonormal system for LZ(R, q(x)dx) and the suggested Hilbert
transform is given by the mapping

1 dqn
q -->

h dx n > O
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One of the simplest and well-known examples occurs when a(x) -2x. In
this case one obtains the normalized hermite polynomials.

(1.1) qn(x) (x) (2nn!’trl/2)-l/2nn(x),
where

Hn(x) exp( x
dn

2)(-1) -- (exp(-x2)).

The Hermite polynomials satisfy

where

LHn 2nHn

d2 d
L

dx 2 2x,

and the system {(0n} in (1.1) is a complete orthonormal system on
L2(R, exp(-x 2) dx). Thus An /n, and by the identity H,,’= 2nH,,_lz one
finds that the suggested Hilbert transform is given by the mapping Hn
/-]rn_l,n >_0.
A natural question which arises is that of Lp mapping properties of such a

Hilbert transform. One method of studying such properties is through the
theory of Poisson and conjugate Poisson integrals in which the Hilbert
transform is obtained as a boundary value of the conjugate Poisson integral.
For the Hermite polynomials, this program was carried out by Muckenhoupt
[Mu 1], [Mu 2] where the exponential exp(-x 2) is treated as a weight
function.

Instead of treating exp(-x 2) as a weight function, it is possible to consider
expansions with respect to the system of Hermite functions {hn} defined by

hn( x) (2nn!Trl/2) -1/2 exp(-x2/2)H,,.

The system {hn} is a complete orthonormal system on L2(R, dr). The Her-
mite functions are eigenfunctions of the Hermite operator L d2/dx 2 x 2.
More specifically one has

Lhn -(2n + 1)hn.

Based solely on the facts that {dn} is orthonormal in L2(R, dx),

Lh -(2n + 1)hn -A2nhn,
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and the h’s are of rapid decrease at +0% it is not difficult to prove that the
system {n} where On are defined by

qt(x) (A2n 1)-’/2( h’,, + xh,,), n > 1,

is also an orthonormal system in L2(R, dx). From the decay at +__o and
orthonormality of {hn} one has

o f_ + +

Thus

f?=,,Om dx

((A2n- 1)(A- 1))-1/2f (h’n + xhn)(h’m + xhm)dx

((A2,, 1)(A2m 1)) 1/2 L?,nh,m dx + _?nhmx2 dx 6m,

Integrating by parts in the first integral and using Lhn -A2nhn shows that
{qm} is orthonormal.

This suggests that the Hilbert transform for the Hermite functions be
defined by the mapping hn (A2n 1)-l/2(h’n + xhn) hn_ 1. The last
equality comes from the explicit form of hn. However, a closer examination
of the situation reveals that things are not so simple. In the classical
Sturm-Liouville case

d2 d
dx 2 + a(x)-,

the eigenvalues -A2n arise in both the definition of the Poisson integral

f(x, y) E exp(-A2x)( f, q}q.(Y)
0

as well as the suggested Hilbert transform

In the case of Hermite functions, A still occurs in the Poisson integral while
(A2n- 1) -1/2 occurs in the suggested Hilbert transform. To deal with this
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fact, we define the Hilbert transform for Hermite functions by mapping

2n )1/2(1.2) hn 2n + 1 hn_ l.

While this mapping takes an orthonormal system into only an orthogonal
system, the definition (1.2) will be crucial in the analogue of the Cauchy-
Riemann equations in 3.
We now describe the main results of this paper. The primary objective is to

develop a theory of Poisson and conjugate Poisson integrals associated with
the Hermite functions {hn} and to obtain Lp mapping properties of the
Hilbert transform defined by (1.2). In 2 we discuss the heat-diffusion
integral for the Hermite operator and prove the appropriate estimates. We
also apply a subordination principle to obtain the Poisson kernel. In 3 we
derive the corresponding Cauchy-Riemann equation and obtain the conju-
gate Poisson kernel. In 4, 5, and 6, we closely follow Muckenhoupt’s
program [Mu 1], [Mu 2] to establish estimates for the conjugate Poisson
integral and Hilbert transform. In 7, we state the main theorem of this
paper.

