KNOTS AND SHELLABLE CELL PARTITIONINGS OF $\boldsymbol{S}^{\mathbf{3}}$

Steve Armentrout

A cell partitioning of S^{3} is a finite covering H of S^{3} by 3-cells such that if m is any positive integer and exactly m 3-cells of H intersect, their common part is a cell of dimension $4-m$, where cells of negative dimension are empty. The 3-cells of a cell partitioning of S^{3} fit together in a staggered, brick-like pattern.

A cell partitioning H of S^{3} is shellable if and only if there is a counting $\left\langle h_{1}, h_{2}, \cdots, h_{n}\right\rangle$ of H such that if i is an integer and $1 \leqq i<n$, then $h_{1} \cup h_{2} \cup \cdots \cup h_{i}$ is a 3-cell. Such a counting is a shelling of H.

In this paper, we shall study a connection between knots in S^{3} and shellability of cell partitionings of S^{3}. We shall use these results to construct nonshellable cell partitionings of S^{3}.

Our results involve the use of the bridge number of a knot in S^{3}. In Section 1 of this paper, we shall review some results concerning knots in S^{3} and bridge numbers of knots in S^{3}. In Section 2, we shall establish the main result of the paper. In Section 3, we shall establish a variant of the main result that is useful in some situations. In Section 4, we shall use the results of this paper to construct a nonshellable cell partitioning of S^{3} and, as a variation on that construction, a nest of nonshellable cell partitionings of S^{3}.

Throughout this paper, we shall assume that S^{3} has its standard piecewise linear structure.

The author thanks the referee for suggestions and corrections.

1. Knots in S^{3}

A knot in S^{3} is a polygonal simple closed curve in S^{3}. Two knots k and l in S^{3} are of the same knot type in S^{3} if and only if there is an orientation preserving PL homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f(k)=l$. A knot in S^{3} is trivial if and only if it has the same knot type as the boundary of a 2-simplex in S^{3}.

Suppose C is a 3-cell. Then α is a spanning arc of C if and only if α is an arc in C such that $\mathrm{Bd} \alpha \subset \mathrm{Bd} C$ and Int $\alpha \subset \operatorname{Int} C . D$ is a semispanning disc of C if and only if D is a disc in C such that Int $D \subset \operatorname{Int} C$ and $D \cap \operatorname{Bd} C$ is an arc on $\mathrm{Bd} C$. The statement that β is a straight spanning arc of C means that β is a spanning arc of C and there is a semispanning disc D of C such that $\beta \subset \operatorname{Bd} D$. Recall that if β is a polyhedral straight spanning arc of a

[^0]polyhedral 3-cell C and α is any polyhedral arc on $\operatorname{Bd} C$ with $\operatorname{Bd} \beta=\operatorname{Bd} \alpha$, then there is a polyhedral semispanning disc Δ in C with $\operatorname{Bd} \Delta=\alpha \cup \beta$.

The statement that $\alpha_{1}, \alpha_{2}, \ldots$, and α_{n} are simultaneously straight in C means that $\alpha_{1}, \alpha_{2}, \ldots$, and α_{n} are mutually disjoint spanning arcs of C and there exist mutually disjoint semispanning discs D_{1}, D_{2}, \ldots, and D_{n} of C such that for each $i, \alpha_{i} \subset \operatorname{Bd} D_{i}$.

Suppose l is a knot in S^{3}, C is a polyhedral 3-cell in S^{3}, and m is a positive integer. Then l is in m -bridge position on C if and only if there exist mutually disjoint arcs $\alpha_{1}, \alpha_{2}, \ldots$, and α_{m} on $\mathrm{Bd} C$ and mutually disjoint arcs $\beta_{1}, \beta_{2}, \ldots$, and β_{m} simultaneously straight in C, such that $l=\left(\alpha_{1} \cup \alpha_{2}\right.$ $\left.\cup \cdots \cup \alpha_{m}\right) \cup\left(\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{m}\right)$.

If k is a knot in S^{3}, then the bridge number of k, denoted by br k, is defined to be the least positive integer m such that there exist a knot l in S^{3} and a polyhedral 3-cell C in S^{3} such that (1) l and k have the same knot type, and (2) l is in m-bridge position on C.

For basic results concerning the bridge number of a knot, see [8]. It is clear that bridge number is an invariant of knot type. A knot in S^{3} is trivial if and only if the knot has bridge number 1 . It is easily seen, for example, that the trefoil knot in S^{3} has bridge number 2.

2. The main result

In this section we shall establish a relationship between the bridge number of a knot in S^{3} and the nonshellability of a cell partitioning of S^{3} related to the knot in a special way. First we shall introduce some terminology.

Suppose H is a cell partitioning of S^{3}. If h and k are distinct intersecting 3-cells of H, then $h \cap k$ is a disc. By a face of H is meant such a disc. The 2-skeleton of H, denoted by 2 -skel H, is the union of all the faces of H. The 1 -skeleton of $H, 1$-skel H, is the set of all points common to three or more sets of H. The 0 -skeleton of $H, 0$-skel H, is the set of all points common to four sets of H.

Suppose that H is a polyhedral cell partitioning of S^{3}, and k is a knot in S^{3}. Then k is compatible with H if and only if (1) k and 2 -skel H are in relative general position in S^{3}, and (2) if $h \in H$ and k intersects h, then $h \cap k$ is a single straight spanning arc. Suppose k is compatible with H. Then the partitioning of k induced by H is $\pi(k, H)=\{k \cap h: h \in H$ and $h \cap k \neq \phi\}$. Let $|\pi(k, H)|$ denote the number of arcs in the partitioning of k induced by H.

We are now prepared to prove the main result of this paper. It was suggested by examples due to Bing (pp. 110-111 of [3]). In this connection, see also [4], [5], [6], and [7].

Theorem 1. Suppose H is a polyhedral cell partitioning of S^{3}, k is a knot in S^{3}, and k is compatible with H. If $|\pi(k, H)|<2$ br k, then H is not shellable.

Proof. Suppose that H is shellable. Then there is a shelling $\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle$ of H. If $1 \leqq i<n$, let C_{i} denote $h_{1} \cup h_{2} \cup \cdots \cup h_{i}$; C_{i} is a 3-cell.

Now we shall give a brief outline of the proof. By simple geometric moves, we shall construct a knot l in S^{3} such that (1) l and k are of the same knot type and (2) for some positive integer r such that $2 r \leqq|\pi(k, H)|$ and some polyhedral 3-cell C in S^{3}, l is in r-bridge position on C. Thus br $l \leqq r$ and since k and l are of the same knot type, then $\mathrm{br} k \leqq r$. Since by hypothesis, $|\pi(k, H)|<2$ br k, then $2 r \leqq|\pi(k, H)|<2$ br k, and thus br $k \leqq r<\operatorname{br} k$. This is a contradiction.

We shall obtain l as follows. Let $k_{0}=k$. Let m be the largest positive integer j such that k intersects h_{j}. If $1 \leqq i<m$, we shall construct a knot k_{i}, of the same knot type as k, and obtained from k_{i-1} by adjusting the part of k_{i-1} in C_{i}. It is to be true that $k_{i}-C_{i}=k-C_{i}$. Further, there are integers p_{i} and q_{i} such that (1) $k_{i} \cap C_{i}$ is the union of q_{i} simultaneously straight spanning arcs of C_{i} and p_{i} mutually disjoint arcs on $\operatorname{Bd} C_{i}$, and (2) $p_{i}+q_{i}$ is at most the number of cells among h_{1}, h_{2}, \ldots, and h_{i} that k intersects. We obtain l by an analogous adjustment of k_{m-1}, and l has the properties that $l \subset C$, and l is the union of q_{m} simultaneously straight spanning arcs of C and p_{m} mutually disjoint arcs on $\operatorname{Bd} C$ where $p_{m}+q_{m}$ is at most the number of cells among h_{1}, h_{2}, \ldots, and h_{m} that l intersects. Thus $p_{m}+q_{m} \leqq$ $|\pi(k, H)|$. Since $l \subset C$, then $p_{m}=q_{m}$. If $r=p_{m}=q_{m}$, then l is in r-bridge position on C.

Now we shall give the details concerning the construction of the knots k_{1}, k_{2}, \ldots, and k_{m-1}. Recall that m is the largest positive integer j such that k intersects h_{j}. Let k_{0} denote k. Let t be the least positive integer i such that k intersects h_{i}. If $1<i<n$, let D_{i} denote $C_{i-1} \cap h_{i}$; by Lemma $5, D_{i}$ is a disc. If $1<i<n$, let E_{i} denote $\left(\operatorname{Bd} h_{i}\right)-\left(\operatorname{Int} D_{i}\right)$. Let $E_{1}=\operatorname{Bd} h_{1}$.

Let $k_{1}=k_{2}=\cdots=k_{t-1}=k$. Let $\beta_{t 1}$ denote $k \cap h_{t}$. Then $\beta_{t 1}$ is a straight spanning arc of h_{t} with $\mathrm{Bd} \beta_{t 1} \subset \operatorname{Int} E_{t}$. Hence there exist a polygonal arc $\lambda_{t 1}$ in Int E_{t} with $\operatorname{Bd} \beta_{t 1}=\operatorname{Bd} \lambda_{t 1}$ and a polyhedral semispanning disc $\Delta_{t 1}$ in h_{t} such that $\mathrm{Bd} \Delta_{t 1}=\beta_{t 1} \cup \lambda_{t 1}$. Also, we require that $\lambda_{t 1}$ and the boundaries of the faces of H on $\left(\mathrm{Bd} h_{t}\right)$ be in relative general position on $\operatorname{Bd} h_{t}$.

