A GEOMETRIC HEAT FLOW FOR ONE-FORMS ON THREE DIMENSIONAL MANIFOLDS

Steven J. Altschuler

1. Introduction

In this paper, we introduce a geometrically motivated heat flow for one-forms on 3-manifolds. Throughout, (\mathbf{M}^{3}, g) is a Riemannian, compact, orientable 3-manifold and

$$
\Omega_{s}^{1}\left(\mathbf{M}^{3}\right) \stackrel{\text { def }}{=}\left\{\left.\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)| | \alpha\right|^{2}=1\right\}
$$

In §3 we prove:
1.1. Theorem. Let $\alpha \in \Omega_{s}^{1}\left(\mathbf{M}^{3}\right), \beta \in \Omega^{1}\left(\mathbf{M}^{3}\right) \times \mathbf{R}^{+}$. The weakly parabolic system

$$
\begin{align*}
\frac{\partial}{\partial t} \beta & =*(\alpha \wedge d f) ; \quad f \stackrel{\text { def }}{=} *(\alpha \wedge d \beta+\beta \wedge d \alpha) \\
\beta(\cdot, 0) & =\alpha(\cdot) \tag{1.1}
\end{align*}
$$

has a unique, smooth solution for $t \in[0, \infty)$.
The evolution for the function f is also weakly parabolic and has the form

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\Delta_{\alpha} f+\nabla_{X} f \tag{1.2}
\end{equation*}
$$

where Δ_{α} is essentially the Laplacian on the null space of α and $X \in \mathfrak{X}\left(\mathbf{M}^{3}\right)$ is a smooth, time independent vector field. Let $d_{\alpha}(p, q)$ be the distance between $p, q \in \mathbf{M}^{3}$ restricted to the null space of α (see (2.1)). In §4 we prove a version of the strong maximum principle:
1.2. Theorem. Let f be a solution to (1.2) on $\mathbf{M}^{3} \times[0, T]$. If $f(\cdot, 0) \geq 0$ and if $\exists q \in \mathbf{M}^{3}$ such that $f(q, 0)>0$, then $f(p, t)>0$ for all $t \in(0, T]$ and for all p such that $d_{\alpha}(p, q)<\infty$.

[^0]Let $\phi \in \Omega_{s}^{1}\left(\mathbf{M}^{3}\right)$ with $\Phi=\operatorname{null}(\phi) \subset \mathbf{T M}^{3}$. If $(\phi \wedge d \phi)(p)=0 \forall p \in U \subset$ \mathbf{M}^{3}, then ϕ is said to be a foliation form in U. The Frobenius integrability theorem asserts that the distribution Φ is integrable in U. The antithesis of foliation forms are contact forms. If $(\phi \wedge d \phi)(p) \neq 0$ at $p \in \mathbf{M}^{3}$, then the hyperplane distribution Φ may not be integrated near p to give submanifolds of \mathbf{M}^{3} and ϕ is said to be a contact form at p. See [Ar], [B] for a more detailed treatment.

By studying the highest order term in (1.2), one may see that where α defines a foliation, $f(\cdot, t)$ diffuses along the leaves of $A=\operatorname{null}(A)$. Where α is contact, $f(\cdot, t)$ propagates transversally to A by flowing out along circular, integral curves of A. Note that $f(\cdot, 0)$ is a measure of the non-integrability of α.

For convenience, we make the following definition.
1.3. Definition. The space $\mathfrak{C} \subset \Omega_{s}^{1}\left(\mathbf{M}^{3}\right)$ of "conductive one-forms" is the set of $\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)$ satisfying:
(i) (weakly contact $\left.{ }^{1}\right) *(\alpha \wedge d \alpha) \geq 0$;
(ii) (heat conductor) $\forall p \in \mathbf{M}^{3}, \exists q \in \mathbf{M}^{3}$ such that $*(\alpha \wedge d \alpha)(q)>0$ and $d_{\alpha}(p, q)<\infty$.

