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A GEOMETRIC HEAT FLOW FOR ONE-FORMS
ON THREE DIMENSIONAL MANIFOLDS

STEVEN J. ALTSCHULER

1. Introduction

In this paper, we introduce a geometrically motivated heat flow for
one-forms on 3-manifolds. Throughout, (M3, g) is a Riemannian, compact,
orientable 3-manifold and

’ls(M3 ) de{o ’l(M3)I Iol 2 1}.
In 3 we prove"

1.1. THEOREM. Let 01 [-ls(M3) ’l(M3) X R+. The weakly parabolic
system

0-[3 *(Or A df ) fdef
(.,0) a(.) (1.1)

has a unique, smooth solution for [0, o).

The evolution for the function f is also weakly parabolic and has the form

Af + 7xf (1.2)Ot

where A, is essentially the Laplacian on the null space of a and X (M3)
is a smooth, time independent vector field. Let d(p,q) be the distance
between p, q M3 restricted to the null space of a (see (2.1)). In 4 we
prove a version of the strong maximum principle:

1.2. THEOREM. Let f be a solution to (1.2) on M3 X [0, T]. If f(’, O) >_ 0
and if =tq M3 such that f(q, O) > O, then f(p, t) > 0 for all (0, T] and
for all p such that d(p, q) < .
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Let b ills(M3) with P null(S) c TM3. If (b A dck)(p) 0 p U c
M3, then b is said to be a foliation form in U. The Frobenius integrability
theorem asserts that the distribution cp is integrable in U. The antithesis of
foliation forms are contact forms. If (b A dck)(p) 4:0 at p M3, then the
hyperplane distribution may not be integrated near p to give submanifolds
of M3 and is said to be a contact form at p. See [Ar], [B] for a more
detailed treatment.
By studying the highest order term in (1.2), one may see that where a

defines a foliation, f(., t) diffuses along the leaves of A null(A). Where a
is contact, f(., t) propagates transversally to A by flowing out along circular,
integral curves of A. Note that f(., 0) is a measure of the non-integrability
of a.
For convenience, we make the following definition.

1.3. DEFINITION. The space c -ls(M3) of "conductive one-forms" is
the set of a 121(M 3) satisfying:

(i) (weakly contactl).(a Ada) > 0;
(ii) (heat conductor) ’p M3, qq M3 such that .(a A da)(q) > 0 and

d(p,q) < .
It is not difficult to construct an element of which is not strictly contact

(5).

1.4. THEOREM.
fold.

is a non-empty set for every compact, orientable 3-mani-

Then, for e R + we consider the small perturbation of a given by

+
r/(’,t) [a( ) +eft( it)l" (1.3)

A computation gives

dr/)(’, t)
a Ada + e(a A dfl + fl A da)(’,t) + e t) (1.4)

+ t)I

The middle term of (1.4) is precisely our function f. We do not attempt to
control the quantity ,(/3 A d/3) during the evolution. Though seemingly an

lit has been brought to our attention that such an a may be referred to as a "confoliation".
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anathema, we observe that this term has an extra e in front of it. Then, the
above theorems have the following immediate consequence.

1.5. COROLLARY (EXISTENCE OF CONTACT FORMS). Let a G and q be
as above. Then, to > O, :le e(to) > 0 making q(., o) strictly contact,
i.e., .(,q A dq)(’, o) > O.

In three dimensions, the topological obstructions to finding contact forms
vanish. The existence of a contact one-form was first demonstrated by Lutz
and Martinet using a surgery decomposition for three-manifolds [L], [M].
Subsequently, a much shorter proof was given by Thurston and Winkeln-
kemper using the open book decomposition of three-manifolds [TW] (see
also [Gn], [Gzl]).
A further application of the flow was kindly pointed out to us by V. L.

Ginzburg.

1.6. COROLLARY ([Gz2]). Consider the direct product Eg S 1, where Eg is
a surface of genus g > O, foliated by fibers of the projection p: Eg S - S1.
Then Vr there exists a contact structure Cr-close to this foliation.

Proof For 1 one may use 7 sin(z) dx + cos(z) dy + Kdz where
K R+ is a large constant. Martinet’s lemma (see [Gn]) allows us to
"flatten" the contact structure along a section S of p. Thus we obtain a
contact structure on the product H S of the handle H T2 \ D2 and S,
which degenerates near the boundary becoming a foliation. For g > 1, we
may insert H S into Eg S and use the contact structure on H S as
a heat source. Theorem 1.2 shows that E S becomes contact instanta-
neously. Q.E.D.

