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KNOTS AND SHELLABLE CELL PARTITIONINGS OF S3

STEVE ARMENTROUT

A cell partitioning of S3 is a finite covering H of S3 by 3-cells such that if
m is any positive integer and exactly m 3-cells of H intersect, their common
part is a cell of dimension 4- m, where cells of negative dimension are
empty. The 3-cells of a cell partitioning of S3 fit together in a staggered,
brick-like pattern.
A cell partitioning H of S3 is shellable if and only if there is a counting

(hl, h2,’",h) of H such that if is an integer and l_<i<n, then
h he h is a 3-cell. Such a counting is a shelling of H.

In this paper, we shall study a connection between knots in S3 and
shellability of cell partitionings of S3. We shall use these results to construct
nonshellable cell partitionings of S3.
Our results involve the use of the bridge number of a knot in S3. In

Section 1 of this paper, we shall review some results concerning knots in S3

and bridge numbers of knots in S 3. In Section 2, we shall establish the main
result of the paper. In Section 3, we shall establish a variant of the main
result that is useful in some situations. In Section 4, we shall use the results
of this paper to construct a nonshellable cell partitioning of S3 and, as a
variation on that construction, a nest of nonshellable cell partitionings of S3.

Throughout this paper, we shall assume that S3 has its standard piecewise
linear structure.
The author thanks the referee for suggestions and corrections.

1. Knots in S3

A knot in S3 is a polygonal simple closed curve in S3. Two knots k and
in S3 are of the same knot type in S3 if and only if there is an orientation
preserving PL homeomorphism f: S3 S3 such that f(k) I. A knot in S3

is trivial if and only if it has the same knot type as the boundary of a
2-simplex in S3.
Suppose C is a 3-cell. Then a is a spanning arc of C if and only if a is an

arc in C such that Bd a c Bd C and Int a c Int C. D is a semispanning disc
of C if and only if D is a disc in C such that Int D Int C and D Bd C is
an arc on Bd C. The statement that/3 is a straight spanning arc of C means
that/3 is a spanning arc of C and there is a semispanning disc D of C such
that /3 Bd D. Recall that if /3 is a polyhedral straight spanning arc of a
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polyhedral 3-cell C and a is any polyhedral arc on Bd C with Bd/3 Bd a,
then there is a polyhedral semispanning disc A in C with Bd A a U/3.
The statement that al, a2,..., and an are simultaneously straight in C

means that al, a2,... and a are mutually disjoint spanning arcs of C and
there exist mutually disjoint semispanning discs Dl, DE,... and Dn of C
such that for each i, a c Bd Di.

Suppose is a knot in S3, C is a polyhedral 3-cell in S 3, and m is a positive
integer. Then is in m-bridge position on C if and only if there exist mutually
disjoint arcs al, a2,... and am on BdC and mutually disjoint arcs
/31,/32,..., and tim simultaneously straight in C, such that (a U O2
u u am) U (/1 U/ U u/m)"

If k is a knot in S3, then the bridge number of k, denoted by br k, is
defined to be the least positive integer rn such that there exist a knot in S 3

and a polyhedral 3-cell C in S3 such that (1) and k have the same knot
type, and (2) l is in m-bridge position on C.
For basic results concerning the bridge number of a knot, see [8]. It is clear

that bridge number is an invariant of knot type. A knot in S3 is trivial if and
only if the knot has bridge number 1. It is easily seen, for example, that the
trefoil knot in S3 has bridge number 2.

2. The main result

In this section we shall establish a relationship between the bridge number
of a knot in S3 and the nonshellability of a cell partitioning of S3 related to
the knot in a special way. First we shall introduce some terminology.
Suppose H is a cell partitioning of S3. If h and k are distinct intersecting

3-cells of H, then h N k is a disc. By a face of H is meant such a disc. The
2-skeleton of H, denoted by 2-skel H, is the union of all the faces of H. The
1-skeleton of H, 1-skel H, is the set of all points common to three or more
sets of H. The O-skeleton of H, 0-skel H, is the set of all points common to
four sets of H.

Suppose that H is a polyhedral cell partitioning of S3, and k is a knot in
S3. Then k is compatible with H if and only if (1) k and 2-skel H are in
relative general position in S3, and (2) if h H and k intersects h, then
h N k is a single straight spanning arc. Suppose k is compatible with H.
Then the partitioning of k induced by H is 7r(k, H) {k q h: h H and
h k 4: b}. Let [Tr(k, H)[ denote the number of arcs in the partitioning of k
induced by H.
We are now prepared to prove the main result of this paper. It was

suggested by examples due to Bing (pp. 110-111 of [3]). In this connection,
see also [4], [5], [6], and [7].

THEOREM 1. Suppose H is a polyhedral cell partitioning of S3, k is a knot in
S3, and k is compatible with H. If Izr(k, H)I < 2 br k, then H is not shellable.
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Proof Suppose that H is shellable. Then there is a shelling
(hi, h2,... hn) of n. If 1 =< < n, let C denote h u h2 tA hi; C is a
3-cell.

Now we shall give a brief outline of the proof. By simple geometric moves,
we shall construct a knot in S3 such that (1) and k are of the same knot
type and (2) for some positive integer r such that 2r __< Ir(k, H)I and some
polyhedral 3-cell C in S3, is in r-bridge position on C. Thus br =< r and
since k and are of the same knot type, then br k _< r. Since by hypothesis,
zr(k, H)I < 2 br k, then 2r =< zr(k, H)I < 2 br k, and thus br k __< r < br k.
This is a contradiction.
We shall obtain as follows. Let k0 k. Let m be the largest positive

integer j such that k intersects h.. If 1 =< < m, we shall construct a knot ki,

of the same knot type as k, and obtained from ki_ by adjusting the part of
ki-1 in Ci. It is to be true that k Ci k Ci. Further, there are integers
Pi and qi such that (1) k 0 C is the union of qi simultaneously straight
spanning arcs of C and Pi mutually disjoint arcs on Bd Ci, and (2) Pi -F qi is
at most the number of cells among h 1, h2,..., and h that k intersects. We
obtain by an analogous adjustment of km_ 1, and has the properties that
1 c C, and is the union of tim simultaneously straight spanning arcs of C
and Pm mutually disjoint arcs on Bd C where Pm q- qm is at most the number
of cells among hi, h2,... and hm that intersects. Thus p, + qm =<
Izr(k, H)I. Since c C, then Pm --qm" If r Pm qm, then is in r-bridge
position on C.
Now we shall give the details concerning the construction of the knots

kl, k2,..., and kin_ 1. Recall that m is the largest positive integer j such that
k intersects h.. Let k0 denote k. Let be the least positive integer such
that k intersects h i. If 1 < < n, let D denote Ci_

q hi; by Lemma 5, D is
a disc. If 1 < < n, let E denote (Bd hi) (Int Di). Let E Bd h1.