It is not difficult to construct an element of \mathfrak{C} which is not strictly contact (§5).
1.4. Theorem. © \mathfrak{C} is a non-empty set for every compact, orientable 3-manifold.

Then, for $\varepsilon \in R^{+}$we consider the small perturbation of α given by

$$
\begin{equation*}
\eta(\cdot, t)=\frac{\alpha(\cdot)+\varepsilon \beta(\cdot, t)}{|\alpha(\cdot)+\varepsilon \beta(\cdot, t)|} \tag{1.3}
\end{equation*}
$$

A computation gives

$$
\begin{align*}
& (\eta \wedge d \eta)(\cdot, t) \\
& \quad=\frac{\alpha \wedge d \alpha+\varepsilon(\alpha \wedge d \beta+\beta \wedge d \alpha)(\cdot, t)+\varepsilon^{2}(\beta \wedge d \beta)(\cdot, t)}{|\alpha(\cdot)+\varepsilon \beta(\cdot, t)|^{2}} \tag{1.4}
\end{align*}
$$

The middle term of (1.4) is precisely our function f. We do not attempt to control the quantity $*(\beta \wedge d \beta)$ during the evolution. Though seemingly an

[^1]anathema, we observe that this term has an extra ε in front of it. Then, the above theorems have the following immediate consequence.
1.5. Corollary (Existence of Contact Forms). Let $\alpha \in \mathfrak{c}$ and η be as above. Then, $\forall t_{0}>0, \exists \varepsilon=\varepsilon\left(t_{0}\right)>0$ making $\eta\left(\cdot, t_{0}\right)$ strictly contact, i.e., $*(\eta \wedge d \eta)\left(\cdot, t_{0}\right)>0$.

In three dimensions, the topological obstructions to finding contact forms vanish. The existence of a contact one-form was first demonstrated by Lutz and Martinet using a surgery decomposition for three-manifolds [L], [M]. Subsequently, a much shorter proof was given by Thurston and Winkelnkemper using the open book decomposition of three-manifolds [TW] (see also [Gn], [Gz1]).

A further application of the flow was kindly pointed out to us by V. L. Ginzburg.
1.6. Corollary ([Gz2]). Consider the direct product $\Sigma_{g} \times S^{1}$, where Σ_{g} is a surface of genus $g>0$, foliated by fibers of the projection $p: \Sigma_{g} \times S^{1} \rightarrow S^{1}$. Then $\forall r$ there exists a contact structure C^{r}-close to this foliation.

Proof. For Σ_{1} one may use $\eta=\sin (z) d x+\cos (z) d y+K d z$ where $K \in R^{+}$is a large constant. Martinet's lemma (see [Gn]) allows us to "flatten" the contact structure along a section S^{1} of p. Thus we obtain a contact structure on the product $H \times S^{1}$ of the handle $H=T^{2} \backslash D^{2}$ and S^{1}, which degenerates near the boundary becoming a foliation. For $g>1$, we may insert $H \times S^{1}$ into $\Sigma_{g} \times S^{1}$ and use the contact structure on $H \times S^{1}$ as a heat source. Theorem 1.2 shows that $\Sigma_{g} \times S^{1}$ becomes contact instantaneously. Q.E.D.

Finally, we mention that geometric heat flows associated to either strictly foliated or strictly contact manifolds have been studied. See, for example, the work of [NRT], [CL], [CH]. In contrast to these flows, our evolution equation allows for arbitrary integrability conditions in the directions of diffusion. Our flow is somewhat similar, in spirit, to the Yang-Mills heat flow for connections on circle bundles over surfaces where f is viewed as a measure of curvature.