Finally, we mention that geometric heat flows associated to either strictly
foliated or strictly contact manifolds have been studied. See, for example, the
work of [NRT], [CL], [CH]. In contrast to these flows, our evolution equation
allows for arbitrary integrability conditions in the directions of diffusion. Our
flow is somewhat similar, in spirit, to the Yang-Mills heat flow for connec-
tions on circle bundles over surfaces where f is viewed as a measure of
curvature.

2. Notation

The set of smooth vector fields on M3 will be denoted by Y(M3) and the

set of smooth p-forms will be written as ),p(M3). As above, fls(M3)de=f
{a II(M3)I lal 2-- 1}.
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In local coordinates {xi}, we denote the metric by g gij d)(’i ( dXj and
the volume form by

dx k’z -[’ijk A dx A d,x

For a tensor T T., we denote its length by TI2 ZjkZqrgipip gjqgkr. When
convenient, we conserve notation by using the extended Einstein summation
convention. For example: T/jUj. TijUkgk.

For a l(M3) and c 4: 0, we define the "plane field metric" and the
"plane field Laplacian" to be

def
’)/ij gij OgiOj and madeJ’Yijij. (2.1)

We denote by d(p, q) the usual distance between two points. Given a
nonsingular a 1(M3), the distance d,(p, q) along null(a) is defined to be

d,(p, q)de=f inf length(3/)13/(s): [0, 1] M3, 3/(0) --p, 3/(1) q, a -b-j- 0

if no integral curve exists.

(2.2)

All space derivatives are with respect to the Levi-Cevita connection, hence
Vpgi 0 and Vz,lxi, 0. When appropriate, subscripts will be used to
denote differentiation. For example, a is used to denote differentiation in
the radial direction for the function a. The Lie derivative of a volume form/x
is given by vtX d ivlx + v dtx d ivtx where V Y(M3) and v is
the interior product.
The k-norm of a time dependent tensor T will be defined to be

z( t) Vk 2sup TI (’,t) (2.3)
pM

where the norm of the k th repeated derivative is given by

IVTI 2 V VT, V VT).
k times k times

3. The flow

The Cross Term Energy. Let g be a Riemannian metric with volume
form/z on M3. A relative energy of a one-form/3 1(M3)with respect to a
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fixed one-form a l(M3) may be given by

E(, t) ff2 where f (a A d/3 +/3 A da). (3.1)

Notice that f represents the cross-terms in (1.4) produced when computing
r/ A dr/ with r/ a +/3. This type of energy is analogous to the Dirichlet
energy functional.

3.1. PROPOSITION. The path of steepest descent for E(a,/3) is given by

0
0-7,8 , ( a A dr) 2f doe, t( o) ( ) c. (3.2)

Proof The first variation of the energy is:

’ (, t) 2ff( / ate’ + t’ / a)

2f(’/ d(fa) + fl’A fda).

We have made use of the identity d(a A ,8’) da A fl’ a A d,8’. Expand-
ing gives

,’(,/) 2f(t’/x df / , + 2fl’ A fda)

In dimension 3, for a p-form, 2.__ (_ 1)P(3-p) SO *
2.._ ..[.. 1. Using the

metric, if re121(M3) and 0-122(M3), then ,(rAr)= (r,,r)
( r, r ). Hence, the fastest descent for the energy is given by

0
O---fl (a A df) 2f da. Q.E.D. (3.3)

We will refer to the flow given in (3.2) as the cross term flow. Fixed points
of the cross term flow satisfy a A df 2fda. Wedging this with a tells us
that fa A da 0. Thus, if a is contact, f is identically zero.

Evolution Equations.