Let f*(x) and H*(x) denote the Hardy-Littlewood maximal function and
the ordinary maximal Hilbert transform on R respectively:

f*(x) sups- f(t)ldt,
xI

H*(x) sup fix f(t) dt
e>0 -tl >e x

Muckenhoupt’s program is based on the following two lemmas:

LEMMA A. Assume Tf(y) f_oof(z)L(y, z)dz, L(y,z) > O, and
IlL(y," )111 <- C where C is independent of y. Suppose L(y," ) is monotone
increasing for z < y and monotone decreasing for z > y. Then Tf(y)[ <
cf*(y).

LEMMA B. Assume Tf(y)= foof(z)K(y, z)dz where K(y, y + h)=
-K(y, y h) and the function h hK(y, y + h) has total variation bounded
by C where C is independent of y. Then Tf(y)[ < CH*(y).

As in [Mu 2], we will show that the conjugate Poisson kernel Q(x, y, z)
(here x denotes the distance above the boundary R) can be written as
J(x, y, z) + K(x, y, z) where IJ(x, y, z)l <L(y,z) and L(y, z) and
K(x, y, z) satisfy the hypotheses of Lemmas A and B with estimates uniform
in both x and y.
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Finally, it is interesting to note that Thangavelu [Th 1], [Th 2] recently
obtained the strong type (p, p) result for the Hilbert transform defined by
(1.2) by transference techniques and conjectured that the weak-type (1, 1)
result was probably valid. Our results imply the weak-type (1, 1) result and
are obtained by entirely different and perhaps more straightforward methods.
Throughout this paper C will denote a constant which may vary from line to
line and Ilfllp will denote the Lp norm of f with respect to ordinary
Lebesgue measure on R.

2. Heat Diffusion and Poisson Integrals

We begin this section by recalling the following result of Markett [Ma]:

LEMMA 2.1 (Markett).
functions. Then

Let {hn} denote the sequence of normalized Hermite

n 2p 4

1/4n-g(log n)

n 6p 12

1<p<4,

4<p<.

In particular, we Ilhnl]p _< Cn(p). Let f LP(R), 1 <p < 0% and let
=oanhn(x) denote the expansion of f with respect to the Hermite func-
tions. Then if 1/p + 1/q 1,

(2.1) [an[ LLf(t)hn(t ) dtl <_ Ilfllpllhlla <_ Cne(q).

We define the heat-diffusion integral of f by

(2.2) g(x,y) E e-(2n+l)Xanhn(Y),
n=0

x>0.

In view of (2.1) if follows that for any fixed x > 0, the series in (2.2)
converges uniformly in y. We obtain an integral form of g(x, y) by writing

g(x, y) E e-(2n+l)x

f E e-(2n +l)xhn(y)hn(z) f(Z) dz
n =0
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Interchanging the order of summation and integration is justified by
Lebesgue’s dominated convergence theorem since

E f e-(2n+)X]hn(Y)h,,(z)f(z)] dz <- E e-2(’+i)X]]h,,]]oo]]hn]]][f]lv
n=0 n=0

and both Ilhlloo and Ilhllq grow polynomially in n by Lemma 2.1.
A preliminary result concerning the heat-diffusion integral is contained in

the following

LEMMA 2.2. For f LP(R), 1 _< p _< , the heat-diffusion integral g(x, y)
is a Coo function on R+ R satisfying the differential equation

(2.3) Lr- g=0,

where

02

Lr 0Y 2 y2.