For each positive integer i such that $t \leqq i<m$, let S_{i} denote the following statement.
S_{i} : There exist
(1) a knot k_{i} in S^{3} of the same knot type as k_{i-1},
(2) nonnegative integers p_{i} and q_{i} such that $p_{i}+q_{i}$ is at most the number of 3-cells among $\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$ that k intersects,
(3) mutually disjoint polyhedral arc $\alpha_{i 1}, \alpha_{i 2}, \cdots$, and $\alpha_{i p_{i}}$ on $\operatorname{Bd} C_{i}$,
(4) mutually disjoint polyhedral arc $\beta_{i 1}, \beta_{i 1}, \cdots$, and $\beta_{i q_{i}}$ simultaneously straight in C_{i},

Fig. 1
(5) mutually disjoint polyhedral arcs $\lambda_{i 1}, \lambda_{i 2}, \cdots$, and $\lambda_{i q_{i}}$ on $\operatorname{Bd} C_{i}$ such that for $1 \leqq j \leqq q_{i}$, there is a polyhedral semispanning disc $\Delta_{i j}$ of C_{i} with Bd $\Delta_{i j}=\beta_{i j} \cup \lambda_{i j}$ and $\Delta_{i 1}, \Delta_{i 2}, \Delta_{i q_{i}}$ mutually disjoint, such that
(a) $k_{i}=\left(k-C_{i}\right) \cup\left(\cup_{j} \alpha_{i j}\right) \cup\left(\cup_{j} \beta_{i j}\right)$,
(b) if x is an endpoint of some $\alpha_{i j}$, then x is also an endpoint of some $\beta_{i u}$, and
(c) the α 's and λ 's are in general position relative to the boundaries of faces of H on $\operatorname{Bd} C_{i}$.

If $p_{i}=0$, there are no α 's, and if $q_{i}=0$, there are no β 's. See Figure 1. Now S_{t} is true. Let $k_{t}=k$. The arcs $\beta_{t 1}$ and $\lambda_{t 1}$, and the disc $\Delta_{t 1}$ were defined above. Let $p_{t}=0$ and $q_{t}=1$. Then $p_{t}+q_{t}=1$, and note that k intersects at most one of the 3-cells h_{1}, h_{2}, \cdots, and h_{t}.

Suppose now that $t<i<m-1$ and S_{i-1} is true. We shall prove that S_{i} is true. Since S_{i-1} holds, there exist $k_{i-1}, p_{i-1}, q_{i-1}, \alpha$'s, β 's, λ 's, and Δ 's as described in the statement of S_{i-1}.

We shall consider four cases. In each case, we may modify k_{i} and existing α 's, β 's, λ 's, and Δ 's. We may construct one additional α or one additional β, but not both.

Case 1. k and h_{1} are disjoint.
In this case, no additional α 's or β 's are constructed. It follows in this case that k_{i-1} is disjoint from $h_{i}-D_{i}$.

There is a $P L$ homeomorphism $f_{i}: D_{i} \rightarrow E_{i}$ such that $f_{i} \mid \mathrm{Bd} D_{i}=\mathrm{id}$. Then $f_{i}: D_{i} \rightarrow E_{i}$ extends to a $P L$ homeomorphism $\hat{f_{i}} \mathrm{Bd}: C_{i-1} \rightarrow \mathrm{Bd} C_{i}$ such that $\hat{f_{i}} \mid\left(\operatorname{Bd} C_{i-1}\right)-D_{i}=\mathrm{id}$. There is a $P L$ homeomorphism $F_{i}: S^{3} \rightarrow S^{3}$ such that
(1) $F_{i}\left(C_{i-1}\right)=C_{i}$,
(2) F_{i} extends $\hat{f_{i}}$, and
(3) except on a close neighborhood of $h_{i}, F_{i}=\mathrm{id}$.

Let $p_{i}=p_{i-1}$ and $q_{i}=q_{i-1}$. If $1 \leqq j \leqq q_{i}$, let $\alpha_{i j}=F_{i}\left(\alpha_{i-1, j}\right), \lambda_{i j}=$ $F_{i}\left(\lambda_{i-1, j}\right)$, and $\Delta_{i j}=F_{i}\left(\Delta_{i-1, j}\right)$. If $1 \leqq j \leqq q_{i}$, let $\beta_{i j}=F_{i}\left(\beta_{i-1, j}\right)$. We may assume that the α 's and λ 's are in general position relative to the boundaries of faces of H on $\mathrm{Bd} C_{i}$. Let $k_{i}=F_{i}\left(k_{i-1}\right)$. We may assume, since $k \cap h_{i}=\phi$, that $F_{i} \mid k-k_{i}=\mathrm{id}$.

Clearly k_{i-1} and k_{i} are of the same knot type in S^{3}. Since $p_{i}=p_{i-1}$, $q_{i}=q_{i-1}, k \cap h_{i}=\phi$, and $p_{i-1}+q_{i-1}$ is at most the number of cells among h_{1}, h_{2}, \ldots, and h_{i-1} that k intersects, then $p_{i}+q_{i}$ is at most the number of cells among h_{1}, h_{2}, \ldots, and h_{i} that k intersects. Thus S_{i} holds in this case.

Case 2. $\quad k$ intersects h_{i} but is disjoint from D_{i}.
In this case, one additional β is constructed. Let $\beta_{i q_{i}}=k \cap h_{i}$. Then $\beta_{i q_{i}}$ is a polyhedral straight spanning arc of h_{i} with $\operatorname{Bd} \beta_{i q_{i}}$ in Int E_{i}. Let $\lambda_{i q_{i}}$ be a polyhedral arc in Int E_{i} with $\operatorname{Bd} \lambda_{i q_{i}}=\operatorname{Bd} \beta_{i q_{i}}$. There is a polyhedral semispanning disc $\Delta_{i q_{i}}$ of h_{i} with $\operatorname{Bd} \Delta_{i q_{i}}=\beta_{i q_{i}} \cup \lambda_{i q_{i}}$.

Let δ_{i} be a small polyhedral disc in Int D_{i} and disjoint from the α 's and λ 's. There is a piecewise linear homeomorphism $F_{i}: S^{3} \rightarrow S^{3}$ such that
(1) $F_{i}\left(\delta_{i}\right)=D_{i}$,
(2) $F_{i}\left(C_{i-1}\right)=C_{i-1}$, and
(3) except on a close neighborhood of D_{i}, F_{i} is the identity and, in particular, $F_{i} \mid\left(\Delta_{i q_{i}} \cup k_{i}\right)$ is the identity.

Let $p_{i}=p_{i-1}$ and let $q_{i}=1+q_{i-1}$. If $1 \leqq j \leqq p_{i}$, let $\alpha_{i j}=F_{i}\left(\alpha_{i-1, j}\right)$. If $1 \leqq j<q_{i}$, let $\beta_{i j}=F_{i}\left(\beta_{i-1, j}\right), \lambda_{i j}=F_{i}\left(\lambda_{i-1, j}\right)$, and $\Delta_{i j}=F_{i}\left(\Delta_{i-1, j}\right)$. We defined $\beta_{i q_{i}}, \lambda_{i q_{i}}$, and $\Delta_{i q_{i}}$ above. Let $k_{i}=k_{i-1}$. We use the homeomorphism F_{i} to adjust the α 's, β 's, and λ 's that intersect D_{i}, but continue the argument with the original h 's. We do not replace h_{i} by $F_{i}\left(h_{i}\right)$. Since $p_{i}+q_{i}=1+$ $p_{i-1}+q_{i-1}$ and k intersects only one more 3-cell among h_{1}, h_{2}, \cdots, and h_{i} than among h_{1}, h_{2} and h_{i-1}, then condition (2) of S_{i} holds. It is easily seen that S_{i} holds in this case.

Case 3. $\quad k$ intersects D_{i} in exactly one point.
In this case, no additional α 's or β 's are constructed, but we extend an existing β.

Let x be the point common to k and D_{i}. It follows from condition 5(b) of S_{i-1} that x is an endpoint of a component of $k-\operatorname{Int} C_{i-1}$, and an endpoint of some β. There is an integer w such that $1 \leqq w \leqq q_{i-1}$ and x is an endpoint of $\beta_{i-1, w}$. Then x is also an endpoint of $\lambda_{i-1, w}$.

Let δ be a small polyhedral disc in Int D_{i} with x in Int δ, such that (1) $\delta \cap \lambda_{i-1, w}$ is an arc λ_{0} with one endpoint z on $\operatorname{Bd} \delta$ and x as the other endpoint, and (2) δ intersects no α, no β other than $\beta_{i-1, w}$, and no λ other than $\lambda_{i-1, w}$.

There is a piecewise linear homeomorphism $F_{i}: S^{3} \rightarrow S^{3}$ such that
(1) $F_{i} \mid \beta_{i-1, w} \cup\left(k \cap h_{i}\right)$ is the identity,
(2) $F_{i}(\delta)=D_{i}$,
(3) $F_{i}\left(C_{i}\right)=C_{i}$, and
(4) except on a close neighborhood of D_{i}, F_{i} is the identity.

Since $F_{i}(z)$ is on $\operatorname{Bd} D_{i}$, there is an arc λ^{\prime} in E_{i} with endpoints $F_{i}(z)$ and the point common to E_{i} and k_{i}, and with Int λ^{\prime} in Int E_{i}. Since $k \cap h_{i}$ is straight in h_{i}, then $\lambda^{\prime} \cup F_{i}\left(\lambda_{0}\right) \cup\left(k \cap h_{i}\right)$ bounds a polyhedral semispanning disc Δ^{\prime} of h_{i}.

Since $\lambda_{0} \subset \lambda_{i-1, w}$, it follows that $\Delta^{\prime} \cup F_{i}\left(\Delta_{i-1, w}\right)$ is a disc $\Delta_{i w}$. Let

$$
\lambda_{i w}=\left[F_{i}\left(\lambda_{i-1, w}\right)-F_{i}\left(\lambda_{0}\right)\right] \cup \lambda^{\prime} .
$$

Recall that $\beta_{i-1, w}=F_{i}\left(\beta_{i-1, w}\right)$ and $k \cap h_{i}=k_{i} \cap h_{i}$. Now let $\beta_{i w}=\beta_{i-1, w}$ $\cup\left(k \cap h_{i}\right)$. Then Bd $\Delta_{i w}=\beta_{i w} \cup \lambda_{i w}$.