Let k k2 kt_ k. Let /3tl denote k h t. Then fit1 is a
straight spanning arc of h with Bd tl Int Et. Hence there exist a polygo-
nal arc At1 in Int E with Bd tl Bd At1 and a polyhedral semispanning
disc mtl in h such that Bd mtl fltl I,.J /tl" Also, we require that At1 and the
boundaries of the faces of H on (Bd h t) be in relative general position on
Bd ht.

For each positive integer such that =< < m, let S denote the following
statement.

Si: There exist
(1) a knot k in S3 of the same knot type as ki_l,
(2) nonnegative integers Pi and qi such that Pi + qi is at most the number

of 3-cells among {h 1, h2,..., hi} that k intersects,
(3) mutually disjoint polyhedral arc ail, ai2,..., and aip on Bd Ci,

(4) mutually disjoint polyhedral arc /3il, il’’’’’ and iqi simultaneously
straight in Ci,
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FIG. 1

(5) mutually disjoint polyhedral arcs Ail, Ai2,... and Aia on Bd C such
that for 1 <= j <__ qi, there is a polyhedral semispanning disc Aij of C
with Bd Aij flij k3 Aij and A/1 A/E Aiq mutually disjoint, such that

(a) k (k Ci) [, (O joLij) (U jij),
(b) if x is an endpoint of some aij then x is also an endpoint of some fli,

and
(c) the a’s and A’s are in general position relative to the boundaries of

faces of H on Bd Ci.

If Pi 0, there are no a’s, and if qi 0, there are no fl’s. See Figure 1.
Now Se is true. Let k k. The arcs /3el and At1, and the disc Atl were

defined above. Let Pt 0 and qe 1. Then Pe + qe 1, and note that k
intersects at most one of the 3-cells hi, hE,’’’ and h e.
Suppose now that < < m 1 and Si_ is true. We shall prove that S

is true. Since Si_ holds, there exist ki_l, Pi-1, qi-1, a’S, fl’S, A’S, and A’s as
described in the statement of Si_ 1.

We shall consider four cases. In each case, we may modify k and existing
a’s, fl’s, A’s, and A’s. We may construct one additional a or one additional
fl, but not both.
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Case 1. k and h are disjoint.
In this case, no additional a’s or/3’s are constructed. It follows in this case

that ki_ is disjoint from hi Di.
There is a PL homeomorphism fi" Di -’-> Ei such that filBd D id. Then

fi: Di --> Ei extends to a PL homeomorphism fi Bd: Ci_ ""> Bd C such that
jI(BdC/_ 1) -D id. There is a PL homeomorphism F/: $3 S3 such
that

(1) Fi(Ci_ ) qi,
(2) F/extends fi, and
(3) except on a close neighborhood of hi, F id.

Let Pi Pi-1 and qi qi-l" If 1 <__ j <__ qi, let Olij Fi(oli_l,j) lij
F/(//_l,j) and Aiy F/(Ai_I,j). If 1 <=j <= qi, let [ij-" F/(/-1, j). We may
assume that the a’s and A’s are in general position relative to the boundaries
of faces of H on Bd Ci. Let ki Fi(ki- 1). We may assume, since k
that Filk k id.

Clearly ki_ 1, and k are of the same knot type in S3. Since Pi =Pi-1,
qi qi-1, k h , and Pi-1 -Jr qi-1 is at most the number of cells among
hi, h2,..., and h ’1 that k intersects, then Pi + qi is at most the number of
cells among h1, h2,..., and hi that k intersects. Thus Si holds in this case.

Case 2. k intersects h but is disjoint from Di.

In this case, one additional /3 is constructed. Let [iq k c h i. Then iqi
is a polyhedral straight spanning arc of h with Bd iqi in Int Ei. Let hiq be a
polyhedral arc in Int E with Bd 1iq Bd iqi. There is a polyhedral semi-
spanning disc miq of h with Bd miq iqi i,.) liqi.

Let 6i be a small polyhedral disc in Int D and disjoint from the a’s and
h’s. There is a piecewise linear homeomorphism Fi" S

3 --> S3 such that

(1) Fi(i) Di,
(2) Fi(Ci_ 1) Ci- 1, and
(3) except on a close neighborhood of Di, F is the identity and, in

particular, Fil(Aiq Ll ki) is the identity.

Let Pi Pi-1 and let qi- 1 + qi-1. If 1 <=j <=Pi, let Olij Fi(oli_l,j). If
1 <= j < qi, let ij Fi(i-l,j), ij Fi(ii-l,j), and Aij Fi(mi_l,j). We
defined iqi tiqi, and miq above. Let k ki_ 1. We use the homeomorphism
F/to adjust the a’s,/3’s, and A’s that intersect Di, but continue the argument
with the original h’s. We do not replace h by Fi(hi). Since Pi + qi 1 +
Pi-1 4r qi-1 and k intersects only one more 3-cell among hi, h2,..., and h
than among h 1, h 2 and hi_ 1, then condition (2) of S holds. It is easily seen
that S holds in this case.



352 STEVE ARMENTROUT

Case 3. k intersects D in exactly one point.
In this case, no additional a’s or/3’s are constructed, but we extend an

existing/3.
Let x be the point common to k and Di. It follows from condition 5(b) of

Si-1 that x is an endpoint of a component of k Int Ci_ 1, and an endpoint
of some /3. There is an integer w such that 1 __< w __< qi-1 and x is an
endpoint of fli-l,w. Then x is also an endpoint of Ai_l, w.

