THE RIESZ TRANSFORMS OF THE GAUSSIAN

E. Kochneff

1. Introduction

It was shown recently ([1]) that the Hilbert transform of the Gaussian

$$
G(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in R
$$

is a well-known special function:

$$
\begin{equation*}
H G(x)=S(x)=\frac{1}{\pi} e^{-x^{2} / 2} \int_{0}^{x} e^{s^{2} / 2} d s \tag{1}
\end{equation*}
$$

For some results about the function $S(x)$ see, for example, [2].
The Riesz transform is the natural generalization of the Hilbert transform to R^{n}. We show that the Riesz transforms of the Gaussian

$$
G(x)=\frac{1}{(2 \pi)^{n / 2}} e^{-|x|^{2} / 2}, \quad x \in R^{n}
$$

are confluent hypergeometric functions having the integral representation:

$$
\begin{equation*}
R_{j} G(x)=\frac{2 x_{j} e^{-|x|^{2} / 2}}{|x|^{n}(2 \pi)^{(n+1) / 2}} \int_{0}^{|x|} e^{s^{2} / 2}\left(|x|^{2}-s^{2}\right)^{(n-1) / 2} d s, \quad j=1, \ldots, n \tag{2}
\end{equation*}
$$

For $n, j=1$, equation (2) coincides with equation (1). On the other hand, the method in [1] does not generalize into R^{n}, so our method is different.

2. The Riesz transforms of the Gaussian

For $f \in L^{1} \cap L^{2}\left(R^{n}\right)$, define the Fourier transform of f by

$$
\hat{f}(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{R^{n}} f(t) e^{-i x \cdot t} d t
$$

Received October 26, 1992
1991 Mathematics Subject Classification. Primary 44A15; Secondary 44A20.

By the Fourier inversion theorem,

$$
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{R^{n}} \hat{f}(t) e^{i x \cdot t} d t
$$

The Gaussian satisfies $\hat{G}(x)=G(x)$.
The Riesz transforms are defined by

$$
R_{j} f(x)=c_{n} p \cdot v \cdot \int_{R^{n}} \frac{x_{j}-y_{j}}{|x-y|^{n+1}} f(y) d y, \quad j=1,2, \ldots, n
$$

where $c_{n}=\Gamma((n+1) / 2) \pi^{-(n+1) / 2}$. Moreover,

$$
\left(R_{j} f\right)^{\wedge}(x)=\frac{-i x_{j}}{|x|} \hat{f}(x), \quad j=1, \ldots, n .
$$

Letting

$$
\begin{equation*}
F_{j}(x)=\left(R_{j} G\right)^{\wedge}(x)=\frac{-i x_{j}}{|x|} G(x), \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

we have by the Fourier inversion theorem $R_{j} G(-x)=\hat{F}_{j}(x)$. For $j=$ $1,2, \ldots, n, F_{j} \in L^{1} \cap L^{2}\left(R^{n}\right)$ is the product of a radial function and the first degree solid spherical harmonic x_{j}. Thus, $\hat{F}_{j}(x)=x_{j} F(|x|)$ where

$$
\begin{equation*}
F(r)=\frac{-1}{(2 \pi r)^{n / 2}} \int_{0}^{\infty} e^{-s^{2} / 2} J_{n / 2}(r s) s^{n / 2} d s \tag{4}
\end{equation*}
$$

and $J_{n / 2}$ is a Bessel function. See [4].
From the representation of the confluent hypergeometric function

$$
{ }_{1} F_{1}\left(\sigma ; \nu+1 ;-\lambda^{2} / 4 z^{2}\right)=\frac{2 \Gamma(\nu+1) z^{2 \sigma}}{\Gamma(\sigma)(\lambda / 2)^{\nu}} \int_{0}^{\infty} e^{-z^{2} s^{2}} J_{\nu}(\lambda s) s^{2 \sigma-\nu-1} d s
$$

$\operatorname{Re}(\sigma)>0, \operatorname{Re}\left(z^{2}\right)>0$ with $\lambda=r, z^{2}=1 / 2, \nu=n / 2$ and $\sigma=(n+1) / 2$, we have

$$
\frac{1}{r^{n / 2}} \int_{0}^{\infty} e^{-s^{2} / 2} J_{n / 2}(r s) s^{n / 2} d s=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n+2}{2}\right)} F_{1}\left(\frac{n+1}{2} ; \frac{n+2}{2} ;-\frac{r^{2}}{2}\right)
$$

See [3]. Therefore,

$$
\begin{equation*}
R_{j} G(x)=\frac{x_{j} \Gamma\left(\frac{n+1}{2}\right)}{\sqrt{2}(2 \pi)^{n / 2} \Gamma\left(\frac{n+2}{2}\right)}{ }_{1} F_{1}\left(\frac{n+1}{2} ; \frac{n+2}{2} ;-\frac{|x|^{2}}{2}\right) \tag{5}
\end{equation*}
$$

In particular, since (see [3])

$$
{ }_{1} F_{1}(a ; c ; z) \sim \frac{\Gamma(c)}{\Gamma(c-a)}(-z)^{-a}, \quad \operatorname{Re}(z) \rightarrow-\infty
$$

we have

$$
\begin{equation*}
R_{j} G(x) \sim \frac{x_{j} \Gamma\left(\frac{n+1}{2}\right)}{|x|^{n+1} \pi^{(n+1) / 2}}, \quad|x| \rightarrow \infty \tag{6}
\end{equation*}
$$

Finally, since

$$
\begin{aligned}
&{ }_{1} F_{1}(a, c ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} e^{z s} s^{a-1}(1-s)^{c-a-1} d s \\
& \operatorname{Re}(c)>\operatorname{Re}(a)>0
\end{aligned}
$$

(see [3]), we obtain

$$
\begin{aligned}
R_{j} G(x) & =\frac{x_{j}}{(2 \pi)^{(n+1) / 2}} \int_{0}^{1} e^{-|x|^{2} s / 2} s^{(n-1) / 2}(1-s)^{-1 / 2} d s \\
& =\frac{2 x_{j} e^{-|x|^{2} / 2}}{|x|^{n}(2 \pi)^{(n+1) / 2}} \int_{0}^{|x|} e^{s^{2} / 2}\left(|x|^{2}-s^{2}\right)^{(n-1) / 2} d s .
\end{aligned}
$$

References

1. A.P. Calderon and Y. Sagher, The Hilbert transform of the Gaussian. Almost everywhere convergence II, Proceedings of a Conference on Almost Everywhere Convergence in Probability and Ergodic Theory, Evanston, Illinois, Oct 16-20, 1989. p. 109--112.
2. N.N. Lebedev, Special functions and their applications, Prentice-Hall, N.J., 1965.
3. Y. Luke, The special functions and their approximations, Vol. I. Academic Press, San Diego, 1969.
4. E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971.

Eastern Washington University
Cheney, Washington