2. Notation

The set of smooth vector fields on \mathbf{M}^{3} will be denoted by $\mathfrak{X}\left(\mathbf{M}^{3}\right)$ and the set of smooth p-forms will be written as $\Omega^{p}\left(\mathbf{M}^{3}\right)$. As above, $\Omega_{s}^{1}\left(\mathbf{M}^{3}\right) \stackrel{\text { def }}{=}$ $\left\{\left.\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)| | \alpha\right|^{2}=1\right\}$.

In local coordinates $\left\{x^{i}\right\}$, we denote the metric by $g=g_{i j} d x^{i} \otimes d x^{j}$ and the volume form by

$$
\mu=\frac{1}{6} \mu_{i j k} d x^{i} \wedge d x^{j} \wedge d x^{k}
$$

For a tensor $T=T_{j k}^{i}$, we denote its length by $|T|^{2}=T_{j k}^{i} T_{q r}^{p} g_{i p} g^{j q} g^{k r}$. When convenient, we conserve notation by using the extended Einstein summation convention. For example: $T_{i j} U_{j}=T_{i j} U_{k} g^{j k}$.

For $\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)$ and $\alpha \neq 0$, we define the "plane field metric" and the "plane field Laplacian" to be

$$
\begin{equation*}
\gamma_{i j} \stackrel{\text { def }}{=} g_{i j}-\alpha_{i} \alpha_{j} \quad \text { and } \quad \Delta_{\alpha} \stackrel{\text { def }}{=} \gamma_{i j} \nabla_{i} \nabla_{j} . \tag{2.1}
\end{equation*}
$$

We denote by $d(p, q)$ the usual distance between two points. Given a nonsingular $\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)$, the distance $d_{\alpha}(p, q)$ along $\operatorname{null}(\alpha)$ is defined to be
$d_{\alpha}(p, q) \stackrel{\operatorname{def}}{=}\left\{\begin{array}{l}\inf \left\{\operatorname{length}(\gamma) \mid \gamma(s):[0,1] \rightarrow \mathbf{M}^{3}, \gamma(0)=p, \gamma(1)=q, \alpha\left(\frac{\partial \gamma}{\partial s}\right)=0\right. \\ \infty \text { if no integral curve exists. }\end{array}\right.$

All space derivatives are with respect to the Levi-Cevita connection, hence $\nabla_{p} g_{i j}=0$ and $\nabla_{p} \mu_{i j k}=0$. When appropriate, subscripts will be used to denote differentiation. For example, a_{r} is used to denote differentiation in the radial direction for the function a. The Lie derivative of a volume form μ is given by $\mathfrak{R}_{V} \mu=d \cdot i_{V} \mu+i_{V} \cdot d \mu=d \cdot i_{V} \mu$ where $V \in \mathfrak{X}\left(\mathbf{M}^{3}\right)$ and i_{V} is the interior product.

The k-norm of a time dependent tensor T will be defined to be

$$
\begin{equation*}
\|T(\cdot, t)\|_{k} \stackrel{\text { def }}{=} \sup _{p \in \mathbf{M}^{3}}\left|\nabla^{k} T\right|^{2}(\cdot, t) \tag{2.3}
\end{equation*}
$$

where the norm of the k th repeated derivative is given by

$$
\left|\nabla^{k} T\right|^{2}=\langle\underbrace{\nabla \cdots \nabla}_{k \text { times }} T, \underbrace{\nabla \cdots \nabla T}_{k \text { times }} .
$$

3. The flow

The Cross Term Energy. Let g be a Riemannian metric with volume form μ on \mathbf{M}^{3}. A relative energy of a one-form $\beta \in \Omega^{1}\left(\mathbf{M}^{3}\right)$ with respect to a
fixed one-form $\alpha \in \Omega^{1}\left(\mathbf{M}^{3}\right)$ may be given by

$$
\begin{equation*}
E(\alpha, \beta)=\int f^{2} \mu \quad \text { where } f=*(\alpha \wedge d \beta+\beta \wedge d \alpha) \tag{3.1}
\end{equation*}
$$