Let t be a small polyhedral disc in Int D with x in Int , such that (1)
f3 Ai_I, is an arc A0 with one endpoint z on Bd and x as the other

endpoint, and (2) i intersects no a, no/3 other than fli-l,w, and no A other
than /i- 1, w"
There is a piecewise linear homeomorphism F/: S3 S3 such that

(1) Fi[i_l, U (k hi) is the identity,
(2) Fi(t) Oi,
(3) Fi(Ci) Ci, and
(4) except on a close neighborhood of Di, F is the identity.

Since Fi(z) is on Bd Di, there is an arc A’ in E with endpoints F/(z) and
the point common to E and ki, and with Int A’ in Int Ei. Since k h is
straight in hi, then A’ F/(A0) u (k h hi) bounds a polyhedral semispanning
disc A’ of h i.

Since A0 Ai_I, w, it follows that A’ U Fi(Ai_l, w) is a disc Aiw. Let

liw [F/(i-l.w) F/(0)] U ’.

Recall that i-l,w Fi(i-l,w) and k h k hi. Now let fliw fli-l,w
U (k (’1 hi). Then Bd Aiw fliw O Aiw.
Let Pi Pi-1 and qi qi-1. If 1 <= j <= Pi, let Olij Fi(oli_ 1, j). If 1

__
j <= qi

and j w, let [3ij F/(/_l,j) lij F/(/,/_l,j) and Aij F/(Ai_ I, j). Let

ki=(k-IntCi) U(-JtiJ)U(’JfliJ)j=l

Note that ki F/(ki_ 1)" Hence ki and ki_ are of the same knot type in $3.
As in Case 2, we use the homeomorphism F only to adjust the a’s,/3’s, and
A’s that intersect Di.

It is easily verified that S holds in this case.

Case 4. k intersects D in two points.
In this case, we shall construct an additional a.
Let x and y be the points common to k and Di. It is clear that

k n h ki_ f’) hi. By condition 5(b) of Si_ 1, neither x nor y can be an
endpoint of any a, and hence x and y are endpoints of/3’s. Since x and y
lie in Int Oi, there is a polygonal arc A from x to y and lying in Int Di.

We shall first adjust those c’s that intersect A by pushing them off A,
keeping Ci_ invariant. Suppose 1 <_ j <_ Pi-I and Oti_l, intersects A. There
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is a piecewise linear homeomorphism gy: S3 ---> S3 such that (1) gy fixes one
endpoint of 0li_1, and shortens 0li_1, SO that gj(oli_l, j) is disjoint from A,
(2) except on a close neighborhood of ai_l,y, gy is the identity, and (3)
gy(Ci_ 1) Ci_ 1. Let fl: S3 -- S3 be the composite, in some order, of all
such g/s for the ai_ 1,y that intersect A. Then for each arc a, fl(a) is disjoint
from A.
There is a piecewise linear homeomorphism f2: $3--> $3 such that (1)

f2(Di) Ei, (2) f2 is the identity on (Bd Ci_l) (Int Di) (3) f2(Ci_ 1) Ci,
and (4) except on a close neighborhood of hi, f2 is the identity.

Let F/= f2 fl: S3 "-’> S3" Let Pi 1 + Pi-i and let Olip Fi(A). If 1 __< j
<--Pi-1, let aiy F/(oti-l,j). Let qi qi-1. If 1 <= j <= qi, let fliy F/(/3i-1,),
Aij F/(Ai_I,j) and Aij F/(Ai_I,j). Note that Pi / qi 1 / Pi-1 / qi-i"
Let ki Fi([ki_l (hi n k)] to A).

Since h N k is straight in hi, then A to (h f) k) bounds a polyhedral
semispanning disc of hi. It follows easily that ki_ and k are of the same
knot type in S3.

It is easily established that S holds in this case.
Thus if t < < m 1 and Si_ is true, than S is true. Since S is true, it

follows that S is true.
The situation involving h requires special treatment because of the

possibility that m n, in which case C,, is not defined.
Since m is the largest integer such that k intersects hi, it follows that k

intersects Dm in two points xm and Ym" Let Am be a polygonal arc in Int Dm
from xm to Ym" By a procedure similar to that used in Case 4 above, we may
use a piecewise linear homeomorphism Fm S3 -, S3 to adjust the a’s so
that their images are disjoint from A,,, keeping the remainder of km_
pointwise fixed.

Since k hm is straight in hm, (k hm) to Am bounds a polyhedral semi-
spanning disc Bm of hm. Thicken Bm slightly relative to C,,_ to obtain a
3-cell Bm* in hm such that (1) Bm is a spanning disc of Bm*, (2) B*m Dm is a
disc having Am as a spanning arc, (3) k h, is a spanning arc of (Bd B*)
Int(Bm* ( Dm), and (4) Bm* is a close (closed) neighborhood of Bm.

Let Pm 1 / Pm-1 and let qm qm-l" If 1 __< j < Pm, let amy
Fm(am_l, ), and let amt, k hm. If 1 <_j <_ elm, let /3my Fm(Sm_l,y),
Amy Fm(Am_l,y), and Amy Fm(Am_l,y). Let Fm(km_l). Clearly and
km_ have the same knot type in S3.

Let C Cm_ to Bm Then C is a polyhedral 3-cell in S3 and c C.
Since Pi-i / qi-1 is at most the number of 3-cells among hi, hE,... and

hm_ that intersect k, and h to h E to to hm, then clearly Pm / qm <--
17r(k, H)I.
Now and k are of the same knot type in S3, since k

ko, kl, k2,... km_l, and all have the same knot type.
Now for each integer j with 1 <_ j <= Pm, let ay amy, and if 1 <_ j <= qm,

let /3y=/3my. It is clear that Pm=qm, and let r=Pm=qm. Since for
1 __< j __< r, fly lies on the boundary of the polyhedral semispanning disc Amy
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of C, and Am1 Am2,; and Amr are disjoint, then the fl’s are simultane-
ously straight in C. Further, each of al, a2,... and a lies on Bd C and

It follows that is in r-bridge position on C. Further, since Pm + qm <-
(r(k, H)I, then 2r _< Ir(k, H)I.
Thus the knot has the properties that (1) k and are of the same knot

type in S3 and (2) for some positive integer r such that 2r _< Ir(k, H)I and
some polyhedral 3-cell C in S3, is in r-bridge position on C. It was pointed
out above that this leads to a contradiction. Hence H is nonshellable.
We shall conclude this section by showing that the result of Theorem 1 is,

in a sense, sharp. See also [7].