Let $p_{i}=p_{i-1}$ and $q_{i}=q_{i-1}$. If $1 \leqq j \leqq p_{i}$, let $\alpha_{i j}=F_{i}\left(\alpha_{i-1, j}\right)$. If $1 \leqq j \leqq q_{i}$ and $j \neq w$, let $\beta_{i j}=F_{i}\left(\beta_{i-1, j}\right), \lambda_{i j}=F_{i}\left(\lambda_{i-1, j}\right)$, and $\Delta_{i j}=F_{i}\left(\Delta_{i-1, j}\right)$. Let

$$
k_{i}=\left(k-\operatorname{Int} C_{i}\right) \cup\left(\bigcup_{j=1}^{p_{i}} \alpha_{i j}\right) \cup\left(\bigcup_{j=1}^{q_{i}} \beta_{i j}\right)
$$

Note that $k_{i}=F_{i}\left(k_{i-1}\right)$. Hence k_{i} and k_{i-1} are of the same knot type in S^{3}. As in Case 2, we use the homeomorphism F_{i} only to adjust the α 's, β 's, and λ 's that intersect D_{i}.

It is easily verified that S_{i} holds in this case.
Case 4. $\quad k$ intersects D_{i} in two points.
In this case, we shall construct an additional α.
Let x and y be the points common to k and D_{i}. It is clear that $k \cap h_{i}=k_{i-1} \cap h_{i}$. By condition 5(b) of S_{i-1}, neither x nor y can be an endpoint of any α, and hence x and y are endpoints of β 's. Since x and y lie in Int D_{i}, there is a polygonal arc A from x to y and lying in Int D_{i}.

We shall first adjust those α 's that intersect A by pushing them off A, keeping C_{i-1} invariant. Suppose $1 \leqq j \leqq p_{i-1}$ and $\alpha_{i-1, j}$ intersects A. There
is a piecewise linear homeomorphism $g_{j}: S^{3} \rightarrow S^{3}$ such that (1) g_{j} fixes one endpoint of $\alpha_{i-1, j}$ and shortens $\alpha_{i-1, j}$ so that $g_{j}\left(\alpha_{i-1, j}\right)$ is disjoint from A, (2) except on a close neighborhood of $\alpha_{i-1, j}, g_{j}$ is the identity, and (3) $g_{j}\left(C_{i-1}\right)=C_{i-1}$. Let $f_{1}: S^{3} \rightarrow S^{3}$ be the composite, in some order, of all such g_{j} 's for the $\alpha_{i-1, j}$ that intersect A. Then for each arc $\alpha, f_{1}(\alpha)$ is disjoint from A.

There is a piecewise linear homeomorphism $f_{2}: S^{3} \rightarrow S^{3}$ such that (1) $f_{2}\left(D_{i}\right)=E_{i}$, (2) f_{2} is the identity on $\left(\operatorname{Bd} C_{i-1}\right)-\left(\operatorname{Int} D_{i}\right)$, (3) $f_{2}\left(C_{i-1}\right)=C_{i}$, and (4) except on a close neighborhood of h_{i}, f_{2} is the identity.

Let $F_{i}=f_{2} \circ f_{1}: S^{3} \rightarrow S^{3}$. Let $p_{i}=1+p_{i-1}$ and let $\alpha_{i p_{i}}=F_{i}(A)$. If $1 \leqq j$ $\leqq p_{i-1}$, let $\alpha_{i j}=F_{i}\left(\alpha_{i-1, j}\right)$. Let $q_{i}=q_{i-1}$. If $1 \leqq j \leqq q_{i}$, let $\beta_{i j}=F_{i}\left(\beta_{i-1, j}\right)$, $\lambda_{i j}=F_{i}\left(\lambda_{i-1, j}\right)$, and $\Delta_{i j}=F_{i}\left(\Delta_{i-1, j}\right)$. Note that $p_{i}+q_{i}=1+p_{i-1}+q_{i-1}$. Let $k_{i}=F_{i}\left(\left[k_{i-1}-\left(h_{i} \cap k\right)\right] \cup A\right)$.

Since $h_{i} \cap k$ is straight in h_{i}, then $A \cup\left(h_{i} \cap k\right)$ bounds a polyhedral semispanning disc of h_{i}. It follows easily that k_{i-1} and k_{i} are of the same knot type in S^{3}.

It is easily established that S_{i} holds in this case.
Thus if $t<i<m-1$ and S_{i-1} is true, than S_{i} is true. Since S_{t} is true, it follows that S_{m-1} is true.

The situation involving h_{m} requires special treatment because of the possibility that $m=n$, in which case C_{m} is not defined.

Since m is the largest integer i such that k intersects h_{i}, it follows that k intersects D_{m} in two points x_{m} and y_{m}. Let A_{m} be a polygonal arc in Int D_{m} from x_{m} to y_{m}. By a procedure similar to that used in Case 4 above, we may use a piecewise linear homeomorphism $F_{m}=S^{3} \rightarrow S^{3}$ to adjust the α 's so that their images are disjoint from A_{m}, keeping the remainder of k_{m-1} pointwise fixed.

Since $k \cap h_{m}$ is straight in $h_{m},\left(k \cap h_{m}\right) \cup A_{m}$ bounds a polyhedral semispanning disc B_{m} of h_{m}. Thicken B_{m} slightly relative to C_{m-1} to obtain a 3-cell B_{m}^{*} in h_{m} such that (1) B_{m} is a spanning disc of B_{m}^{*}, (2) $B_{m}^{*} \cap D_{m}$ is a disc having A_{m} as a spanning arc, (3) $k \cap h_{m}$ is a spanning arc of $\left(\operatorname{Bd} B_{m}^{*}\right)-$ $\operatorname{Int}\left(B_{m}^{*} \cap D_{m}\right)$, and (4) B_{m}^{*} is a close (closed) neighborhood of B_{m}.

Let $p_{m}=1+p_{m-1}$ and let $q_{m}=q_{m-1}$. If $1 \leqq j<p_{m}$, let $\alpha_{m j}=$ $F_{m}\left(\alpha_{m-1, j}\right)$, and let $\alpha_{m p_{m}}=k \cap h_{m}$. If $1 \leqq j \leqq q_{m}$, let $\beta_{m j}=F_{m}\left(\beta_{m-1, j}\right)$, $\lambda_{m j}=F_{m}\left(\lambda_{m-1, j}\right)$, and $\Delta_{m j}^{m}=F_{m}\left(\Delta_{m-1, j}\right)$. Let $l=F_{m}\left(k_{m-1}\right)$. Clearly l and k_{m-1} have the same knot type in S^{3}.

Let $C=C_{m-1} \cup B_{m}^{*}$. Then C is a polyhedral 3-cell in S^{3} and $l \subset C$.
Since $p_{i-1}+q_{i-1}$ is at most the number of 3-cells among h_{1}, h_{2}, \ldots, and h_{m-1} that intersect k, and $l \subset h_{1} \cup h_{2} \cup \cdots \cup h_{m}$, then clearly $p_{m}+q_{m} \leqq$ $|\pi(k, H)|$.

Now l and k are of the same knot type in S^{3}, since $k=$ $k_{0}, k_{1}, k_{2}, \cdots, k_{m-1}$, and l all have the same knot type.

Now for each integer j with $1 \leqq j \leqq p_{m}$, let $\alpha_{j}=\alpha_{m j}$, and if $1 \leqq j \leqq q_{m}$, let $\beta_{j}=\beta_{m j}$. It is clear that $p_{m}=q_{m}$, and let $r=p_{m}=q_{m}$. Since for $1 \leqq j \leqq r, \beta_{j}$ lies on the boundary of the polyhedral semispanning disc $\Delta_{m j}$
of C, and $\Delta_{m 1}, \Delta_{m 2}, \cdots$, , and $\Delta_{m r}$ are disjoint, then the β 's are simultaneously straight in C. Further, each of $\alpha_{1}, \alpha_{2}, \cdots$, and α_{r} lies on $\operatorname{Bd} C$ and

$$
l=\left(\bigcup_{j=1}^{r} \alpha_{j}\right) \cup\left(\bigcup_{j=1}^{r} \beta_{j}\right)
$$

It follows that l is in r-bridge position on C. Further, since $p_{m}+q_{m} \leqq$ ($\pi(k, H) \mid$, then $2 r \leqq|\pi(k, H)|$.

Thus the knot l has the properties that (1) k and l are of the same knot type in S^{3} and (2) for some positive integer r such that $2 r \leqq|\pi(k, H)|$ and some polyhedral 3-cell C in S^{3}, l is in r-bridge position on C. It was pointed out above that this leads to a contradiction. Hence H is nonshellable.

We shall conclude this section by showing that the result of Theorem 1 is, in a sense, sharp. See also [7].

Theorem 2. Suppose that k is a nontrivial knot in S^{3}. Then there exists a shellable polyhedral cell partitioning H of S^{3} such that k is compatible with H and $|\pi(k, H)|=2$ br k.

Proof. Let $r=\operatorname{br} k$. Then there exists a polyhedral 3-cell C in S^{3} such that k is in r-bridge position on C. Hence there exist mutually disjoint polyhedral arcs α_{1}, α_{2} and α_{r} on $\operatorname{Bd} C$ and mutually disjoint polyhedral arcs $\beta_{1}, \beta_{2}, \cdots$, and β_{r} simultaneously straight in C such that $k=\left(\mathrm{U}_{i=1}^{r} \alpha_{i}\right)$ $\cup\left(\cup_{i=1}^{r} \beta_{i}\right)$. Since $\beta_{1}, \beta_{2}, \cdots$, and β_{r} are simultaneously straight in C, there exist mutually disjoint polyhedral semispanning discs D_{1}, D_{2}, \cdots, and D_{r} of C such that if $1 \leqq i \leqq r$, then $\beta_{i} \subset \operatorname{Bd} D_{i}$.