3.2. DEFINITION.
the contact flow"

The highest order term of (3.2) will be referred to as

03 def

O--T fl
, ( a A dr); f= , ( a A dfl + fl A doe). (3.4)
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This simpler flow induces a beautiful evolution for f which contains no
zero-order terms. For this reason, we will choose to carry our computations
on this simpler flow. Actually, all of the subsequent results which we will
prove about this flow essentially carry over to the gradient descent of the
energy functional.
One might ask what properties fixed points of the contact flow satisfy. At a

fixed point of this flow, a A df 0. Therefore df ha where h is some
differentiable function. Differentiating this gives dh a + hda 0. Wedg-
ing this with a gives ha A da 0. Thus, if a da > 0, then h 0 and the
flow must converge to a solution where f is constant.
The combination of wedge product and Hodge star in (3.4) is essentially

the three-dimensional cross-product. Hence, this flow preserves the inner
product

(/3(’,t),a(’)) 1 for all t >_ O. (3.5)

The evolution for /3 is quite degenerate. The evolution for f, however, is
almost strictly parabolic. It is therefore expedient to consider a system with/3
and f as independent variables. We may assume, without loss of generality,
that Ic12 1. This assumption merely simplifies the computations. We will
use now the notation given in 2.

3.3. PROPOSITION. Assume that a -ls(M3) and [a[ 2

flow (3.4) is equivalent to the system
1. The contact

-//3 ,(a-A df),

O-Tf Af div(a)(a, Vf) + (Vea, Vf),

(’,0) o(’) al(M3),

f(’, O) fo(’) C(M3)

In local coordinates, the system may be written as

-i (Oljkf )l’Zijk,

o-f A,f aV.aVf +

13(’,0) ]30(" ) 1(M3),

f(’,0) f0(’) C(M3)

Proofi In local coordinates, the contact flow may then be written as:

c9"- ( OQgkf ) l’Z iJk"
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Hence, for f ,(a / d]3 +/ /x da)we have

Of
Ot ( VqOlr)[d’pqr -[" OlpVqff- )[d’pqr

(yyv,.);,.- (G(YY)),r"

We may make use of the identity pikpqr giagkr gigkq to simpli the
above expression"

0 (rV,(Gf))(g,g. grg,) + (yfV,r)(g,gr gg,)

Recall that [a[ 2 1 implies aVa 0. Expanding the expression above, we
obtain

Ot

+ .yf..

af- ..vf- ...yf + .yf%.. O.Z.D.

Short Time Existence. Since the evolution of f is not a fully parabolic
equation, it is not entirely clear that the system has short time estence. We
will prove that the system does indeed have solutions for a small time inteal
by regularizing the system and proving estimates independent of the added
term.
We will now consider the following regularized system:

O
.( L)

O
L a.L iv()(., VL) + (v., VL) +

().
(., 0) 0() al()
L(, 0) f0(’) c(M)

where and f will be viewed as independent variables, e > O, and
[a[ 2= 1.
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3.4. THEOREM. Let (, f) be a solution to () with time interval [0, T).
There exist constants akl akl(a f0, gij) and bgt bkl(a fo, gij), independent
of e, such that

k 2LI <-Ilfoll+elea’t
k 2 bklt

for [0, T).

Proof For any e > 0, standard parabolic theory gives a solution for the
time interval [0, T). The estimates will follow from an induction argument on
the number k of spatial derivatives. The full theorem follows since one time
derivative may be bounded by two space derivative. Let Xk (-atV.a +
Otjj.al)g lk (M3).

k 0. Notice that the evolution equation for f depends only on gij and
a. Therefore, we will consider the evolution of f first. The equation

yiViVj.f + XiVif + eAf

gives

0 2 2

-d-if Af2 2yi(Vif)(Vj.f) + XiVif2 + e(Af2 2[Vf[ ). (3.6)

Thus, the weak maximum principle implies that f2(., t)< f2(., 0)< IIf0110
for all > 0.

k 1. We may also obtain the evolution equation

2Vpf(yiViV.Vpf + 71,YiViVj.f + SiViVpf + VpXiVif)

+ 27pfyiRz,iqVqf + 2eX7pf(AVpf- RpqVqf).