THEOREM 2. Suppose that k is a nontrivial knot in S3. Then there exists a
shellable polyhedral cell partitioning H of S3 such that k is compatible with H
and Ir(k, n)l 2br k.

Proof Let r br k. Then there exists a polyhedral 3-cell C in S3 such
that k is in r-bridge position on C. Hence there exist mutually disjoint
polyhedral arcs a1, a2 and o on Bd C and mutually disjoint polyhedral
arcs/31,/32,. ., and [r simultaneously straight in C such that k (U =lai)
t (U = 1/3i)- Since/31,/32,. ., and [r are simultaneously straight in C, there
exist mutually disjoint polyhedral semispanning discs D1, D2,..., and D of
C such that if 1 =< =< r, then [i C Bd Di.

Let B S3 Int C; B is a polyhedral 3-cell in S 3. If 1 _< _< r, adjust o
by pushing Int a slightly into Int B. We may do this so that the adjusted
al, a2,’", and ar are polyhedral and simultaneously straight in B. We may
assume that this adjustment is made by a piecewise linear homeomorphism

f: $3- S3 that is the identity on each of /3,/32,..’, and /3r. Since
f(l), f(te2) and f(a) are simultaneously straight in B, there are mutually
disjoint polyhedral semispanning discs E1, E2,..., and E of B such that if
1 <= <= r, f(oi) Bd Ei. We may assume that if 1 =< _< r and 1 =< j _< r,
then Di fq Bd B and E Bd B are in relative general position on Bd B.
Thicken f(oi), f(o2),... and f(a)slightly relative to B to obtain mutu-

ally disjoint polyhedral 3-cells F’ F* and F* such that if 1 < j < r2

then (1) F.* Bd B is the union of two disjoint discs, F.* (q E is a disc, and
f(a) is a straight spanning arc of F.*, and (2) if 1 <_ <_ r, D F* is empty
or an arc.
Suppose 1 __<j __< r. Let E CI(E- F.*). Cut E into narrow strips

EI, E.2,..., and En., cutting in a direction normal to Bd B, so that if
1 <__ k <_ n, Ek intersects at most one of the D’s, and then in an interior
point of Ek Bd B. We may assume that if 1 __< __< r, then Ek D is



KNOTS AND SHELLABLE CELL PARTITIONINGS 355

empty or a point. We assume gjl gj2,. and Ejn; counted in order so that
any two consecutive ones intersect in an arc.

If 1 __< j __< r, thicken Ejl, Ei2,. ., and En very slightly to obtain polyhe-
dral 3-cells E, E ..., and E* such that (1) if i _< k _< n,, E N Bd B is a
disc, Ej N Fs.* is a disc, E. intersects any neighboring E* in a disc, and if
1 __<i __< r, then E*k D is empty or an arc. In addition, if k < n, then
Ej*k O E,k+10 0i .

Thicken D1, D2,... and D, very, very slightly relative to C to obtain
mutually disjoint polyhedral 3-cells D, D,..., and D7 such that if I _< __<
r, then (1) D C Bd C is a disc and fl is a straight spanning arc of D, (2) if
1 __< j __< r, D7 c F.* is empty or a disc, (3) if 1 _< j _< r and 1 __< k __< n:, then
(a) E D’ is empty or a disc and (b) is k < nj, then E*jk g,k+l ("1 D7

Let

C0=C1 C- D andB0=C1 B- F.* u E.
i=1 j=l =1

Then Co and B0 are polyhedral 3-cells. There is a polyhedral cell partitioning
{B1, B2,..., Bq} of B0 such that (1) if 1

_
=< q and X is either CO or one of

the D*, the E*, or the F*, then Bq X is empty or a disc, and (2) if < q,
[(Bd B0) u B 1,3 k3 Bi] N Bi+ is a disc. Let T consist of Co, the D*, the
E*, the F*, B1, B2,..., and Bq. We may construct the B’s so that T is a
polyhedral cell partitioning of S3.

Let (CO D’ D D* E’x,E’2... E( F EI,E2... E*2n2
F... EI... E* F B B2,... Ba) be an ordering of K. It is easilyrnr
seen that this is a shelling of T. Let this shelling be denoted by (t 1, t2,..., tin)..

If 1 m, let h =f-(ti). Let H= (hx, h2,’",hm). Then H is a
polyhedral cell partitioning of S3, H is shellable, and by construction, k is
compatible with H. Clearly I(k, H)I 2r 2 br k.

3. Weak compatibility

In this section, we shall establish a variant of the main result, Theorem 1
above, in which we weaken the conditions regarding how the knot is placed
relative to the 2-skeleton of the partitioning.
Suppose H is a polyhedral cell partitioning of S3 and k is a knot in S3.

Then k is weakly compatible with H if and only if (1) k and 2-skel H are in
relative general position in S3, and (2) if h H and k intersects h, then the
arcs which form the components of h ( k are simultaneously straight in h.
Suppose H and k are as above. Then the partitioning of k induced by H is

r(k, H) {a: for some cell h of H, is a component of h k}; [r(k, H)[
denotes the number of arcs in the partitioning of k induced by H.
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THEOREM 3. Suppose H is a polyhedral cell partitioning of S3, k is a knot in
S3, and k is weakly compatible with H. If Ir(k, H)I < br k, then H is not
shellable.