Let $B=S^{3}-$ Int $C ; B$ is a polyhedral 3-cell in S^{3}. If $1 \leqq i \leqq r$, adjust α_{i} by pushing Int α_{i} slightly into Int B. We may do this so that the adjusted $\alpha_{1}, \alpha_{2}, \cdots$, and α_{r} are polyhedral and simultaneously straight in B. We may assume that this adjustment is made by a piecewise linear homeomorphism $f: S^{3} \rightarrow S^{3}$ that is the identity on each of $\beta_{1}, \beta_{2}, \cdots$, and β_{r}. Since $f\left(\alpha_{1}\right), f\left(\alpha_{2}\right)$ and $f\left(\alpha_{r}\right)$ are simultaneously straight in B, there are mutually disjoint polyhedral semispanning discs E_{1}, E_{2}, \ldots, and E_{r} of B such that if $1 \leqq i \leqq r, f\left(\alpha_{i}\right) \subset \mathrm{Bd} E_{i}$. We may assume that if $1 \leqq i \leqq r$ and $1 \leqq j \leqq r$, then $D_{i} \cap \mathrm{Bd} B$ and $E_{j} \cap \mathrm{Bd} B$ are in relative general position on $\mathrm{Bd} B$.

Thicken $f\left(\alpha_{i}\right), f\left(\alpha_{2}\right), \ldots$, and $f\left(\alpha_{r}\right)$ slightly relative to B to obtain mutually disjoint polyhedral 3 -cells $F_{1}^{*}, F_{2}^{*}, \cdots$, and F_{r}^{*} such that if $1 \leqq j \leqq r$, then (1) $F_{j}^{*} \cap \mathrm{Bd} B$ is the union of two disjoint discs, $F_{j}^{*} \cap E_{j}$ is a disc, and $f\left(\alpha_{j}\right)$ is a straight spanning arc of F_{j}^{*}, and (2) if $1 \leqq i \leqq r, D_{i} \cap F_{j}^{*}$ is empty or an arc.

Suppose $1 \leqq j \leqq r$. Let $E_{j}^{\prime}=\mathrm{Cl}\left(E_{j}-F_{j}^{*}\right)$. Cut E_{j}^{\prime} into narrow strips $E_{j 1}, E_{j 2}, \cdots$, and $E_{j n_{j}}$, cutting in a direction normal to $\mathrm{Bd} B$, so that if $1 \leqq k \leqq n_{j}, E_{j k}$ intersects at most one of the D 's, and then in an interior point of $E_{j k} \cap \mathrm{Bd} B$. We may assume that if $1 \leqq i \leqq r$, then $E_{j k} \cap D_{i}$ is
empty or a point. We assume $E_{j 1}, E_{j 2}, \cdots$, and $E_{j n_{j}}$ counted in order so that any two consecutive ones intersect in an arc.

If $1 \leqq j \leqq r$, thicken $E_{j 1}, E_{j 2}, \cdots$, and $E_{j n_{j}}$ very slightly to obtain polyhedral 3-cells $E_{j 1}^{*}, E_{j 2}^{*}, \cdots$, and $E_{j n_{j}}^{*}$ such that (1) if $1 \leqq k \leqq n_{j}, E_{j k}^{*} \cap \operatorname{Bd} B$ is a disc, $E_{j k}^{*} \cap F_{j}^{*}$ is a disc, $E_{j k}^{*}$ intersects any neighboring E^{*} in a disc, and if $1 \leqq i \leqq r$, then $E_{j k}^{*} \cap D_{i}$ is empty or an arc. In addition, if $k<n_{j}$, then $E_{j k}^{*} \cap E_{j, k+1}^{*} \cap D_{i}=\phi$.

Thicken D_{1}, D_{2}, \cdots, and D_{r} very, very slightly relative to C to obtain mutually disjoint polyhedral 3-cells $D_{1}^{*}, D_{2}^{*}, \cdots$, and D_{r}^{*} such that if $1 \leqq i \leqq$ r, then (1) $D_{i}^{*} \cap \operatorname{Bd} C$ is a disc and β_{i} is a straight spanning arc of D_{i}^{*}, (2) if $1 \leqq j \leqq r, D_{i}^{*} \cap F_{j}^{*}$ is empty or a disc, (3) if $1 \leqq j \leqq r$ and $1 \leqq k \leqq n_{j}$, then (a) $E_{j k}^{*} \cap D_{i}^{*}$ is empty or a disc and (b) is $k<n_{j}$, then $E_{j k}^{*} \cap E_{j, k+1}^{*} \cap D_{i}^{*}=$ ϕ.

Let

$$
C_{0}=\mathrm{Cl}\left(C-\bigcup_{i=1}^{r} D_{i}^{*}\right) \text { and } B_{0}=\mathrm{Cl}\left(B-\bigcup_{j=1}^{r}\left(F_{j}^{*} \cup\left(\bigcup_{k=1}^{n_{j}} E_{j k}^{*}\right)\right)\right.
$$

Then C_{0} and B_{0} are polyhedral 3-cells. There is a polyhedral cell partitioning $\left\{B_{1}, B_{2}, \cdots, B_{q}\right\}$ of B_{0} such that (1) if $1 \leqq i \leqq q$ and X is either C_{0} or one of the D^{*}, the E^{*}, or the F^{*}, then $B_{q} \cap X$ is empty or a disc, and (2) if $i<q$, $\left[\left(\operatorname{Bd} B_{0}\right) \cup B_{1} \cup \cdots \cup B_{i}\right] \cap B_{i+1}$ is a disc. Let T consist of C_{0}, the D^{*}, the E^{*}, the $F^{*}, B_{1}, B_{2}, \cdots$, and B_{q}. We may construct the B 's so that T is a polyhedral cell partitioning of S^{3}.

Let $\left\langle C_{0}, D_{1}^{*}, D_{2}^{*}, \cdots, D_{r}^{*}, E_{11}^{*}, E_{12}^{*}, \cdots, E_{1 n_{1}}^{*}, F_{1}^{*}, E_{21}^{*}, E_{22}^{*}, \cdots, E_{2 n_{2}}^{*}\right.$, $\left.F_{2}^{*}, \cdots, E_{r 1}^{*}, \cdots, E_{r n_{r}}^{*}, F_{r}^{*}, B_{1}, B_{2}, \cdots, B_{q}\right\rangle$ be an ordering of K. It is easily seen that this is a shelling of T. Let this shelling be denoted by $\left\langle t_{1}, t_{2}, \cdots, t_{m}\right\rangle$.

If $1 \leqq i \leqq m$, let $h_{i}=f^{-1}\left(t_{i}\right)$. Let $H=\left\langle h_{1}, h_{2}, \cdots, h_{m}\right\rangle$. Then H is a polyhedral cell partitioning of S^{3}, H is shellable, and by construction, k is compatible with H. Clearly $|\pi(k, H)|=2 r=2 \mathrm{br} k$.

3. Weak compatibility

In this section, we shall establish a variant of the main result, Theorem 1 above, in which we weaken the conditions regarding how the knot is placed relative to the 2 -skeleton of the partitioning.

Suppose H is a polyhedral cell partitioning of S^{3} and k is a knot in S^{3}. Then k is weakly compatible with H if and only if (1) k and 2-skel H are in relative general position in S^{3}, and (2) if $h \in H$ and k intersects h, then the arcs which form the components of $h \cap k$ are simultaneously straight in h.

Suppose H and k are as above. Then the partitioning of k induced by H is $\pi(k, H)=\{\alpha$: for some cell h of H, α is a component of $h \cap k\} ;|\pi(k, H)|$ denotes the number of arcs in the partitioning of k induced by H.

Theorem 3. Suppose H is a polyhedral cell partitioning of S^{3}, k is a knot in S^{3}, and k is weakly compatible with H. If $|\pi(k, H)|<\operatorname{br} k$, then H is not shellable.

Proof. Suppose H is shellable. By Lemma 4 below, there is a shellable cell partitioning F of S^{3} such that (1) k is compatible with F and (2) $|\pi(k, F)|=2|\pi(k, H)|$. Since by hypothesis, $|\pi(k, h)|<\mathrm{br} k$, then $|\pi(k, F)|<2 \mathrm{br} k$. This contradicts Theorem 1. Thus H is not shellable.

Lemma 4. Suppose H is a shellable polyhedral cell partitioning of S^{3} and k is a knot in S^{3} weakly compatible with H. Then there is a shellable polyhedral cell partitioning F of S^{3} such that k is compatible with F and $|\pi(k, F)|=$ $2|\pi(k, H)|$.

Before proving Lemma 4, we shall give some preliminaries. A partitioning of a 2 -sphere or disc X^{2} is a finite covering \mathscr{P} of X^{2} by discs-with-holes such that (1) if 2,3 , or more sets of \mathscr{P} intersect, their common part is an arc, point, or empty, respectively, and (2) if $D \in \mathscr{P}$ and $D \cap \operatorname{Bd} X^{2} \neq \phi$, then $D \cap \operatorname{Bd} X^{2}$ is an arc. If each element of \mathscr{P} is a disc, then \mathscr{P} is a disc partitioning of X^{2}. A shelling of a disc partitioning \mathscr{D} of X^{2} is a counting $\left\langle D_{1}, D_{2}, \cdots, D_{n}\right\rangle$ of \mathscr{D} such that if $1 \leqq i<n$, then $D_{1} \cup D_{2} \cup \cdots \cup D_{i}$ is a disc. A disc partitioning \mathscr{D} of X^{2} is shellable if and only if it has a shelling.