Proof The estimate from Lemma 2.1 with p o justifies differentiation
of the series (2.2) with respect to x. Thus we have

(2.4)
ok
oxkg(x,y) ] (--1)k(2n + 1)ke-(2n+l)Xanhn(Y).

n=0

Since h’n(y)=(2n)l/2hn_l(y)-Yhn(Y), we have Ih’n(y)l < Cne(A) uni-
formly for y [-A, A], A > 0. Thus for x fixed, the series (2.4) can be
differentiated termwise with respect to y. A similar argument holds for
higher derivatives and thus g(x, y) is C on R+ R. Differentiating term by
term shows that g(x, y) satisfies (2.3) and the lemma is proved.

Instead of working with the kernel P(x, y, z), it is more convenient to
introduce the kernel

(2.5) U(r, y, Z) E rnhn(Y)hn(z), 0 < r < 1.

Then P(x, y, z) e-XU(e -2x, y, z) and estimates obtained with the kernel
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U can easily be converted into estimates for g(x, y). By Mehler’s formula
[Sz, p. 380] we have

(2.6) U(r,y,z)
’W1/2(1 r 2) 1/2

( l(l+r2) 2ryz )exp - 1 r 2 (y2 + Z 2) + 1 r 2

and

(2.7) f U( r, y, z ) dz
l + r 2

exp - 1 + r 2 y2

To obtain (2.7) from (2.6), one completes the square and makes the appropri-
ate change of variables. Let L(r, y, z) be defined by

( 2r )U r, y,
1 + r 2

y

for z in the interval with endpoints (2r/(1 + rZ))y and y and by U(r, y, z)
outside this interval. The main estimates for the heat-diffusion integral are
readily obtained from the following

LEMMA 2.3. For 0 < r < 1, U(r, y, z) < L(r, y, z), the function L(r, y, z)
as a function of z is increasing on (-0% y] and decreasing on [y, oo), and
satisfies

(2.8) f==L(_ r, y, z) dz < C,

where C is independent of r and y.

Proof We consider only the case y > 0, and note that the case y < 0 can
be treated in a similar manner. The function f(z)= exp(-az2 + bz) is
increasing on (-oo, b/2a] and decreasing on [b/2a, oo). From this fact the
monotonicity of L(r, y, z) readily follows. To establish (2.8) it suffices to
prove

(2.9) Y 1 + r 2 U r, y,
1 r 2 < C.
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A simple calculation shows that the left hand side of (2.9) equals

(1 + r)(1 + r2) 1/2 "y
1 + r e

exp -ye 1 + r e

and since u exp(-u2/2) is bounded on [0,o), the lemma is proved.

The main results of this section are contained in the following

THEOREM 2.4. Let f LP(R), 1 < p < , and let g(x, y) denote the
heat-diffusion integral defined by (2.2). Then

(a) Ig(x, y)l < Ce-Xf*(y),
(b) Ilg(x, ")lip -< (cosh2x)-l/2llfllp, 1 < p < ,
(c) IIg(x," ) -f(’)llp --’ 0 as x O, 1 < p < ,
(d) g(x, y) f(y) a.e. as x - O, 1 < p < .
Proof (a) We have

Ig(x,y)l f P(x, y, z)f(z) dz

--e Lf- U(e-eX, y, z)f( z) dz

-x f L(e-2X, y, z)lf(z)l dz

< Ce-Xf*(y)

by Lemma A and Lemma 2.3.
(b) For 1 <p < , using P(x, y, z)= e

tain
-xU(e -2x, y, z) and (2.7), we ob-

(2.10) foP(_ x, y, z) dz (cosh 2x) 1/2 exp
1(- tanh 2x).

By H61der’s inequality and (2.10) it follows that

Ig(x, y)lp < (cosh 2x)-p/2qf If(z)lPe(x, y, z) dz.

Integrating with respect to y and using Fubini’s theorem yields

Ilgll < (cosh 2x) -p/2q (cosh 2x) -1/211fllpP
(cosh 2x)
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Thus (b) is proved when p < oo and is obvious when p oo. To prove (c) and
(d) we use standard arguments and the fact that the space of polynomials
multiplied by e -x2/2 is dense in L’(R) (see [Mu 2]). This completes the proof
of the theorem.