Gathering terms, we obtain

mlVfl2- 2yi(ViVpf)(Vj.V/,f) + 2VpyijViVj.fVpf

+ XiVilVfl 2 + 2V,,XiVifVpL + 2yiRpiqVqfVpf

+ e(AIVfl2- 21vZf[ 2- 2RpqVpfeVqfe). (3.7)
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If we are to get rid of all of the second derivative terms, we must better
understand the structure of 7y. Choose an orthonormal frame so that at the
point x M3, a (0, 0, 1). It is easy to see that 3/33(X) 0. Recall that we
are assuming I12 1. Thus oliVpoli(x) Vpa3(x) 0. So

VyijViVjfVpf(x ) 0 if/= j 3. (3.8)

Using 2ab < 6a2 4- i-lb2 with 6 > O, we see that this term may be domi-
nated by

2/i( 7iVpf )( VjVpf )

at the expense of a term (-llVfe 12.
We may now use the fact that ]vx] 2 and the curvature tensor Rijkl are

independent of time and are bounded to conclude that =iC > 0 where
C Cl(X Rijkl)such that

,9 2 e(alVLia--71vLI _< AIVLI +XiVilVfl + CIIVfI + + 2C, IVLI ).
(3.9)

Thus, if we consider the combination W IVLI 2 + Clf},

0
O--{ W < A,W + XiViW + CIW + eAW (3.10)

and the weak maximum principle implies

IVfl2(t) <_ w(t) <_ W(O)eClt. (3.11)

k > 1. The bounds for higher derivatives of f follow in a similar fashion.
That is, :l{Ci}/__-0 where C Ci(X, Rit) > 0, such that

0 k

o--71vLI 2 _< A,IVLI 2 + xvIvLI 2 + ] CilVifl 2

i=0

+ e(AIVLI + 2cIvLI2). (3.12)

Note that, as in (3.9), terms of the form

(Vpl VpkL)Vpl’ij(VijVp2 VpkL)
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have been dominated by cross terms coming from the Laplacian

By induction, the terms ,,kiolCilVifel2 are bounded and W may be chosen
as above to be a linear combination of the IVifl 2. Again, one obtains the
inequality

0--- W < A,W + XiViW + CW +eAW (3.13)

and the full result follows.
The evolution of /3 is zero order and essentially only depends on first

derivatives of f. Hence, the corresponding result for/3 is trivial since the
estimates for f have been established. Q.E.D.

We now wish to make the following comments.

3.5. Remarks. (i) The estimates of Theorem 3.4 depend strongly upon
the initial conditions since the equation is ostensibly diffusing in only 2 out of
the 3 directions.

(ii) Since transverse diffusion is no longer a local phenomenon in a foliated
region, point-wise techniques may not be appropriate to obtain stronger
estimates.

(iii) The divergence term in the evolution equation of f has the natural
interpretation of measuring the "mean curvature" of the distribution null(a).

The above estimates actually tell us that f and all its derivatives are still
bounded at the time T. Therefore, one may extend the flow past this time.

3.6. COROLLARY. The estimates above actually imply that T .
This does not mean, of course, that the flows converge at o. We now

may state the main result which allows us to construct solutions to () as a
limit of solutions to () as e 0.

3.7. THEOREM. System () has a unique solution ([3, f) on M3X [0, ).
Furthermore, if flo(’) a(.) and fo(.) ,(a /x dfl + fl /x da)(.,O), then

f(’,t) *(a /x dfl + /x da)(’,t).

Proof Uniform convergence of (/3, f) as e 0 follows directly from
Theorem 3.4 and the Arzela-Ascoli theorem. The uniqueness of solutions
follows easily from the weak maximum principle of parabolic equations. The
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fact that f
uniqueness.

is algebraically related to fl
Q.E.D.

when e 0 follows also from

4. Strong maximum principle

We wish to show f becomes positive instantly. Intuitively, the "heat"
generated by regions where f > 0 should travel infinitely fast over finite
distances of the foliation and cause the function f to become positive. Of
course, as in the case of the standard heat equation, we cannot expect the
temperature to rise at distances infinitely far away from a source.
We will prove a version of the strong maximum principle for weakly

parabolic equations. See Bony [Bn] for an excellent presentation in the case
of degenerate elliptic equations. We have modeled our proof on [PW,
chapter 3] and [GT].

4.1. DEFINITION. We will say that an operator of the form

02U 0U
+bi +cuZ(u) aiJoxiOxJ OX Ot

is uniformly weakly parabolic (U.W.P.) with respect to sc Y(R3) if the
matrix a ij >_ 0 satisfies

(i) a(sc, :) 0 and
(ii) A Isl 2 <_ a(X, X) <_ A IXI 2 for X _1_ sc and A, A R +.