It follows from theorems of plane topology that every disc partitioning of either a 2 -sphere or a disc is shellable. However, we sometimes need a special kind of shelling of a disc. A ring partitioning of a disc D^{2} is a disc partitioning \mathscr{D} of D^{2} obtaining by dividing D^{2} into concentric annuli, one of which contains $\operatorname{Bd} D^{2}$, and a central disc, and then dividing the annuli into discs by using crossing arcs in the annuli. A ring shelling of \mathscr{D} is a counting of \mathscr{D} which first counts the discs of the outer ring in order, then those of the next inward ring in order, \cdots, and finally the central disc. Note that for such a counting $\left\langle D_{1}, D_{2}, \cdots, D_{n}\right\rangle$, if $1<i<n$, then $\left(D_{1} \cup D_{2} \cup \cdots \cup D_{i-1}\right) \cap$ D_{i} is an arc.

A cell partitioning of a 3 -cell C^{3} is a finite covering K of C^{3} by 3 -cells such that (1) if $2,3,4$, or more sets of K intersect, their common part is a disc, an arc, a point, or empty, respectively, and (2) $\left\{k \cap \operatorname{Bd} C^{3}: k \in K\right.$ and $\left.k \cap \operatorname{Bd} C^{3} \neq \phi\right\}$ is a disc partitioning \mathscr{D} of $\operatorname{Bd} C^{3}$. A cell partitioning K of C^{3} is shellable if and only if it has a counting $\left\langle k_{1}, k_{2}, \cdots, k_{m}\right\rangle$ such that if $1 \leqq i \leqq m$, then $k_{1} \cup k_{2} \cup \cdots \cup k_{i}$ is a 3 -cell. Such a counting $\left\langle k_{1} \cup\right.$ $\left.k_{2}, \cdots, k_{m}\right\rangle$ is a shelling of K.

Proof of Lemma 4. Since H is shellable, there is a shelling $\left\langle h_{1}, h_{2}, \cdots, h_{n}\right\rangle$ of H. By Lemma 5, if $1<i<n$, then ($h_{1} \cup h_{2} \cup, \cdots, h_{i-1}$) $\cap h_{i}$ is a disc.

In the constructions of this proof, we shall assume that polyhedral sets are in relative general position, in a sense appropriate to the context.

Let N be a close tubular neighborhood of (2-skel H) canonically constructed. If v is any vertex of $H, N(v)$ is a small polyhedral ball about v. Let

$$
N^{0}=\cup\{N(v): v \text { is a vertex of } H\}
$$

If e is any edge of $H, N(e)$ is a thin polyhedral 3-cell obtained by thickening $e-\operatorname{Int} N^{0}$ relative to N^{0}. Let

$$
N^{1}=N^{0} \cup(\cup\{N(e): e \text { is an edge of } H\}
$$

If f is any face of $H, N(f)$ is a polyhedral 3-cell obtained by thickening f - Int N^{1} slightly, relative to N^{1}. Then

$$
N=N^{1} \cup(\cup\{N(f): f \text { is a face of } H\}
$$

We may assume that $N^{1} \cap k=\phi$, and for each face f of H, the number of components of $k \cap N(f)$ equals the number of points of $k \cap f$. Let \mathscr{N} be the family of all the sets $N(v), N(e)$, and $N(f)$ constructed above.

Suppose Σ is any set which is a union of faces of H. Let $N(\Sigma)$ be the union of the sets $N(x)$ where x is a vertex, an edge, or a face of H lying in Σ. Note that $N(\Sigma)$ is a tubular neighborhood of Σ.

Suppose that $1<i<n$. Let

$$
N_{i}^{*}=N\left(\operatorname{Bd} h_{1}\right) \cup N\left(\operatorname{Bd} h_{2}\right) \cup \cdots \cup N\left(\operatorname{Bd} h_{i}\right)
$$

Let

$$
D_{i}=\left(h_{1} \cup h_{2} \cup \cdots \cup h_{i-1}\right) \cap h_{i}
$$

Note that $N\left(\operatorname{Bd} h_{i}\right) \cap N_{i-1}^{*}=N\left(D_{i}\right)$ Let N_{i} be the union of all the sets of \mathscr{N} lying in $N\left(\operatorname{Bd} h_{i}\right)$ but not contained in $N\left(D_{i}\right)$. Note that N_{i} is a 3-cell. Now $N_{i} \cap N_{i-1}^{*}=N_{i} \cap N\left(D_{i}\right)$, and this set is an annulus A_{i}. If we define $N_{1}=N\left(\operatorname{Bd} h_{i}\right)$, and for each $j, 1<j<n$, define N_{j} as above, then $N_{i-1}^{*}=$ $N_{1} \cup N_{2} \cdots \cup N_{i-1}$.

In our construction of the partitioning F, we shall partition N_{1}, N_{2}, \cdots, and N_{n-1} so that these partitionings fit together in specified ways. We accordingly pay special attention to the annuli A_{2}, A_{3}, \cdots, and A_{n-1}. If $2 \leqq i<n$, let λ_{i} be the boundary curve of A_{i} lying in h_{i}, and let μ_{i} be the other.

If $1 \leqq i \leqq n$, let $h_{i}^{\prime}=h_{i}-$ Int N. We may construct N so that if $1 \leqq i \leqq n$, the components of $k \cap h_{i}^{\prime}$ are simultaneously straight in h_{i}^{\prime}. If $1 \leqq i \leqq n$, let $\alpha_{i 1}, \alpha_{i 2}, \cdots$, and $\alpha_{i m_{i}}$ be the components of $k \cap h_{i}^{\prime}$. Let $\Delta_{i 1}, \Delta_{i 2}, \cdots$, and $\Delta_{i m_{i}}$ be mutually disjoint polyhedral semispanning discs in h_{i}^{\prime} such that if $1 \leqq j \leqq m_{i}, \alpha_{i j} \subset \operatorname{Bd} \Delta_{i j}$. Let $\Delta_{i 1}^{*}, \Delta_{i 2}^{*}, \cdots$, and $\Delta_{i m_{i}}^{*}$ be mutually disjoint polyhedral 3-cells in h_{i}^{\prime} such that if $1 \leqq j \leqq m_{i}, \Delta_{i j}^{*}$ is obtained by a slight thickening of $\Delta_{i j}$ relative to $\mathrm{Bd} h_{i}^{\prime}, \alpha_{i j}$ is a straight spanning arc of $\Delta_{i j}^{*}$, and
$\Delta_{i j}^{*} \cap \mathrm{Bd} h_{i}^{\prime}$ is a disc on $\mathrm{Bd} \Delta_{i j}^{*}$. Let $h_{i}^{*}=\mathrm{Cl}\left(h_{i}^{\prime}-\bigcup_{j=1}^{m_{i}} \Delta_{i j}^{*}\right)$. Note that if $1 \leqq j \leqq m_{i}$, then $h_{i}^{*} \cap \Delta_{i j}^{*}$ is a disc.

Note that $\left\{\left(\operatorname{Bd} h_{i}^{\prime}\right) \cap N(x): x\right.$ is a vertex, edge, or face of H lying in $\left.\operatorname{Bd} h_{i}\right\}$ is a disc partitioning \mathscr{P}_{i} of Bd h_{i}^{\prime}. We may assume that if $1 \leqq j \leqq m_{i}$, $\Delta_{i j}^{*}$ is disjoint from each $N(v)$ where v is a vertex of H on $\operatorname{Bd} h_{i}$, and that both $\mathrm{Bd} \Delta_{i j}$ and $\left(\left(\operatorname{Bd} \Delta_{i j}^{*}\right) \cap \mathrm{Bd} h^{\prime}\right)$ are in general position on $\mathrm{Bd} H_{i}^{*}$ relative to the boundary of each disc δ of \mathscr{P}_{i}. We may also assume that for each such disc δ, and each $j, 1 \leqq j \leqq m_{i}$, each component of $(\operatorname{Bd} \delta) \cap \Delta_{i j}^{*}$ contains exactly one point of $(\operatorname{Bd} \delta) \cap \Delta_{i j}$. If $l>i$, note that $A_{l} \cap \mathrm{Bd} N_{i}$ is ϕ, a disc, or is all of A_{l}. Note that if $A_{l} \subset \operatorname{Bd} N_{i}$, then $A_{l} \cap A_{i}=\phi$.

Suppose $2 \leqq k<n$. We shall now construct a partitioning of A_{k} into discs. Let Y_{k} be the set of all points p of $\mathrm{Bd} A_{k}$ such that either (1) for some $l \neq k, p$ lies on $\mathrm{Bd} A_{l}$, or (2) for some pair s and t with $1 \leqq s \leqq n$ and $1 \leqq t \leqq m_{s}, p$ lies on $\operatorname{Bd}\left(\Delta_{s t}^{*} \cap \mathrm{Bd} h_{s}^{\prime}\right)$. There exist mutually disjoint polyhedral crossing arcs $\beta_{k 1}, \beta_{k 2}, \cdots$, and $\beta_{k r_{k}}$ of A_{k} such that if $B_{k 1}, B_{k 2}, \cdots$, and $B_{k r_{k}}$ are the discs obtained by partitioning A_{k} using the β 's, then (1) no endpoint of any β lies in Y_{k}, (2) if $1 \leqq l \leqq r_{k}$, then neither $B_{k l} \cap \lambda_{k}$ nor $B_{k l} \cap \mu_{k}$ contains two distinct points of Y_{k}, and (3) if $s<k, A_{k} \cap \mathrm{Bd} A_{s}$ is disjoint from each of the β 's.

Let

$$
M_{1}=h_{1} \cup N_{1}, M_{2}=M_{1} \cup h_{2} \cup N_{2}, \cdots, M_{i}=M_{i-1} \cup h_{i} \cup N_{i}, \cdots
$$

and $M_{n-1}=M_{n-2} \cup h_{n-1} \cup N_{n-1}$.
Thus if $1 \leqq i<n$, then $M_{i}=\cup_{j=1}^{i}\left(h_{j} \cup N_{j}\right)$.
We are now prepared to construct the partitioning F. We shall construct a cell partitioning F_{1} of M_{1}, extend this to a cell partitioning F_{2} of M_{2}, \cdots, and finally a partitioning F_{n-1} of M_{n-1}. We then construct F.