We conclude this section by defining the Poisson integrals. Let f Lt’(R),
1 < p < 0% and let =oanhn denote the expansion of f in Hermite func-
tions. The Poisson integral f(x, y), x > 0, is defined by

(2.11) f(x, y) 2 e-(2n+l)l/2Xanhn(Y)

The series in (2.11) converges uniformly in y for x fixed. An integral
representation for f(x, y) may be obtained by using the subordination
formula (cf. [Go, 19. 78])

(2.12) e -t 4Vt fs-3/2e-Se-2/4s ds.

We have

(2.13)

f(x, y)

_
e -(2n + 1)l/2x f(z) hn(z) dz hn(Y)

rt O

(Z) E e-(2n+l)Shn(Ylhn(z) s-3/2e-X2/4Sdsdz

4 (z) P(s, y, z) s-3/2e -x2/4s ds dz

fLf(z)g(x,_ y,z)dz

where

(2.14) R(X,y,Z) 4 (s’Y’z)s-3/2e-XZ/4Sds

is the Poisson kernel associated with the Hermite functions {hn}. As before,
interchanging integration and summation is justified by the dominated con-
vergence theorem. The same arguments used for the heat-diffusion integral
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imply that f(x, y) is C on R+ R and satisfies

=0

Where Ly is the Hermite operator. Finally, we note that the results in
Theorem 2.4 remain valid for the Poisson integral providing the factors e-x
and (cosh 2x)-1/2 are dropped in (a) and (b). In fact from (2.13) it follows
that

(2.15) f( x, y)
X f0 3/2e-x2/4Sgs (s, Ylds

The point-wise estimate for g(s, y), the identity

X f _3/2e_xs 2/4S ds 1,

and Minkowski’s integral inequality imply (a) and (b). The results in (c) and
(d) for the Poisson integral follow by standard arguments (cf. [Mu 1]).

Remark 2.5. It is interesting to note here that P(x, y, z), the heat kernel
associated to the Hermite operator, may be majorized point-wise by the
Gauss-Weierstrass kernel on R, i.e. the heat kernel associated to the one-di-
mensional Laplacean. This is in accordance to a more general principle that
takes place for Schr6dinger operators and the Feynman-Kac formula is used
to prove it. We are grateful to Andrzej Hulanicki to whom we owe this
information. Specifically we have

(2.16) P(x, y,z) < Wx(Y z)

where Wx(y) (4,n-x) -1/2 exp(-y2/4x). This clearly gives another proof of
Theorem 2.4, conceptually equivalent to our previous argument, except for
the fact that our more careful analysis also gives the exponential factors in (a)
and (b). To check (2.16)we note that

where

P(x, y, z) (27r)-1/2(sinh (2x))-l/2 exp(-qx( y, z))

1 29x(Y,Z) =-(y-z) coth2x+yztanhx

and thus, since sinh > and coth > l/t, for yz > 0 (2.16) is obvious.



CONJUGATE EXPANSIONS FOR HERMITE FUNCTIONS 187

Assuming now yz < 0 it suffices to check that

$x( Y, ) > ( Y z)214x

and, by a homogeneity argument, this is reduced to the inequality

A coth 2x tanh x > A/2x

which, for A > 2, is clearly valid for all x > 0.

3. Conjugate Poisson Integrals

Let f Y’?=oanhn Recall that fi, the Hilbert transform of f, is formally
defined by

( 2n )
1/2

fi~ Ean 2n+ 1 hn"
n=0

Let f(x, y) be the Poisson integral given by (2.11). We define the conjugate
Poisson integral by

(2n)l/2e_(2n+l)/2Xhl(Y )(3.1) fi(x, y) ] a 2n + 1 ’-
n=0

The same arguments used for the heat-diffusion integral show that Jr(x, y) is
C on R+ R and satisfies

( o2)Ly+ x2 f=2f.