4.2. HOPF LEMMA.
f > 0 satisfying

Let E c R3 X R+ and let L be U.W.P. (w.r.t. ) with

O2f Of OfL( f) aij + bi + cf - < 0 (4.1)OX OX OX

where the coefficients a ij bi, and c are bounded. Let p be a point on OE where f
is zero and assume that at p a tangent ball B to OE can be constructed such
that B E and f > 0 in B1. Suppose further that the inward normal O/Ou of
B at p is not parallel to any vector in span{O/Or, }. Then (O/Ou)f(p) > O.

Proof Assume for simplicity that the center of B is the origin in E.
Also, we may assume that f > 0 on OB except at p. Let R r be the radius
of B and define

v(x, y, z, t) e -IR2 e -K(xz+yz+zz+t2) for K > 0. (4.2)

Let B2 be a ball of radius less than R centered around p (see Figure 4.1).
We will denote the spatial position vector by F’= (x, y, z) and r will denote
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the ith component of . Then, for large enough K

L(v) -2Ke-K(x2+Y2+z2+t2)(2Kaijr-V aii + bir + t) cv < 0 (4.3)

in the compact region D B n B2 as long as is not collinear with : and
O/Ot and IV[2 > 0. The conclusion follows exactly as in [PW] by considering

w=f+ev for smalle. Q.E.D.

Note, we will identify with its dual 1-form in R3 so that, with a slight
abuse of notation, we may use the definition in (2.2) for de(p, q).

4.3. THEOREM (STRONG MAXIMUM PRINCIPLE). Let f be a solution on
R3 X [0, T] to the operator L(f) <_ 0 as given above. Iff >_ 0 at 0 and if
q M3 such that f(q, O) > O, then f(p, t) > 0 for all (0, T] and for all p
such d (p q) < o.

By continuity of the solution, El8 > 0 such that f(q, t) > 6 for Vt < 0. If
d(p, q) < 0% then let y(s) be a path from p to q which is an integral curve
of the plane field +/-. Choose a coordinate chart (x, y, z, t) in a neighbor-

HopfLemma

expanding ellipses

FIG. 4.1
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hood of y such that O/Oz , O/Ox _1_ sc, and (s, 0,0, 0) y(s). In this
coordinate chart, one may then apply directly the arguments given in [PW] to
finish the theorem.
An alternative method of proof (see Figure 4.1), suggested to us by

G. Huisken, is the following. Expand a ball BR around q until it touches a
zero of f at a radius of BRo. The Hopf Lemma implies that this point will be
somewhere on the y, z, equator. Now, deform the ball into a family of
ellipses Ea given by (ax)2 -b y2 -I-z 2 -I- 2= R0 for a > 1.

If E touches a zero before it reaches p, or if E actually reaches p, the
zero must be away from the equator. The Hopf Lemma then yields a
contradiction to the fact that the derivative of f at such a point must vanish.
Q.E.D.

5. Conductive one-forms

For Corollary 1.5, we wish to show that the set of "conductive" one
forms is non-empty. The procedure is to find a divergence free vector field V
on M3. Recurrence properties of the flow lines of V allow us to decompose
the manifold into solid tori. In order to construct a , we glue in standard
contact forms,2 called "propellers," along the cores of the tori. Between the
propellers, the forms will meld into foliation forms. We wish to express our
gratitude to W. Thurston for his suggestions in this section.

5.1. THEOREM.
fold.

is a non-empty set for every compact, orientable 3-mani-

Proof We first establish a result about nonvanishing, divergence free
vector fields. It was brought to our attention that the following lemma was
first demonstrated by Asimov [As] and Gromov [Gv] for manifolds of any
dimension with zero Euler characteristic. For the sake of completeness we
sketch an elementary proof.

5.2. LEMMA (DIVERGENCE FREE VECTOR FIELDS). On every compact,
orientable 3-manifold, V 3(M3) and volume form tx ’3(M3) such that
V:/: O and vtZ =0.

5.3. Remark (petitio principii). If we are willing to assume the existence
of a contact form r/, then the canonical vector T (M3) of ’r/is divergence
free for the volume form Ix r/ A d. Recall that T is defined by r/(T) 1
and ird1 O.