To construct F_{1}, our primary concern is to partition N_{1}. Let $\Sigma_{1}=\mathrm{Bd} h_{1}^{\prime}$ and let Σ_{1}^{\prime} be the boundary component of N_{1} distinct from $\Sigma_{1} . \Sigma_{1}$ and Σ_{1}^{\prime} are both 2 -spheres, and $\operatorname{Bd} N_{1}=\Sigma_{1} \cup \Sigma_{1}^{\prime}$. Now N_{1} is homeomorphic to $\Sigma_{1} \times[0,1]$, and we may construct a polyhedral product structure, denoted by $\Sigma_{1} \times[0,1]$, identifying Σ_{1} and Σ_{1}^{\prime} with $\Sigma_{1} \times\{0\}$ and $\Sigma_{1} \times\{1\}$, respectively. We may assume that each component of $k \cap N_{1}$ is a product fiber.

The sets $\Delta_{1 j}^{*} \cap \Sigma_{1}, 1 \leqq j \leqq m_{1}$, together with $\Sigma_{1} \cap\left(\mathrm{Bd} h_{1}^{*}\right)$, form a polyhedral partitioning \mathscr{E}_{1} of Σ_{1}. Let \mathscr{E}_{1}^{\prime} be the collection consisting of, for each $s>1$, (a) each nonempty set $\Delta_{s t}^{*} \cap \Sigma_{1}^{\prime}, 1 \leqq t \leqq m_{s}$, (b) each nonempty set $\left(\mathrm{Bd} h_{s}^{*}\right) \cap \Sigma_{1}^{\prime}$ and (c) each nonempty set $B_{s q} \cap \Sigma_{1}^{\prime}, 1 \leqq q \leqq r_{s}$. \mathscr{E}_{1}^{\prime} is a polyhedral partitioning of Σ_{1}^{\prime}.

Let π_{1} be projection onto Σ_{1} in the product structure described above for N_{1}. We may assume that (1 -skel \mathscr{E}_{1}) and $\pi\left(1\right.$-skel $\left.\mathscr{E}_{1}^{\prime}\right)$ are in relative general position on Σ_{1}. Then there exists a shellable disc partitioning $\mathscr{D}_{1}=$ $\left\langle D_{11}, D_{12}, \cdots, D_{1 \nu_{1}}\right\rangle$ of Σ_{1} such that if $D \in \mathscr{D}_{1}$, then (1) if E is either a set of \mathscr{E}_{1}, or for some set E^{\prime} of $\mathscr{E}_{1}^{\prime}, E=\pi\left(E^{\prime}\right)$, then $D \cap E$ is empty or a disc,
(2) $\mathrm{Bd} D$ and $\left(\cup\left\{\mathrm{Bd} E: E \in \mathscr{E}_{1}\right\}\right) \cup\left(\cup\left\{\mathrm{Bd} \pi(E): E \in \mathscr{E}_{1}^{\prime}\right\}\right)$ are in relative general position on Σ_{1}, and (3) $\mathrm{Bd} D$ and k are disjoint. If $1 \leqq l \leqq \nu_{1}$, let $X_{1 l}=D_{1 l} \times[0,1]$; we may assume that $X_{1 l}$ is polyhedral.

Let F_{1} be the set consisting of h_{1}^{*}, the $\Delta_{1 j}^{*}$ for $1 \leqq j \leqq m_{1}$, and the $X_{1 l}$ for $1 \leqq l \leqq \nu_{1}$. We shall show that F_{1} is a cell partitioning of M_{1}. For any j, $1 \leqq j \leqq m_{1}, h_{1}^{*} \cap \Delta_{1 j}^{*}$ is a disc, and if $1 \leqq l \leqq \nu_{1}$, then since $D_{1 l} \cap \mathrm{Bd} h_{1}^{*}$ is empty or a disc, $X_{1 l} \cap h_{1}^{*}$ is empty or a disc. Any two distinct $\Delta_{1 j}^{*}$ are disjoint. If $1 \leqq j \leqq m_{1}$ and $1 \leqq l \leqq \nu_{1}$, then $D_{1 l} \cap \Delta_{1 j}^{*}$ is empty or a disc, and thus $X_{1 l} \cap \Delta_{1 j}^{*}$ is empty or a disc. Finally, if $1 \leqq l<u \leqq \nu_{1}$, and $D_{1 l} \cap D_{1 u} \neq \phi$, then it is an arc, and hence $X_{1 l} \cap X_{1 u}$ is a disc. To show that the common part of three intersecting sets of F_{1} is an arc, we use the facts that \mathscr{D}_{1} is a disc partitioning of Σ_{1}, and the $\Delta_{i j}^{*}$ are products in a collar for Σ_{1}. A similar argument holds for the case of four elements of F_{1}.

Next we shall show that F_{1} is shellable. Let

$$
\left\langle h_{1}^{*}, \Delta_{11}^{*}, \Delta_{12}^{*}, \cdots, \Delta_{1 m_{1}}^{*}, X_{11}, X_{12}, \cdots, X_{1 \nu_{1}}\right\rangle
$$

be a counting of F_{1}. We shall show that this is a shelling of F_{1}. Clearly it suffices to show that if we take a set in the counting after the first, and intersect that set with the union of those that precede it, we get a disc. Since the $\Delta_{1 j}^{*}$ are mutually disjoint, this holds for h_{1}^{*} and all of the $\Delta_{1 j}^{*}$. Now $h_{1}^{*} \cup \Delta_{11}^{*} \cup \cdots \cup \Delta_{1 m_{1}}^{*}$ is a 3-cell, h_{1}^{\prime}, and $\Sigma_{1}=\operatorname{Bd} h_{1}^{\prime}$. Since $X_{11} \subset \Sigma_{1}$, then $X_{11} \cap h_{1}^{\prime}$ is a disc. Suppose $1 \leqq l<\nu_{1}$, and $h_{1}^{\prime} \cup X_{11} \cup \cdots \cup X_{1 l}$ is a 3-cell $Z_{1 l}$. Since $X_{1, l+1} \cap \Sigma_{1}$ is the disc $D_{1, l+1}$, and $D_{1, l+1}$ intersects $\cup_{t=1}^{l} D_{1 t}$ in an arc α, then $Z_{1 l} \cap X_{1, l+1}$ is the union of the two discs $D_{1, l+1}$ and $(\alpha \times[0,1])$, along the arc α. Hence $Z_{1 l} \cap X_{1, l+1}$ is a disc. Now $D_{1 \nu_{1}} \cap$ $\left(\cup_{t=1}^{\nu_{1}-1} D_{1 t}\right)=\operatorname{Bd} D_{1 \nu_{1}}$, and $Z_{1, \nu_{1}-1} \cap X_{1 \nu_{1}}$ is the union of the disc $D_{1 \nu_{1}}$ and the annulus ($B d D_{1 \nu_{1}}$) $\times[0,1]$, along the boundary of $D_{1 \nu_{1}}$. Thus, $Z_{1, \nu_{1}-1} \cap$ $X_{1 \nu_{1}}$ is a disc. Hence the indicated counting is a shelling of F_{1}.

We shall now extend F_{1} to a shellable cell partitioning F_{2} of M_{2}. Our primary concern is with partitioning N_{2}. Recall that N_{2} is a 3-cell. Let $\Sigma_{2}=\left(\operatorname{Bd} N_{2}\right) \cap\left(\operatorname{Bd} h_{2}^{\prime}\right)$. Recall that $A_{2}=\left(\operatorname{Bd} N_{2}\right) \cap\left(\operatorname{Bd} N_{1}\right)$. Let $\Sigma_{2}^{\prime}=$ $\left(\operatorname{Bd} N_{2}\right)-\operatorname{Int}\left(A_{2} \cup \Sigma_{2}\right) . \Sigma_{2}$ and Σ_{2}^{\prime} are discs, and $\operatorname{Bd} N_{2}=\Sigma_{2} \cup A_{2} \cup \Sigma_{2}^{\prime}$. Now N_{2} is homeomorphic to $\Sigma_{2} \times[0,1]$, and we may construct a polyhedral product structure, denoted by $\Sigma_{2} \times[0,1]$, identifying $\Sigma_{2}, \Sigma_{2}^{\prime}$, and A_{2} with $\Sigma_{2} \times\{0\}, \Sigma_{2} \times\{1\}$, and $\left(\mathrm{Bd} \Sigma_{2}\right) \times[0,1]$, respectively. We may assume that each of the crossing arcs $\beta_{21}, \beta_{22}, \cdots$, and $\beta_{2 r_{2}}$ of A_{2} are fibers in the product structure, and so is each component of $k \cap N_{2}$.

The sets $\Delta_{2 j}^{*} \cap \Sigma_{2}, 1 \leqq j \leqq m_{2}$, together with $\Sigma_{2} \cap\left(\operatorname{Bd} h_{2}^{*}\right)$, form a polyhedral partitioning \mathscr{E}_{2} of Σ_{2}. Let \mathscr{E}_{2}^{\prime} be the collection consisting of, for each $s>2$, (a) each nonempty set $\Delta_{s t}^{*} \cap \Sigma_{2}^{\prime}, 1 \leqq t \leqq m_{s}$, (b) each nonempty set $\left(\mathrm{Bd} h_{s}^{*}\right) \cap \Sigma_{2}^{\prime}$, and (c) each nonempty set $B_{s q} \cap \Sigma_{2}^{\prime}, 1 \leqq q \leqq r_{s}$. \mathscr{E}_{2}^{\prime} is a polyhedral partitioning of Σ_{2}^{\prime}.