Proof. Suppose H is shellable. By Lemma 4 below, there is a shellable
cell partitioning F of S3 such that (1) k is compatible with F and (2)
Ir(k, F)I 21zr(k, H)I. Since by hypothesis, 17r(k, h)l < br k, then
[Tr(k, F)[ < 2 br k. This contradicts Theorem 1. Thus H is not shellable, t3

LEMMA 4. Suppose H is a shellable polyhedral cell partitioning of S3 and k
is a knot in S3 weakly compatible with H. Then there is a shellable polyhedral
cell partitioning F of S3 such that k is compatible with F and vr(k, F)I
21zr(k, n)l.

Before proving Lemma 4, we shall give some preliminaries. A partitioning
of a 2-sphere or disc X2 is a finite covering of X2 by discs-with-holes
such that (1) if 2, 3, or more sets of intersect, their common part is an arc,
point, or empty, respectively, and (2) if D 9 and D Bd X2 5/= t, then
D Bd X2 is an arc. If each element of 9 is a disc, then 9 is a disc
partitioning of X2. A shelling of a disc partitioning . of X2 is a counting
(DI, D2," Dn) of ’.. such that if1 __< < n, then D k.) D2 kA kA D is a
disc. A disc partitioning . of X2 is shellable if and only if it has a shelling.

It follows from theorems of plane topology that every disc partitioning of
either a 2-sphere or a disc is shellable. However, we sometimes need a
special kind of shelling of a disc. A ring partitioning of a disc DE is a disc
partitioning . of DE obtaining by dividing DE into concentric annuli, one of
which contains Bd DE, and a central disc, and then dividing the annuli into
discs by using crossing arcs in the annuli. A ring shelling of . is a counting
of . which first counts the discs of the outer ring in order, then those of the
next inward ring in order,..., and finally the central disc. Note that for such
a counting (D1, DE,... Dn) if 1 <i < n, then (D tO DE kA kJ Di_ 1) CI
D is an arc.
A cell partitioning of a 3-cell Ca is a finite covering K of Ca by 3-cells

such that (1) if 2, 3, 4, or more sets of K intersect, their common part is a
disc, an arc, a point, or empty, respectively, and (2) {k o Bd C3" k K and
k ( Bd Ca 4: th} is a disc partitioning . of Bd Ca. A cell partitioning K of
Ca is shellable if and only if it has a counting (kl, kE,... km) such that if
1 __< _< m, then k k.)k2 t.).., t.)k is a 3-cell. Such a counting (k kA

k2,.. ", k,) is a shelling of K.

ProofofLemma 4. Since H is shellable, there is a shelling (hi, h2,.. ", h)
of H. By Lemma 5, if 1 < < n, then (hi A h2 ,..., hi_) h is a disc.

In the constructions of this proof, we shall assume that polyhedral sets are
in relative general position, in a sense appropriate to the context.
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Let N be a close tubular neighborhood of (2-skel H) canonically con-
structed. If v is any vertex of H, N(v) is a small polyhedral ball about v. Let

NO t2 N(v)" v is a vertex of H}.

If e is any edge of H, N(e) is a thin polyhedral 3-cell obtained by thickening
e Int NO relative to N. Let

N NO kJ ( td{N(e)" e is an edge of H}.

If f is any face of H, N(f) is a polyhedral 3-cell obtained by thickening
f Int N slightly, relative to N1. Then

N N kJ ( k.J {N(f)" f is a face of H}.

We may assume that N f’) k b, and for each face f of H, the number of
components of k f3 N(f) equals the number of points of k N f. Let .4/ be
the family of all the sets N(v), N(e), and N(f) constructed above.

Suppose is any set which is a union of faces of H. Let N(E) be the
union of the sets N(x) where x is a vertex, an edge, or a face of H lying in. Note that N() is a tubular neighborhood of E.

Suppose that 1 < < n. Let

N/* N(Bd hi) t2 N(Bd h2) t,3 t2 N(Bd hi).

Let

D (h k) h 2 L) kJ hi_ 1) (’1 h i.

Note that N(Bd hi) Ni*__. N(Di). Let N/ be the union of all the sets of
// lying in N(Bd hi) but not contained in N(Di). Note that N/ is a 3-cell.
Now N N..*,-1 Ni N(Di), and this set is an annulus A. If we define
N N(Bd hi) and for each j, 1 < j < n, define N. as above, then N..*,_I
N1UN2 U N/_I.

In our construction of the partitioning F, we shall partition Nx, N2,...
and N,_ so that these partitionings fit together in specified ways. We
accordingly pay special attention to the annuli A:,A3,..., and A._ 1. If
2 __< < n, let A be the boundary curve of A lying in h, and let/i be the
other.

If I _< _< n, let h’i h Int N. We may construct N so that if i __< __< n,
the components of k ( h’ are simultaneously straight in h’. If 1 _<_ __< n, let
ail ti2,’’" and aim be the components of k 3 h’i. Let Aix Ai2,’’" and
Aim be mutually disjoint polyhedral semispanning discs in h’ such that if
1 <__ j <__ mi, aij c Bd Aij. Let A, A:2,..., and A,i be mutually disjoint
polyhedral 3-cells in h’ such that if 1 <__ j <= mi, Ai* is obtained by a slight
thickening of Ai relative to Bd h’i, aij is a straight spanning arc of Ai*., and
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A:i* t Bd h is a disc on Bd A*...,. Let h Cl(hi- 0 nlA"iy). Note that if
1 <= j <__ mi, then h t A:i* is a disc.
Note that {(Bd h’i) N(x): x is a vertex, edge, or face of H lying in Bd hi}

is a disc partitioning i of Bd h’i. We may assume that if 1 =< j __< rni, A:i*y is
disjoint from each N(v)where v is a vertex of H on Bd hi, and that both
Bd Aij and ((Bd A:/*j) t Bd h’) are in general position on Bd H/* relative to
the boundary of each disc of i. We may also assume that for each such
disc , and each j, 1 <= j <= mi, each component of (Bd t)t Ai*y contains
exactly one point of (Bd ) Aij. If > i, note that A Bd N/ is th, a disc,
or is all of At. Note that if A Bd IV/, then A A .
Suppose 2 __< k < n. We shall now construct a partitioning of Ak into discs.