2It has been brought to our attention that this procedure may be referred to as "Lutz
twisting".
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SKETCH OF LEMMA. Recall v/Z d v/x. Let tz v rdr dO ds, v > O,
be a volume form on a torus Tg or cylinder Cg

TR {(r,O,s)lr < R; O,s [0,2rr)}
CR {(r,O,s)lr < R; 0 [0,2rr)s [0,11}

embedded in M3. Note that the vector field

0
Z (e(r,O)/v)-

is divergence free.

5.4. DEFINITION. (i) A whirlpool 3 (TR, Z} is a vector field

0
Z e(r,O,s)-

with e >_ 0, supp(e) c c Tg and z 0.
(ii) A rip current fit {CR, Z} is a vector field

0
Z =e(r,O,s)-

with e _> 0, supp(e) c c CR and z 0 for s [0.1, 0.9].

Now, let V (M3) be a gradient-like vector field [Mn] for a Morse
function h" M3 R. Let B/m c M3 be tiny coordinate balls around P/m M3
where P/m is the mth singularity 1 < m < n of index {0,.’., 3}. Note that
degree(V(p/m)) (-1)i. Let S/m OBm and B UB/m Since the Euler char-
acteristic x(M3) 0, E(/’/i(-1)i) 0.
On Ma\B, it is not hard to construct a volume form for which V is

divergence free. This is accomplished by dragging surface measures defined
on S by the flow generated by V until they are swallowed into the spheres
Sam A simple cut and paste argument may be employed if a singularity of
index 1 or 2 is encountered (see Figure 5.1). We may extend / to be a
volume form on all of M3.
The divergence theorem tells us that the total flux across the balls van-

ishes:

(M3\B)iVtZ--fM3\Bd’ivlZ "-fM3\BV-- O.

Since x(M3) 0, a system of rip currents , starting and ending in B and
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awayfrom the singularity the
form is pushed with problems

inflow

bump till old

and add push
form

FIG. 5.1

transverse to V, may be installed to redistribute flux so that

flux(V, S/m) fSimiv/x ( 1)i degree(V(p/m)).

Hence, in M3\ B, (V + Z) 4:0 and v+z 0. We rename the vector field
again by V.

Since x(M3) 0, we may completely pair singularities of opposite degrees.
Let {p, q} be one such pair with surrounding balls {Bp, Bq}. For 9] {CR, Z},
a fast moving rip current connecting the two balls, let Bp_q be a barbell
shaped, smooth approximation of the set Bp u CR/2 u Bq (see Figure 5.2).
Now V, restricted to Sp_q OBp_q, is a non-vanishing, degree 0 vector field.
The flux of V across Sp_q is zero and we may assume V is divergence free in
a collar neighborhood Np_q Bp_q of Sp_q.
Note that d. ivl. is a closed form on Bp_q. By Stokes’ theorem,

fB d vlx fsp vlx 0

and by de Rham’s theorem, d" ivlx dr where z 2(Bp_q) has support
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R

Bq Irip current distributing flux

ole
degree=-I ’ iindex 3

R

Bq
degree +1 ", :::::..:index 0 I B p

degree +
index 2 south pole

FIG. 5.2

in Bp_q \ Np_q. Since

l" -2(np_q) ----) .(np_q)

is nondegenerate, there is a unique vector field W with support in np_q \ Np_q
such that iwtx --. Then X V + W is divergence free in Bp_q, but may
vanish in Bp_q \ Np_q. Again, relabel V + W as V.
We may now put in a thin whirlpool 291 {T 1, Z 1} along which moves

fluid from one pole of Bp_q to the other through CR/_2 and then recirculates,
transversally to V, in M \ B (see Figure 5.3). Now T2 Bp_q \ (B,_q C T 1)
is again a solid torus and one may check that, by construction, V is transverse
to the longitudinal lines of OT2. We then finish the argument by putting in a
complementary whirlpool 292= {T2, Z2} which circulates fast enough that
V + Z + Z2 4= 0 in B,_q. Finally, one may find a metric, conformal to the
original metric, whose volume form agrees with the one constructed above.

Q.E.D.

Let V (M3), V 4= 0 be a volume preserving vector field, e

e(gij, IX7vI) > 0, to be chosen later, will be so small that for distances e, V
barely changes. Now, we choose a point P0 M3 and a neighborhood U of



114 STEVEN J. ALTSCHULER
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FIG. 5.3

P0 of diameter e/10. Since div V 0, the Poincar6 recurrence lemma [Ar]
implies that ::lq0 c U such that an integral curve 3’0 passing through q0
eventually returns to r0 U. Continue choosing points Pi and curves ]/i until
’q’p M3, :in such that d(p, Yn) < e. Since M3 is compact, we need only
finitely many integral curve segments to accomplish this. Now, keeping the
curves mutually disjoint, we close off the ends of the /i to give circles which
are "nearly" integral curves of V.