Let π_{2} be projection onto Σ_{2} in the product structure described above for N_{2}. We may assume that (1-skel \mathscr{E}_{2}) and $\pi\left(1\right.$-skel $\left.\mathscr{E}_{2}^{\prime}\right)$ are in relative general
position of Σ_{2}. There exists a ring partitioning

$$
\mathscr{D}_{2}=\left\{D_{21}, D_{22}, \cdots, D_{2 r_{2}}, \cdots, D_{2 \nu_{2}}\right\}
$$

of Σ_{2} such that (1) if $D \in \mathscr{D}_{2}$, then (a) if E is either a set of \mathscr{E}_{2} or for some set E^{\prime} of $\mathscr{E}_{2}^{\prime}, E=\pi\left(E^{\prime}\right)$, then $D \cap E$ is empty or a disc, and $(\mathrm{b})(\operatorname{Bd} D)$ and k are disjoint, (2) the central disc $D_{2 \nu_{2}}$ of \mathscr{D}_{2} is disjoint from every $\Delta_{s t}^{*}$, $2<s \leqq n$, and $1 \leqq t \leqq m_{s}$, and from every $A_{s}, 2 \leqq s<n$, and (3) $\left\langle D_{21}, D_{22}, \cdots, D_{2 r_{2}}, \cdots, D_{2 \nu_{2}}\right\rangle$ is a ring shelling of \mathscr{D}_{2}. We may also assume that the outer ring Ω_{2} of \mathscr{D}_{2} is narrow, and the discs of Ω_{2} are D_{21}, D_{22}, \cdots, and $D_{2 r_{2}}$ where for $1 \leqq w \leqq r_{2}$,

$$
D_{2 w} \cap\left(\operatorname{Bd} \Sigma_{2}\right)=B_{2 w} \cap\left(\operatorname{Bd} \Sigma_{2}\right)
$$

If $1 \leqq l \leqq \nu_{2}$, let $X_{2 l}=D_{2 l} \times[0,1]$; we may assume $X_{2 l}$ is polyhedral.
Let F_{2} be the set consisting of the sets of F_{1} together with h_{2}^{*}, the $\Delta_{2 j}^{*}$ for $1 \leqq j \leqq m_{2}$, and the $X_{2 l}$ for $1 \leqq l \leqq \nu_{2}$. We shall show that F_{2} is a cell partitioning of M_{2}. A part of this proof may be gotten by modifying the argument above that F_{1} is a cell partitioning of M_{1}. We need only consider how sets of F_{2} in M_{1} intersect those in $h_{2}^{\prime} \cup N_{2}$. Any set in $h_{2}^{*}, \Delta_{21}^{*}, \ldots$, and $\Delta_{2 m_{2}}^{*}$ is disjoint from each set of $h_{1}^{*}, \Delta_{11}^{*}, \ldots$, and $\Delta_{1 m_{1}}^{*}$. If F is either h_{2}^{*} or for some $j, 1 \leqq j \leqq m_{2}$, is $\Delta_{2 j}^{*}$, then by construction of \mathscr{D}_{1}, if $D \in \mathscr{D}_{1}, D \cap F$ is empty or a disc. Hence if $X \in F_{1}$, then $F \cap X$ is ϕ or a disc.

Now suppose $F \in F_{2}, F \subset N_{2}$, and F intersects M_{1}. Then F intersects A_{2}, and hence for some disc $D_{2 q}$ of the outer ring of $\mathscr{D}_{2}, F=D_{2 q} \times[0,1]$. Further, by the construction of the product structure $\Sigma_{2} \times[0,1], F \cap A_{2}=$ $B_{2 q}$. By construction of \mathscr{D}_{1}, if a set D of \mathscr{D}_{1} intersects $B_{2 q}$, their common part is a disc. It follows that if $X \in F_{1}$ and X intersects F, then $X \cap F$ is a disc. It now follows that F_{2} is a cell partitioning of M_{2}.

Next we shall show that F_{2} is shellable. Let $\left\langle h_{1}^{*}, \Delta_{11}^{*}, \cdots, \Delta_{1 m_{1}}^{*}, X_{11}, \cdots\right.$, $\left.X_{1 \nu_{1}}, X_{21}, X_{22}, \cdots, X_{2 r_{2}}, \cdots, X_{2, \nu_{1}-1}, \Delta_{21}^{*}, \cdots, \Delta_{2 m_{2}}^{*}, h_{2}^{*}, X_{2 \nu_{2}}\right\rangle$ be a counting of F_{2}. Note that we count the "plug" $X_{2 \nu_{2}}$ last. We shall show that this counting is a shelling of F_{2}. We only need to consider those sets of F_{2} not in F_{1}. Recall that $\cup\left\{F: F \in F_{1}\right\}=M_{1}$.

Since $X_{21} \cap A_{2}$ is the disc B_{21}, it follows that $X_{21} \cap M_{1}=B_{21}$. If $1<l<$ r_{2}, then $X_{2 l} \cap A_{2}$ is the disc $B_{2 l}$, and since $B_{2 l} \cap B_{2, l-1}$ is an arc, then $X_{2 l} \cap X_{2, l-1}$ is a disc. These discs intersect in one of the β 's, and hence $X_{2 l}$ intersects the union of those before it in the counting in a disc. $X_{2 r_{2}}$ intersects M_{1} in a disc $B_{2 r_{2}}$, intersects $X_{2, r_{2}-1}$ in a disc, intersects X_{21} in a disc, and the union of these three is a disc. A similar argument holds for each other ring in the partitioning \mathscr{D}_{2}. Thus $h_{1} \cup N_{1} \cup\left(\cup_{l=1}^{\nu_{2}-1} X_{2 l}\right)$ is a 3-cell $Z_{2, \nu_{2}-1}$. Clearly for each $j, 1 \leqq j \leqq m_{2}, Z_{2, \nu_{2}-1} \cap \Delta_{2 j}^{*}$ is a disc. [$\left(Z_{2, \nu_{2}-1}\right) \cup$ $\left.\left(\cup_{j=1}^{m_{2}} \Delta_{2 j}^{*}\right)\right] \cap h_{2}^{*}$ is the disc $\left(\operatorname{Bd} h_{2}^{*}\right)-\operatorname{Int} D_{2 \nu_{2}}$. It follows that the union of all the cells of F_{2} except $X_{2 \nu_{2}}$ is a 3-cell $W_{2, \nu_{2}-1} . X_{2 \nu_{2}} \cap W_{2, \nu_{2}-1}$ is the union of the disc $D_{2 \nu_{2}}$ and the annulus ($\operatorname{Bd} D_{2 \nu_{2}}$) $\times[0,1]$, and is a disc. Hence F_{2} is shellable.

We continue this process, constructing a shellable cell partitioning F_{3} of M_{3} that extends F_{2}, a shellable cell partitioning F_{4} of M_{4} that extends F_{3}, and so on. Suppose $2<i<n, F_{i-1}$ has been constructed, and is a shellable cell partitioning of M_{i-1}. We construct F_{i} by first partitioning N_{i}, using a ring partitioning in a manner analogous to that of the construction of F_{2}. As part of this, we construct a "plug" for N_{i}. Then we define F_{i} to consist of the cells of F_{i-1}, the cells partitioning N_{i}, the $\Delta_{i j}^{*}$, and h_{i}^{*}.

To prove that F_{i} is a cell partitioning of M_{i}, we may modify the arguments given for F_{1} and F_{2}. The main additional point to be considered involves cells F of F_{i} lying in N_{i} and intersecting $\mathrm{Bd} A_{s}$ for some $s<i$. Then F intersects A_{i}, and for some $j, 1 \leqq j \leqq r_{i}, F \cap A_{i}=B_{i j}$. Suppose F intersects a cell F^{\prime} of F_{s} such that F^{\prime} lies in N_{s} and intersects A_{s}. Then A_{i} intersects $\mathrm{Bd} A_{s}$ in a single spanning arc of A_{i}. For some $k, 1 \leqq k \leqq r_{s}, F^{\prime} \cap A_{s}=B_{s k}$, and F^{\prime} is a slight thickening, relative to N_{s}, of $B_{s k}$. It follows that $F \cap F^{\prime}$ is a disc. In showing that no four sets of F_{i} have any arc in common, we may use the fact that $\mathscr{N} \cup\left\{h_{i}^{\prime}: 1 \leqq i \leqq n\right\}$ is a cell partitioning of S^{3}.

We order F_{i} by first counting the cells of F_{i-1}, following the given shelling, then the cells of F_{i} in N_{i}, using a ring shelling of the ring partitioning involved, except that we do not count the "plug." We then count the $\Delta_{i j}^{*}$, then h_{i}^{*}, and finally the "plug." It is easily seen that this is a shelling of F_{i}.

Suppose that we have defined F_{n-1}. Note that F_{n-1} covers S^{3} - Int h_{n}^{\prime}. We now define F to be the set consisting of the cells of F_{n-1}, the $\Delta_{n j}^{*}$ for $1 \leqq j \leqq m_{n}$, and h_{n}^{*}. Clearly F is a cell partitioning of S^{3}. To obtain a shelling for F, we first count F_{n-1} as above, then $\Delta_{n 1}^{*}, \Delta_{n 2}^{*}, \cdots$, and $\Delta_{n m_{n}}$, and finally h_{n}^{*}.

Finally, k is compatible with F and $|\pi(k, F)|=2|\pi(k, H)|$. To see this, note that (1) each $\Delta_{i j}^{*}$ contains exactly one spanning arc lying on k, and this arc is straight in $\Delta_{i j}^{*}$, and (2) if $p \in k \cap\left(2\right.$-skel H), there is some $X_{s t}$ such that $k \cap X_{s t}$ is a single spanning arc of $X_{s t}$ containing p, and this arc is straight in $X_{s t}$.

Lemma 5. If $\left\langle h_{1}, h_{2}, \cdots, h_{n}\right\rangle$ is a shelling of a polyhedral cell partitioning of S^{3}, and $1<i<n$, then $\left(h_{1} \cup h_{2} \cup \cdots \cup h_{i-1}\right) \cap h_{i}$ is a disc.