Let Yg be the set of all points p of Bd Ak such that either (1) for some
k, p lies on Bd Al, or (2) for some pair s and with 1 __< s =< n and

1 <__ <_ ms, p lies on Bd(A*st t Bd h’s). There exist mutually disjoint polyhe-
dral crossing arcs kl, ilk2,’’’, and [kr of Ak such that if Bkl, Bg2,...,
and Bkrk are the discs obtained by partitioning Ak using the/3’s, then (1) no
endpoint of any /3 lies in Yk, (2) if 1 <__ <= rk, then neither Bkl ik nor

Bkl fq ]-k contains two distinct points of Yg, and (3) if s < k, Ak 0 Bd A is
disjoint from each of the/3’s.

Let

M

and M_
h LIN1, M2 =M LIh2 LIN2,
Mn_2 LJ hn_ U Nn_ 1.

,Mi Mi_ uhi UN/,...

1(hi U N.).Thus ifl_<i<n, then Mi=
We are now prepared to construct the partitioning F. We shall construct a

cell partitioning F of M1, extend this to a cell partitioning F2 of ME,’’’,
and finally a partitioning F of M 1. We then construct F.
To construct F1, our primary concern is to partition N1. Let 1 Bd h’

and let ’1 be the boundary component of N distinct from El. 1 and E’
are both 2-spheres, and Bd N --1 [,-) EI Now N is homeomorphic to

1 X [0, 1], and we may construct a polyhedral product structure, denoted by
E1 [0, 1], identifying El and ’1 with E1 {0} and 1 {1}, respectively.
We may assume that each component of k NI is a product fiber.
The sets Ay El, 1 __< j _< ml, together with 1 (Bd h’), form a polyhe-

dral partitioning 1 of El. Let d be the collection consisting of, for each
s > 1, (a) each nonempty set A’st t ’1, 1 __< __< m, (b) each nonempty set
(Bd h*) E’I and (c) each nonempty set Bq ,’1, 1 <= q <_ r. is a
polyhedral partitioning of ,’1.

Let rl be projection onto E1 in the product structure described above for
N1. We may assume that (1-skel 1) and r(1-skel ) are in relative general
position on El. Then there exists a shellable disc partitioning "1
(Dll, D12,"" ", Dlv1) of 1 such that if D --1, then (1) if E is either a set
of dl, or for some set E’ of d, E 7r(E’), then D E is empty or a disc,
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(2) Bd D and (u{Bd E" E o1})t3 (to{Bd 7r(E): E d;}) are in relative
general position on El, and (3) Bd D and k are disjoint. If 1 __< __< v 1, let
Xlt Dll [0, 1]; we may assume that Xll is polyhedral.

Let F be the set consisting of hT, the A]j for 1 __< j __< m1, and the Xlt for
1 =< _< v 1. We shall show that F is a cell partitioning of M1. For any j,
1 _< j =< rnl, h’ q A]j is a disc, and if 1 _< _< v 1, then since Dll O Bd h’ is
empty or a disc, Xll N h’ is empty or a disc. Any two distinct A]+. are
disjoint. If 1 =< j =< m and 1 =< =< v 1, then Dllf’) A’y is empty or a disc,
and thus Xlt A]y is empty or a disc. Finally, if l_<l<u_< vl,

and Dll 0 Dlu 4: d, then it is an arc, and hence Xll Xlu is a disc. To show
that the common part of three intersecting sets of F is an arc, we use the
facts that -1 is a disc partitioning of ;1, and the mzi are products in a collar
for El. A similar argument holds for the case of four elements of F1.

Next we shall show that F is shellable. Let

be a counting of F1. We shall show that this is a shelling of F1. Clearly it
suffices to show that if we take a set in the counting after the first, and
intersect that set with the union of those that precede it, we get a disc. Since
the A are mutually disjoint, this holds for hi’ and all of the Aj. Now
hT AI Am is a 3-cell, h’l, and 1 Bd h’1. Since Xll c 1, then
Xll ( h’ is a disc. Suppose 1 =< < v 1, and h’l w Xll w w XI is a 3ocell
ZI. Since XI, I+ t 1 is the disc D1,1+1, and DI, I+ intersects O lt=lDlt in
an arc a, then ZI c3 XI, I+ is the union of the two discs DI, I+ and
(a [0, 1]), along the arc a. Hence ZI
( v-lDlt) Bd D and Z c3 XI is the union of the disc Dlv andt= lVl 1-

the annulus (Bd Dlv) X [0, 1], along the boundary of Dlv1. Thus, Z,I_
XI is a disc. Hence the indicated counting is a shelling of F1.

We shall now extend F to a shellable cell partitioning F2 of M2. Our
primary concern is with partitioning N2. Recall that N2 is a 3-cell. Let
2 (Bd N2) (q (Bd h’2). Recall that .4 2 (Bd N2) f’) (Bd N1). Let z
(Bd N2) Int(A 2 LJ E2). 2 and E are discs, and Bd N2 2 I)A2 [.) t2.
Now N2 is homeomorphic to 2 [0, 1], and we may construct a polyhedral
product structure, denoted by 2 X [0, 1], identifying E2, Ez, and A2 with
2 X {0}, 2 X {1}, and (Bd E2) [0, 1], respectively. We may assume that
each of the crossing arcs fiE.l, J22,’’’, and tiEr: of A2 are fibers in the
product structure, and so is each component of k n N2.
The sets Ay 2, 1 _< j _< mE, together with 2 (’) (Bd h), form a poly-

hedral partitioning d2 of 2. Let d be the collection consisting of, for each
s > 2, (a) each nonempty set A*t N Ez, 1 __< __< ms, (b) each nonempty set
(Bd h*) z, and (c) each nonempty set Bsq ( ,’2, 1 <__ q <__ rs. dz is a
polyhedral partitioning of

Let T/- 2 be projection onto 2 in the product structure described above for
N2. We may assume that (1-skel d2) and 7r(1-skel d) are in relative general
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position of 2" There exists a ring partitioning