where L is the Hermite operator. The fact that h’(y) + yhn(y)
(2n)l/2hn_l(y) immediately shows that f(x, y) and f(x, y) are related by the
’Cauchy-Riemann’ equation

(3.2) Of Of
oS + YJ’= ox

We now use (3.2) to find an integral formula for f(x, y). Using the subordi-



188 J. GOSSELIN AND K. STEMPAK

nation formula (2.12), taking /3 (2n + 1)1/2x, making the change of vari-
ables s - (2n / 1)s, and then substituting r e -2s leads to the formula

xexp( X2 )
e_(2n + 1)l/2x f01 2 log r

( 3.3)
(2r) 1/2r(-log r)3/2rn+1/2 dr

=- r(x,r)rn+/ dr.

Then if R(x, y, z) denotes the Poisson kernel (2.14), we have

R(x, y,z) E e-(2n+l)l/2Xhn(Y)hn(z)
n=O

E hn( Y)hn(Z) folT(x, r)rn+ 1/2 dr

f01T(x r) rnhn(Y)hn(z) r 1/2 dr

--foT(x, r)U(r, y, z)rl/2 dr.

Combining this and (2.6)we obtain

(3.4)

Now

( 1- +yR exp --(y
(x2)21/2 ( Z ry ) X exp 2 log r

2/ Z2))fo 7r(--log r)3/2(1- /’2) 3/2

exp
--r2y 2 / 2ryz- r2z 2 )1 r 2 r/2 dr.

(3.5) Of
y / Yf - + yR (x,y,z)f(z)dz.

From (2.1) it is easy to check that f(x, y) 0 as x - o and so

(x, y) -ff-(t, y) dt.

Using (3.4), (3.5), and the Cauchy-Riemann equation (3.2)we find after
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integrating with respect to x and changing the order of integration

where

f(x, y) Q(x,y,z)f(z)dz

1 2 2)(3.6) Q(x, y,z) exp --(y + z ) al(

and

x, y, z)

(3.7) Ql(X,y,z )
z ry

exp 2 Wl(X,r) dr
(1 r2) 2 1 r

with

WI(X, y) log r exp 2 log r

Interchanging the order of integration is justified since

fxtexp 21ogr dt

merely brings out the factor -log r. We call Q(x, y, z) the conjugate Poisson
kernel associated with the Hermite functions {hn}. We note that Q(x, y, z)
differs from the corresponding kernel associated with the Hermite polynomi-
als (see [Mu 2]) by the exponential factor exp(-(y2 + z2)/2) and the
additional factor of r 1/2 inside the integral. Our goal is to show that the
same techniques used by Muckenhoupt [Mu 1], [Mu 2] remain effective with
these modifications. In many cases, the estimates from [Mu 2] can be applied
directly, but in a few cases the argument is more delicate and the explicit
form of our kernel must be taken into account.
As in [Mu 2] the general program is to write Q(x, y, z)= J(x, y, z)+

K(x, y, z) with IJ(x, y, z)l < L(y, z) where L satisfies the conditions of
Lemma A and with K(x, y, z) being an odd function of z about y and
satisfying the conditions of Lemma B uniformly in x and y. Specifically, we
define J(x, y, z) by

(3.8)

{-}(Q(x, y,) + Q(x, y,2y z)),
J(x, y,z)

Q(x, y,z)
ly zl < min(1,1/lyl),
ly zl > min(1,1/lyl),
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and K(x, y, z) by

(3.9)
1/2(a(x, r,z) O(x, r,2r z)),

K(x,y,z)=
O,

lY zl < min(1, 1/lyl),
ly zl min(1, 1/lyl).