Notice that f represents the cross-terms in (1.4) produced when computing $\eta \wedge d \eta$ with $\eta=\alpha+\beta$. This type of energy is analogous to the Dirichlet energy functional.
3.1. Proposition. The path of steepest descent for $E(\alpha, \beta)$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} \beta=*(\alpha \wedge d f)-2 f * d \alpha, \quad \beta(\cdot, 0)=\alpha(\cdot) \in C^{\infty} \tag{3.2}
\end{equation*}
$$

Proof. The first variation of the energy is:

$$
\begin{aligned}
E^{\prime}(\alpha, \beta) & =2 \int f\left(\alpha \wedge d \beta^{\prime}+\beta^{\prime} \wedge d \alpha\right) \\
& =2 \int\left(\beta^{\prime} \wedge d(f \alpha)+\beta^{\prime} \wedge f d \alpha\right)
\end{aligned}
$$

We have made use of the identity $d\left(\alpha \wedge \beta^{\prime}\right)=d \alpha \wedge \beta^{\prime}-\alpha \wedge d \beta^{\prime}$. Expanding gives

$$
E^{\prime}(\alpha, \beta)=2 \int\left(\beta^{\prime} \wedge d f \wedge \alpha+2 \beta^{\prime} \wedge f d \alpha\right)
$$

In dimension 3, for a p-form, $*^{2}=(-1)^{p(3-p)}$ so $*^{2}=+1$. Using the metric, if $\tau \in \Omega^{1}\left(\mathbf{M}^{3}\right)$ and $\sigma \in \Omega^{2}\left(\mathbf{M}^{3}\right)$, then $*(\sigma \wedge \tau)=\langle\sigma, * \tau\rangle=$ $\langle * \sigma, \tau\rangle$. Hence, the fastest descent for the energy is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} \beta=*(\alpha \wedge d f)-2 f * d \alpha . \quad \text { Q.E.D. } \tag{3.3}
\end{equation*}
$$

We will refer to the flow given in (3.2) as the cross term flow. Fixed points of the cross term flow satisfy $\alpha \wedge d f=2 f d \alpha$. Wedging this with α tells us that $f \alpha \wedge d \alpha=0$. Thus, if α is contact, f is identically zero.

Evolution Equations.

3.2. Definition. The highest order term of (3.2) will be referred to as the contact flow:

$$
\begin{equation*}
\frac{\partial}{\partial t} \beta=*(\alpha \wedge d f) ; \quad f \stackrel{\text { def }}{=} *(\alpha \wedge d \beta+\beta \wedge d \alpha) \tag{3.4}
\end{equation*}
$$

This simpler flow induces a beautiful evolution for f which contains no zero-order terms. For this reason, we will choose to carry our computations on this simpler flow. Actually, all of the subsequent results which we will prove about this flow essentially carry over to the gradient descent of the energy functional.

One might ask what properties fixed points of the contact flow satisfy. At a fixed point of this flow, $\alpha \wedge d f=0$. Therefore $d f=h \alpha$ where h is some differentiable function. Differentiating this gives $d h \wedge \alpha+h d \alpha=0$. Wedging this with α gives $h \alpha \wedge d \alpha=0$. Thus, if $\alpha \wedge d \alpha>0$, then $h=0$ and the flow must converge to a solution where f is constant.

The combination of wedge product and Hodge star in (3.4) is essentially the three-dimensional cross-product. Hence, this flow preserves the inner product

$$
\begin{equation*}
\langle\beta(\cdot, t), \alpha(\cdot)\rangle=1 \quad \text { for all } t \geq 0 \tag{3.5}
\end{equation*}
$$