.r2 {D21 D22,"" ", D2:,"" ", D2.:}
of E2 such that (1) if D -2, then (a) if E is either a set of o2 or for some
set E’ of o, E ar(E’), then D E is empty or a disc, and (b) (Bd D) and
k are disjoint, (2) the central disc D2.: of -2 is disjoint from every A*t,
2<s =<n, and l_t__<m, and from every A, 2_<s<n, and (3)
(D21 D22,""" D2r2,... D2v2) is a ring shelling of -2. We may also assume
that the outer ring f2 of -2 is narrow, and the discs of 2 are D21 D22,.
and D2 where for 1 =< w _< r2,

O2w f (Bd 2) B2w N (Bd 2)"

If 1 __< __< v 2, let XEt DEl )< [0, 1]; we may assume XEt is polyhedral.
Let F2 be the set consisting of the sets of F together with h, the Aj for

1 =< j _< mE, and the X2 for 1 __< __< v2. We shall show that F2 is a cell
partitioning of ME. A part of this proof may be gotten by modifying the
argument above that F is a cell partitioning of M1. We need only consider
how sets of F2 in M intersect those in h’2 t3 N2. Any set in h, AI,..., and

of hi, A"11,... and Am. If F is either h orAm is disjoint from each set * *
for some j, 1 __< j __< m2, is A’j, then by construction of x, if D -ql, D t3 F
is empty or a disc. Hence if X F1, then F 3 X is b or a disc.
Now suppose F F2, F c N2, and F intersects M. Then F intersects

A2, and hence for some disc D2q of the outer ring of -2, F D2q )< [0, 1].
Further, by the construction of the product structure E2 [0, 1], F 3 A2

B2q. By construction of 1, if a set D of -1 intersects B2q their common
part is a disc. It follows that if X F1 and X intersects F, then X 3 F is a
disc. It now follows that F2 is a cell partitioning of M2.
Next we shall show that F2 is shellable. Let (h’, AI,..., Am,, Xll,’" ",

XI, X21, X22,’", X2:, X2,,-1, AI,"’, Am:, h, X2:) be a counting
of F2. Note that we count the "plug" X2 last. We shall show that this
counting is a shelling of F2. We only need to consider those sets of F2 not in
F1. Recall that U {F: F F1} M1.

Since X21 3 A2 is the disc B21 it follows that X21 3 M B21. If 1 < <
r2, then X:l 3A2 is the disc B21 and since B21 f3 B2,1_ is an arc, then
X21 C X2, l_ is a disc. These discs intersect in one of the/3’s, and hence X21
intersects the union of those before it in the counting in a disc. X2r
intersects M in a disc B2r2, intersects X2,__ in a disc, intersects X21 in a
disc, and the union of these three is a disc. A similar argument holds for each
other ring in the partitioning 2. Thus h N u (U 2=-1X21) is a 3-cell
Z2,v2_ 1. Clearly for each j, 1 __< j __< m2, Z2,v2_ (’ Aj is a disc. [(Z2,v2_ 1) U

m2 * *(0 =A"2i)] f h2 S the disc (Bd h) Int D22. It follows that the union of
all the cells of F2 except X2 is a 3-cell W2 2-" X2 W2,2- is the
union of the disc D2v and the annulus (Bd 22) [0 1], and is a disc.
Hence F2 is shellable.
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We continue this process, constructing a shellable cell partitioning F3 of
M3 that extends F2, a shellable cell partitioning F4 of M4 that extends F3,

and so on. Suppose 2 < < n, Fi_ has been constructed, and is a shellable
cell partitioning of M_ 1. We construct /7,. by first partitioning N, using a
ring partitioning in a manner analogous to that of the construction of F2. As
part of this, we construct a "plug" for N,.. Then we define F/to consist of the
cells of Fi_ 1, the cells partitioning Ni, the Aj., and h’.
To prove that F is a cell partitioning of M, we may modify the arguments

given for F1 and F2. The main additional point to be considered involves
cells F of F lying in N/ and intersecting Bd A for some s < i. Then F
intersects Ai, and for some j, 1 <= j <= ri, F A nij. Suppose F intersects
a cell F’ of F such that F’ lies in N and intersects As. Then A intersects
Bd A in a single spanning arc of Ai. For some k, 1 _< k =< rs, F’ A Bsk,
and F’ is a slight thickening, relative to Ns, of Bsk. It follows that F F’ is a
disc. In showing that no four sets of F have any arc in common, we may use
the fact that //U {h’i: 1 =< _< n} is a cell partitioning of S3.
We order F by first counting the cells of F_ 1, following the given shelling,

then the cells of F in N/, using a ring shelling of the ring partitioning
involved, except that we do not count the "plug." We then count the A*...
then h, and finally the "plug." It is easily seen that this is a shelling of F
Suppose that we have defined Fn_ 1. Note that Fn_ covers S3- Int h.

We now define F to be the set consisting of the cells of Fn_ 1, the A*. for
1 <=j _< m, and h*. Clearly F is a cell partitioning of S3. To obtain a
shelling for F, we first count F_ as above, then A’n1, *n2,’", and
and finally h*.

Finally, k is compatible with F and 17r(k, F)I 217r(k, H)I. To see this,
note that (1) each A:*. contains exactly one spanning arc lying on k, and this
arc is straight in A"i*., and (2) if p k (2-skel H), there is some Xst such
that k Sst is a single spanning arc of Sst containing p, and this arc is
straight in Xt. t2

LEMMA 5. /f (h 1, h2,"" ", h) is a shelling of a polyhedral cell partitioning
of S3, and 1 < < n, then (h hE hi_ 1) ( hi is a disc.

Proof. Suppose 1 < < n, and let Hi_ h h2 1,3 1,3 hi_l, H
Hi- I0 hi, and D Hi_ hi. Then both Hi_ and H are 3-cells, and each
component of D is a punctured disc.