The function L(x, y) is defined for y > 2 by

(3.10)

L(y, z)

exp(-z2/2)/y exp(y2/2), z < 0,

exp(z2/2)/y exp(y2/2), 0 < z < y/2,

exp(z2/2)(y-1 + ( y( y z)3)-l/2)/exp( y2/2),
y/2<z_<y- l/y,

y exp(z2/2)(1 In[ y(y z)]/ew(y2/a),
y- 1/y <z<y,

y(1-1n[y(z-y)]), y <z < y + I/y,

y exp(-z2/2) exp(y2/2), y + 1/y < z,

and forO<y <2by

(3.11)
(y(1- ln[yly- zl]) + 1,

L(y,z) I1,exp(-z2/2),
0<ly-zl <1,
l<ly-zl <2,
2< ly-zl.

A careful inspection of (3.10) and (3.11) shows that L(y, z) as a function of z
is increasing on (-0% y) and decreasing on (y, ). A straightforward calcula-
tion also shows that

(3.12) x, y) dz < C

where C is independent of y > 0. Since Q(x, y, z)= -Q(x,-y,-z), it
suffices to consider only the case y > 0.
The following lemma is crucial and the next three sections are devoted to

its proof.

LEMMA 3.1. Let Q(x, y, z) J(x, y, z) + K(x, y, z) where J and K are
given by (3.8) and (3.9). Then [J(x, y, z)[ < CL(Iy[, z) where L is defined by
(3.10) and (3.11) and C is a fixed constant. Moreover the total variation of the
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function h hK(x, y, y + h), (defined to be 0 for h 0), is bounded by a
constant independent ofx > 0 and y R.

4. The estimate for J(x, y, z) when ly z < min(1, 1/lyl)

In this section, we need not distinguish between the cases 0 < y < 2 and
y > 2. When [y z < min(1, /[y I), from (3.8) we have

1
2J(x, y, z) exp -(z 2 y2))[Ql(X, y,z)exp(-z2 ) + Ql(x, y,2y z)

exp(- (2y z)21 exp(2y(y z))].
Applying (3.7) and noticing that wl(x, r)l < 1, we estimate 2 IJ(x, y, z)l by

exp -(z -y )
(l-r2)

2exp 1-r2

e2y(y-2) dr.+ y(1 r) + (y z) y(1 r) + ()Y2(1 r2) 2
(1 r 2

Adding and subtracting

y(1- r) + (y z) exp(-(z-ry)2)(1 r2) 2 1 r 2

inside the integral above and using the triangle inequality allows us to
majorize 2 [J(x, y, z)l by the sum of

(4.11 Cy exp -(z y2 ( Z ry) 2 dr

and

(1(Z2 2 ) fol y(1- r) + ly Zl exp( ((4.2t C exp -Y )
(l-r)2

exp 2y(z y) ]
1

1l+r ]

Z ry) 2 t
1 -r 2
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Using Lemma 5, (4.1) from [Mu 2] then shows that (4.1) is bounded by

(4.3) Cy exp(z2/2)(1 ln[yly zl])/exp(y2/2).
Since y ]y z] < 1, the mean value theorem implies

( 1-r)-1 <_Cy]z-y[exp 2y(z y ) l + r

Another application of Lemma 5 [Mu 2] now shows that (4.2) is bounded by
(4.3). This is the required estimate in the cases 0 _< y _< 2 and y > 2 with
y 1/y < z < y. The estimate for the remaining interval y < z < y + 1/y
also follows if we note that exp(1/2(z 2 y2)) _< C. This completes the proof
of the estimate [J(x, y, z)[ _< CL(]y[, z) for [y z[ < min(1, 1/[y I).