It is not hard to show that for e small enough, the Voronoi (or nearest
neighbor) cell decomposition (see Figure 5.4) given by the ’)t decomposes M3

into the union of solid tori {T/}. Let {T[}, T’ c T/, be smooth, solid tori with
cores Yi and let A T \ Ti’.
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match: dz, dO

foliation
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FIG. 5.4

Our model (see Figure 5.5) for a twisting contact form tr Iql(T) is a
propeller [TW]. This is a generalization of the standard contact form dz +
xdy -ydx whose null space makes a quarter turn at infinite distance from
the z-axis. The propeller is constructed on cylinders or solid tori with fixed
radius r0. In cylindrical coordinates (r, 0, z), tr will be written as:

tr a(r,O,z) dz + b(r,O,z) dO (5.1)

where b r 2 for r 0 near the origin.
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rl a dz + b dr Foliation
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b
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(a,b)

Surprisingly,

r A dr ( bra arb) r-1 vol

depends only on the derivatives in the r direction. This has the following
geometric interpretation [TW]. For a fixed height z0 and angle 00, r(r, 00, z0)
is a contact form for r [0, r0] if the position vector (a, b) R2\ {(0, 0)} is
not colinear with (ar, br) and (ar, br) 4 0 (see Figure 5.1). We will ask that
a(r, 00, z0) 1 and that the position vector (a(r, 0o, Zo), b(r, 0o, Zo)) moves
in a counter clockwise direction for r [0, r0]. One may then meld the
propeller into a foliation near r r0 by slowing down the parametrization
until the derivatives vanish. The winding number of this curve is related to
the notion of "overtwisted" contact structures [E].
We remark that twisting r in the dO direction gives a contact form while

twisting in the dr direction adds "mean curvature" to the distribution. For
example, the foliation form dz + r 2 dr has "bullet" shaped integral surfaces.
Now, along the boundary of the Voronoi cells 0T/, V +/- defines a plane field

which may be pushed off the two-skeleton in such a way as to give a smooth
foliation in Ai. This may be done in such a way that the defining one-form of
this foliation, in cylindrical coordinates around OT/’, has no dr component.
Now, glue standard propellers into the T/’ and have their dz and dO
components match with a at OT/’.
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It clear that all points of M3 are either at a propeller or are a finite
distance from one. We may assume that la] 2= i since, for a differentiable
function h, & =ha gives & Ad& =h2a Ada. Q.E.D.

6. Conclusion and acknowledgements

Existence of contact forms in higher dimensions, for the case of open
manifolds, is completely answered by Gromov (see [H]). However, for closed
manifolds of dimension greater than 3, this question is still unresolved. It is
our hope that methods similar to the ones discussed in here will prove useful.

Also, one could hope that the set of forms which one converges to have
some special properties with respect to the metric. In fact, one could attempt
to construct a global foliation by starting with an initial one form a contain-
ing a Reeb component. Reeb components seem to act as heat sinks since f
must travel an infinite distance along the null space of a to reach the
compact torus leaf (see Figure 6.1) and never become contact inside [Gr].
Note that this phenomenon indicates that our solutions are not analytic.

It is the author’s great pleasure to thank Richard Hamilton for his help
and suggestions. His encouragement and support helped bring this idea to
fruition. Special thanks to Matt Grayson for early computer simulations
which suggested that flows of this type would work and to V.L. Ginzburg for

M 3

transversal

Reeb Component

FIG. 6.1
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Corollary 1.6. We wish to thank G. Huisken, W. Thurston and L.F. Wu for
many fruitful discussions on this flow and to acknowledge discussions with
Y. Eliashberg, M. Freedman, J. Lee, and L. Wang on related topics.

This work was started while the author held an Alfred P. Sloan Doctoral
Dissertation Research Fellowship and was completed while the author was at
the Centre for Mathematics and its Applications at the Australian National
University. The author wishes to express his gratitude for the research
environment and colleagues which the C.M.A. has provided.
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