Proof. Suppose $1<i<n$, and let $H_{i-1}=h_{1} \cup h_{2} \cup \cdots \cup h_{i-1}, H_{i}=$ $H_{i-1} \cup h_{i}$, and $D_{i}=H_{i-1} \cap h_{i}$. Then both H_{i-1} and H_{i} are 3-cells, and each component of D_{i} is a punctured disc.

Suppose D_{i} is not connected, and let A and B be distinct components of D_{i}. There is a polyhedral simple closed curve J on $\mathrm{Bd} H_{i-1}$ disjoint from D_{i} and separating A from B on $\mathrm{Bd} H_{i-1}$. Let Δ be the disc on $\mathrm{Bd} H_{i-1}$ bounded by J and containing A. Let α be a polyhedral spanning arc of H_{i-1} from a point x of $\operatorname{Int} A$ to a point y of Int B. Let β be a polyhedral spanning arc of h_{i} from x to y. Then $\alpha \cup \beta$ and J are disjoint polyhedral simple closed curves in S^{3}, and, by considering Δ, can be seen to be linked in
S^{3}. Since $\alpha \cup \beta \subset \operatorname{Int} H_{i}$ and $J \cap$ Int $H_{i}=\phi$, this is a contradiction. Hence D_{i} is a punctured disc.

Suppose $\mathrm{Bd} D_{i}$ is not connected. Suppose K and L are distinct boundary curves of D_{i}, and let U and V be the components of $\left(\operatorname{Bd} H_{i-1}\right)-D_{i}$ bounded by K and L, respectively. Then \bar{U} is a disc, and U and V lie on $\mathrm{Bd} H_{i}$. Let α^{\prime} be a polyhedral spanning arc of H_{i-1} from a point x^{\prime} of U to a point y^{\prime} of V, and let β^{\prime} be a polyhedral spanning arc of S^{3} - Int H_{i} from x^{\prime} to y^{\prime}. Then $\alpha^{\prime} \cup \beta^{\prime}$ and K are disjoint polyhedral simple closed curves in S^{3}, and, by considering \bar{U}, can be seen to be linked. Since $K \subset h_{i}$ and $\left.\alpha^{\prime} \cup \beta^{\prime}\right) \cap$ $h_{i}=\phi$, this is a contradiction. Hence D_{i} is a disc.

4. Nonshellable cell partitionings of $\boldsymbol{S}^{\mathbf{3}}$

In this section, we shall describe two examples whose constructions use the ideas of the preceding part of this paper. The first is a nonshellable cell partitioning of S^{3}. The second is a nest of cell partitionings of S^{3}, each partitioning of the nest being nonshellable.

To construct the first example, let k be a trefoil knot in S^{3}. It is known that k has bridge number 2 [8]. Let T be a polyhedral tubular neighborhood of $k ; T$ is a solid torus. Divide T into three polyhedral chambers T_{1}, T_{2}, and T_{3} by using polyhedral meridional disc of T, each intersecting k in exactly one point. See Figure 2. It is easy to construct a polyhedral cell partitioning H of S^{3} which includes T_{1}, T_{2}, and T_{3} among the 3-cells of H. Clearly, k is

Fig. 2
compatible with H, and $\pi(k, h)=3$. By Theorem $1, H$ is nonshellable. For additional examples of nonshellable cell partitionings of S^{3}, see [2].

For the second example, we shall need some definitions. If A and B are two coverings of a set X, then B refines A if and only if each set of B lies in some set of A. A nest of polyhedral cell partitionings of S^{3} is a sequence $\left\{H_{1}, H_{2}, H_{3}, \cdots\right\}$ of polyhedral cell partitionings of S^{3} such that (1) for each positive integer n, H_{n+1} refines H_{n}, (2) if m and n are positive integers and $m>n$, then for each cell h of H_{n}, the set of all 3-cells of H_{m} lying in h is a cell partitioning of h, (3) as $n \rightarrow \infty$, (mesh H_{n}) $\rightarrow 0$, and (4) certain natural general position conditions are satisfied (see [1]). The conditions of (4) can be obtained by the standard type of small adjustment, so we shall not consider them here.

The second example is a polyhedral nest $\left\{H_{1}, H_{2}, H_{3}, \cdots\right\}$ of cell partitionings of S^{3} such that for each positive integer n, H_{n} is nonshellable.

Let H_{1} be the cell partitioning of the example above. Let k_{1} denote the trefoil knot used in that construction. The knot k_{1} lies in a tubular neighborhood T of k_{1}, and T is cut into three 3-cells T_{1}, T_{2}, and T_{3}. Let $W_{1}=T$. Note that br $k_{1}=2$ and $\left|\pi\left(k_{1}, H_{1}\right)\right|=3$. As noted above, H_{1} is nonshellable. We may make the construction of H_{1} so that if L is the arc length of the knot k_{1}, then (mesh H_{1}) $<\frac{1}{2} L$.

If $i=1,2$, or 3 , replace $k_{1} \cap T_{i}$ by a polygonal spanning arc knotted in a trefoil, with the same endpoints as $k_{1} \cap T_{i}$. This yields a knot k_{2} in Int W_{1}. See Figure 3.

Now k_{2} is the composite of the trefoil k_{1} with three other trefoil knots, one in each of T_{1}, T_{2}, and T_{3}. With the aid of the following lemma from [8] we may show that br $k_{2}=2+3$.

Lemma 5. If s and t are two knots in S^{3} and $s \# t$ is a composite of s and t, then $\operatorname{br}(s \# t)=(\operatorname{br} s)+(\operatorname{br} t)-1$.

Let W_{2} be a very close tubular neighborhood of k_{2}. For each $i, i=1,2$, or 3 , divide $W_{2} \cap T_{i}$ into three 3-cells by meridional discs in W_{2}. If $i=1,2$, or 3, let the resulting 3-cells of W_{2} in T_{i} be denoted by $T_{i 1}, T_{i 2}$, and $T_{i 3}$.

We may make the construction of k_{2} and W_{2} such that if $i=1,2$, or 3 , then $\left(\operatorname{diam} T_{i j}\right)<\frac{1}{4} L$. It is easy to construct a polyhedral cell partitioning H_{2} of S^{3} such that (1) H_{2} refines H_{1} (2) if $h \in H_{1}$, the cells of H_{2} in h form a partitioning of h, and (3) (mesh H_{2}) $<\frac{1}{4} L$.

Continue this process. Suppose that n is a positive integer and H_{n} has been constructed. Then there exist a knot k_{n} and a tubular neighborhood W_{n} of k_{n}. W_{n} is divided into $3^{n} 3$-cells, each of which belongs to H_{n} and each of which has diameter less than $L / 2^{n}$. If T is one of these 3-cells, then $k_{n} \cap T$ is a straight spanning arc of T. Further,

$$
\text { br } k_{n}=2+3+3^{2}+\cdots+3^{n-1}
$$

Fig. 3

Since 2 br $k_{n}=3^{n}+1$ and $\left|\pi\left(k_{n}, H_{n}\right)\right|=3^{n}$, then, by Theorem $1, H_{n}$ is nonshellable.

For each such 3-cell T, replace $k_{n} \cap T$ by a polygonal spanning arc knotted in a trefoil, with the same endpoints as $k_{n} \cap T$, and such that it can be cut into three subarcs, each of diameter less than $L / 2^{n+1}$. This yields a knot k_{n+1} in Int W_{n}. Then k_{n} is the composite of k_{n} and 3^{n} trefoil knots. By Lemma 5,

$$
\text { br } k_{n+1}=\frac{3^{n}+1}{2}+3^{n}=\frac{3^{n+1}+1}{2}
$$

Let W_{n+1} be a close tubular neighborhood of k_{n+1}. Cut W_{n+1} into 3^{n+1} 3-cells by using discs on the 2-skeleton of H_{n} and additional meridional discs of W_{n+1}, so that each 3-cell T as above contains exactly three of the 3-cells from W_{n+1}. We may make this construction so that each of the resulting 3-cells from W_{n+1} has diameter less than $L / 2^{n+1}$.

There is a polyhedral cell partitioning H_{n+1} of S^{3} that includes the 3-cells from W_{n+1} constructed above and has mesh less than $L / 2^{n+1}$. Since $2 \mathrm{br} k_{n+1}=3^{n+1}+1$ and $\left|\pi\left(k_{n+1}, H_{n+1}\right)\right|=3^{n+1}$, it follows by Theorem 1 that H_{n+1} is nonshellable.

Thus by induction, there exist polyhedral cell partitionings $H_{1}, H_{2}, H_{3}, \cdots$ of S^{3} as described above. It is easily verified that $\left\{H_{1}, H_{2}, H_{3}, \cdots\right\}$ is a nest of polyhedral cell partitionings of S^{3}. By construction, for each positive integer n, H_{n} is nonshellable.

References

[1] S. Armentrout, Nests of cell partitionings of closed 3-manifolds, to appear.
[2] \qquad Links and nonshellable cell partitionings of S^{3}, to appear.
[3] R. H. Bing, "Some aspects of the topology of 3-manifolds related to the Poincaré conjecture" in Lectures on Modern Mathematics, T. L. Saaty, ed., Wiley, 1964, pp. 93-128.
[4] R. E. Goodrick, Non-simplicially collapsible triangulations of I^{n}, Proc. Camb. Phil. Soc. 64 (1968), 31-36.
[5] C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415-424.
[6] W. B. R. Lickorish, Unshellable triangulations of spheres, European J. Combin. 12 (1991), 527-530.
[7] W. B. R. Lickorish and J. M. Martin, Triangulations of the 3-ball with knotted spanning 1-simplexes and collapsible r th derived subdivisions, Trans. Amer. Math. Soc. 137 (1969) 451-458.
[8] H. Schubert, Uber eine numerische Knoteninvariante, Math. Zeitschr. 61 (1954), 245-288.

The Pennsylvania State University
University Park, Pennsylvania

[^0]: Received February 28, 1991.
 1991 Mathematics Subject Classification. Primary 57M50; Secondary 57M25.