5. Estimates for J on intervals away from y

With the exception of the case 1/2y < z < y 1/y Muckenhoupt obtains
his estimates by passing the absolute value inside the integral and making the
estimate [w(x, r)[ < 1. In our case

1
Q(x, y, z) exp --(y 2 + z2))QI(X, y, z)

where Ql(X, y, z) is Muckenhoupt’s kernel with w(x, r) replaced by WI(X r)
w(x, r)r 1/2. Since Iw(x, r)l < 1 implies [Wl(X r)l < 1 for 0 < r < 1, the

same estimates which are made for Muckenhoupt’s kernel remain valid for
al(x, y, z). When these estimates are multiplied by exp(-1/2(y2 + z2)),
precisely the estimates of (3.10) and (3.11) are obtained.
For the interval 1/2y < z < y l/y, we must integrate by parts and do a

slightly more careful analysis. Following Muckenhoupt we let

z _r_y. [ r 2 2 2z2
S(r,y,z)

(1-r2)3/2exp.-
Y +12ryz_r2-r

We then write

Q(x, y, Z
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where

1-
3(y-z)

1- (y-z)]
2y 2y ]

The estimates for

1 2 2)(5.1) exp--(y +z ) fE WI(X, r)
QI( x, y, z)

(1 r
1/2 S(r,y,z) dr

and

1 2 2))exp-(y +z fF wl( x-’ r) S( r, y, z) dr
(1 r 2) 1/2

are established separately. For (5.1) the difference inside the absolute value
signs is estimated precisely as in [Mu 2] (see 5.4, [Mu 2]). It is written as the
sum of two integrals over disjoint intervals, the absolute value is moved inside
each integral, and then the estimate Iwa(x,r)l _< 1 is used. When the
estimate (5.4) of [Mu 2] is multiplied by exp(-1/2(y2 + z2)), we obtain
precisely the estimate in (3.12) corresponding to 1/2 < z < y- 1/y. To
obtain the estimate for (5.2) we integrate by parts. For the boundary terms
we obtain the same estimate as on the right had side of (5.5) in [Mu 2] since,
once again, the fact that Wl(X, r)l < 1 is used. When this estimate is
multiplied by the exponential term, the desired estimate is obtained. The
term that remains to be estimated is

(5.3)
1 r) 1/2

Recall that WI(X r)= w(x, r)r 1/2 where w(x, r) is the function in [Mu 2].
The integral in (5.3) is majorized by

(5.4) fE[ d ( w( x, r)- (1 r2) 1/2 r1/ frlS(t, y, Z) dt dr

(1 ;2)-/ 2rl/2 t, y, z) dt dr.

For the first integral in (5.4) the absolute value signs are put inside the
integral, r 1/2 is replaced by 1, and the same estimates as in [Mu 2] are
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applied. For the second integral in (5.4), we note that r E implies r > 1/4
and hence the term 1/2r 1/2 is uniformly bounded. Now for r E, we have

(1 r 2) 1/2
1 ( y )3/23/2 C(1 -r) y-z

For the last inequality in (5.5)see (5.13) of [Mu 2]. For the second integral in
(5.4), after putting the absolute value signs inside the integral, using the
uniform bound for 1/2r/, the estimate (5.5), and the estimate in (5.12)[Mu
2] for frlS(t, y, z) dtl when r E to obtain

fe _w.(.x_,..y_)_ 1 frlS(t y z)dtdr
(1 r 2)1/2 2rl/2

A substitution shows that this last integral is majorized by

C exp( z 2)
(y(y --Z)3) 1/2"

Finally, multiplying by the exponential factor exp(-1/2(y 2 + z2)) produces
the required estimate in (3.12). This completes the estimate for the interval
y/2 <z < y- 1/y.

6. Estimates for the total variation of K(x, y, z)

In order to apply Lemma B to the kernel K(x, y, z) given by (3.9) we need
to check that the total variation of the function h hK(x, y, y + h) is
bounded uniformly in x, y > 0. Following the argument from [Mu 2, 6], it is
sufficient to prove that

(6.1)
-Yl <m

[( y z)Q( x, y, z) dz, m min(1, l/y),

is bounded independently of x, y > 0. First we observe that Lemma 6 in
[Mu 2, p. 250] remains valid for

OW
pl( x, r) -7-( x, r)
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since WI(X r) w(x, r)r /2. That means

(6.2) f0[ Pl(X, r) dr < C.