Suppose D is not connected, and let A and B be distinct components of
Di. There is a polyhedral simple closed curve J on Bd Hi_ disjoint from D
and separating A from B on BdH_ 1. Let A be the disc on BdHi_
bounded by J and containing A. Let a be a polyhedral spanning arc of Hi_

from a point x of Int A to a point y of Int B. Let /3 be a polyhedral
spanning arc of h from x to y. Then a /3 and J are disjoint polyhedral
simple closed curves in S3, and, by considering A, can be seen to be linked in
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S3. Since a W/3 c Int H and J n Int Hi 4’, this is a contradiction. Hence
D is a punctured disc.

Suppose Bd D is not connected. Suppose K and L are distinct boundary
curves of Di, and let U and V be the components of (Bd H/_I)- Di
bounded by K and L, respectively. Then U is a disc, and U and V lie on
Bd Hi. Let a’ be a polyhedral spanning arc of Hi_ from a point x’ of U to a
point y’ of V, and let/3’ be a polyhedral spanning arc of S3 Int H from x’
to y’. Then a’ U/3’ and K are disjoint polyhedral simple closed curves in S3,
and, by considering U, can be seen to be linked. Since K h and a’ u/3’) n
h t, this is a contradiction. Hence D is a disc. r

4. Nonshellable cell partitionings of Sa

In this section, we shall describe two examples whose constructions use the
ideas of the preceding part of this paper. The first is a nonshellable cell
partitioning of S3. The second is a nest of cell partitionings of S3, each
partitioning of the nest being nonshellable.
To construct the first example, let k be a trefoil knot in S3. It is known

that k has bridge number 2 [8]. Let T be a polyhedral tubular neighborhood
of k; T is a solid torus. Divide T into three polyhedral chambers T1, T2, and
T3 by using polyhedral meridional disc of T, each intersecting k in exactly
one point. See Figure 2. It is easy to construct a polyhedral cell partitioning
H of S3 which includes T1, T2, and T3 among the 3-cells of H. Clearly, k is

FIG. 2
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compatible with H, and 7r(k, h) 3. By Theorem 1, H is nonshellable. For
additional examples of nonshellable cell partitionings of S3, see [2].
For the second example, we shall need some definitions. If A and B are

two coverings of a set X, then B refines A if and only if each set of B lies in
some set of A. A nest of polyhedral cell partitionings of S3 is a sequence
{H1, n2, n3, of polyhedral cell partitionings of S3 such that (1) for each
positive integer n, Hn+ refines Hn, (2) if m and n are positive integers and
m > n, then for each cell h of Hn, the set of all 3-cells of Hm lying in h is a
cell partitioning of h, (3) as n --* oo, (mesh Hn) --. O, and (4) certain natural
general position conditions are satisfied (see [1]). The conditions of (4) can be
obtained by the standard type of small adjustment, so we shall not consider
them here.
The second example is a polyhedral nest {H1, H2, H3, ..-} of cell parti-

tionings of S3 such that for each positive integer n, H is nonshellable.
Let H be the cell partitioning of the example above. Let k denote the

trefoil knot used in that construction. The knot kl lies in a tubular neighbor-
hood T of k 1, and T is cut into three 3-cells T1, T2, and T3. Let W T.
Note that br kl 2 and zr(kl, H1)I 3. As noted above, H is non-
shellable. We may make the construction of H so that if L is the arc length
of the knot kl, then (mesh H1) < L.

If 1, 2, or 3, replace k f) T/ by a polygonal spanning arc knotted in a
trefoil, with the same endpoints as k f3 T. This yields a knot k2 in Int W1.

See Figure 3.
Now k2 is the composite of the trefoil k with three other trefoil knots,

one in each of T1, T2, and T3. With the aid of the following lemma from [8]
we may show that br k2 2 + 3.

LEMMA 5. If S and are two knots in S3 and s#t is a composite of s and t,
then br(s#t) (br s) + (br t) 1.

Let W2 be a very close tubular neighborhood of k2. For each i, 1, 2, or
3, divide W2 n T/ into three 3-cells by meridional discs in W2. If 1, 2, or
3, let the resulting 3-cells of W2 in T/ be denoted by T/l, Ti2, and T/3.
We may make the construction of k2 and W2 such that if 1, 2, or 3,

then (diam T/j) < 1/4L. It is easy to construct a polyhedral cell partitioning H2
of S3 such that (1) H2 refines H (2) if h H1, the cells of H2 in h form a
partitioning of h, and (3) (mesh H2) < xL.

Continue this process. Suppose that n is a positive integer and H, has
been constructed. Then there exist a knot kn and a tubular neighborhood W
of kn. Wn is divided into 3n 3-cells, each of which belongs to H and each of
which has diameter less than L/2. If T is one of these 3-cells, then k (q T
is a straight spanning arc of T. Further,

br k 2 + 3 + 32 -I- +3n-1.
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T32

_T3/T1

T2
FIG. 3

Since 2br kn 3n+ 1 and Ir(k,, H,)I 3", then, by Theorem 1, H is
nonshellable.
For each such 3-cell T, replace k, c T by a polygonal spanning arc

knotted in a trefoil, with the same endpoints as k, r3 T, and such that it can
be cut into three subarcs, each of diameter less than L/2"+ 1. This yields a
knot k, +1 in Int W,. Then kn is the composite of kn and 3" trefoil knots. By
Lemma 5,

3" + 1 3"+1 + 1
br kn + 2 + 3n 2

Let Wn + be a close tubular neighborhood of k, + 1. Cut W, + into 3" +

3-cells by using discs on the 2-skeleton of Hn and additional meridional discs
of W,+ 1, so that each 3-cell T as above contains exactly three of the 3-cells
from W,+ . We may make this construction so that each of the resulting
3-cells from W,+ has diameter less than L/2"+1.
There is a polyhedral cell partitioning Hn/ of S3 that includes the 3-cells

from W,+ constructed above and has mesh less than L/2"+1. Since
2br k,+ 3" + + 1 and 17r(k, + 1, H, + 1)1 3" + 1, it follows by Theorem 1
that Hn / is nonshellable.
Thus by induction, there exist polyhedral cell partitionings H1, H2, n3,

of S3 as described above. It is easily verified that {H1, H2, H3, is a nest
of polyhedral cell partitionings of S3. By construction, for each positive
integer n, H, is nonshellable.
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