From the definition of Q(x, y, z) we have

(6.3)

f01 fta (y z)(z ry)(y-z)Q(x,y,z) pl(x,t)
(1-r2)2

( l(l+r2) 2ryz )exp -- 1 r 2 (y2 + z 2) +
1 r 2 dr dt.

Differentiating (6.3) with respect to z shows that the integrand in (6.1) may
be written in the form

1 2 2)(6.4) exp -(z -y ) lpl(X t) aB(r y z) exp -(ry-z
l_r

drdt

where

(6.5)

B(r,y,z) y(1 +r)-2z 2(z-ry)Z(y-z) z(y-z)(z-ry)
(1 r2) z

(1 r2)3 +
(1 r 2)2

The condition Iz y < rn implies [z 2 y21 _< C and therefore the expo-
nential factor before the integral in (6.4) can be ignored. Moreover the
first two summands in (6.5) give rise to identical integrals as treated by
Muckenhoupt (c.f. (6.2), [Mu 2])with p(x, t) replaced by pl(X, t). In view of
(6.2) above, it follows that the integrals with these summands are bounded.
We now consider the last summand in (6.5) and are reduced to estimating

(6.6) Izl lpl(x,t )
(y Z)(Z ry) (ry Z

(1 r2)2
exp

1 r 2 dr dt

Since z ry (z y) + y(1 r), the inner integral in (6.6) is majorized by

(6.7) (y z)2fo 1 ( (ry z)z) dr
(1 r2) 2 exp

1 r 2

+ Y lY zl f01 1-r1 exp(_(ry-z)2)l_r2 dr.
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Applying Lemma 5 from [Mu 2] it follows that (6.7) is bounded by

(6.8) C[1 + YIY z[(1 log(yly zl))].

For y > 2 we note that y ly z _< 1 and that (6.6) is majorized by

(6.9) C(1 + y)[1 log(y[y z[)].

It is easy to check that for y > 2

C(1 + y)[ (1 log( y [y z I)) dz

is bounded uniformly in y. For y < 2 we have [y z[ 1 and Izl 3. Thus
in this case (6.6) is majorized by

C[1 -ylog(yly z[)].

and again it is easy to check that for y < 2

Yflz (1 log( y }y z I)) dz

is bounded uniformly in y. This completes the estimates for the integral with
the last summand of B(r, y, z). This also establishes the uniform bounded-
ness of (6.1) and completes the proof of Lemma 3.1.

7. Main results

The main results of this paper concerned with the conjugate Poisson
integral f’(x, y) and its boundary value f(y) for 1 < p < o are summarized
in the following

THEOREM 7.1. Let f LP(R), 1 < p < 0% and let f Y’.anhn where {hn} is
the sequence of Hermite functions. Then

a) II/(x, Y)llp < Zpllfllp,
b) f(x, y) has an Lp limit as x --, 0 + denoted by f(y). Moreover

II/(x, y) f( Y)ll 0 as x -o 0 +,

c) Ilsup > 013(x, Y)I lip -< hpllfllp,
d) f(x, y) f(y) a.e. (y) as x 0 +,
e) f(y) has the expansion E=oan(2n/(2n + 1))X/2hn.
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In the case p 1, we have

THEOREM 7.2. Let f LI(R) and let Eanhn denote the expansion off with
respect to the Hermite functions. Then

a) I{y "SUpx>0lf(x, y)[ > A}[ < CA-1llfl[1,
b) limx o f(x, y) exists a.e. (y) and is denoted by f(y),
c) {y’lf(y) > A} < CA-11lflll.

For the proof we note that Lemma 3.1 allows us to use Lemmas A and B.
Since the Hardy-Littlewood maximal function and maximal Hilbert transform
are of strong type (p, p) and of weak type (1, 1), the results for jr(x, y)
following immediately. The existence of the boundary value jr(y) follows
from the estimate for j(x, y) and the fact that the space of polynomials
multiplied by exp(-x2/2) are dense in Lp, 1 < p < .
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