The evolution for β is quite degenerate. The evolution for f, however, is almost strictly parabolic. It is therefore expedient to consider a system with β and f as independent variables. We may assume, without loss of generality, that $|\alpha|^{2}=1$. This assumption merely simplifies the computations. We will use now the notation given in §2.
3.3. Proposition. Assume that $\alpha \in \Omega_{s}^{1}\left(\mathbf{M}^{3}\right)$ and $|\alpha|^{2}=1$. The contact flow (3.4) is equivalent to the system
(\diamond)

$$
\begin{array}{ll}
\frac{\partial}{\partial t} \beta=*(\alpha \wedge d f), & \beta(\cdot, 0)=\beta_{0}(\cdot) \in \Omega^{1}\left(\mathbf{M}^{3}\right) \\
\frac{\partial}{\partial t} f=\Delta_{\alpha} f-\operatorname{div}(\alpha)\langle\alpha, \nabla f\rangle+\left\langle\nabla_{\xi} \alpha, \nabla f\right\rangle, & f(\cdot, 0)=f_{0}(\cdot) \in C^{\infty}\left(\mathbf{M}^{3}\right)
\end{array}
$$

In local coordinates, the system may be written as
(\diamond)

$$
\begin{array}{cl}
\frac{\partial}{\partial t} \beta_{i}=\left(\alpha_{j} \nabla_{k} f\right) \mu_{i j k}, & \beta(\cdot, 0)=\beta_{0}(\cdot) \in \Omega^{1}\left(\mathbf{M}^{3}\right), \\
\frac{\partial}{\partial t} f=\Delta_{\alpha} f-\alpha_{k} \nabla_{j} \alpha_{j} \nabla_{k} f+\alpha_{j} \nabla_{j} \alpha_{k} \nabla_{k} f, & f(\cdot, 0)=f_{0}(\cdot) \in C^{\infty}\left(\mathbf{M}^{3}\right)
\end{array}
$$

Proof. In local coordinates, the contact flow may then be written as:

$$
\frac{\partial \beta_{i}}{\partial t}=\left(\alpha_{j} \nabla_{k} f\right) \mu_{i j k}
$$

Hence, for $f=*(\alpha \wedge d \beta+\beta \wedge d \alpha)$ we have

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =\left(\frac{\partial \beta_{p}}{\partial t} \nabla_{q} \alpha_{r}\right) \mu_{p q r}+\left(\alpha_{p} \nabla_{q} \frac{\partial \beta_{r}}{\partial t}\right) \mu_{p q r} \\
& =\left(\left(\alpha_{j} \nabla_{k} f\right) \mu_{p j k} \nabla_{q} \alpha_{r}\right) \mu_{p q r}+\left(\alpha_{p} \nabla_{q}\left(\alpha_{j} \nabla_{k} f \mu_{r j k}\right)\right) \mu_{p q r} \\
& =\left(\alpha_{j} \nabla_{k} f \nabla_{q} \alpha_{r}\right) \mu_{p j k} \mu_{p q r}-\left(\alpha_{r} \nabla_{q}\left(\alpha_{j} \nabla_{k} f\right)\right) \mu_{p j k} \mu_{p q r}
\end{aligned}
$$

We may make use of the identity $\mu_{p j k} \mu_{p q r}=g_{j q} g_{k r}-g_{j r} g_{k q}$ to simplify the above expression:

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-\left(\alpha_{r} \nabla_{q}\left(\alpha_{j} \nabla_{k} f\right)\right)\left(g_{j q} g_{k r}-g_{j r} g_{k q}\right)+\left(\alpha_{j} \nabla_{k} f \nabla_{q} \alpha_{r}\right)\left(g_{j q} g_{k r}-g_{j r} g_{k q}\right) \\
& =-\alpha_{k} \nabla_{j}\left(\alpha_{j} \nabla_{k} f\right)+\alpha_{j} \nabla_{k}\left(\alpha_{j} \nabla_{k} f\right)+\alpha_{j} \nabla_{k} f \nabla_{j} \alpha_{k}-\alpha_{j} \nabla_{k} f \nabla_{k} \alpha_{j}
\end{aligned}
$$

Recall that $|\alpha|^{2}=1$ implies $\alpha_{j} \nabla_{k} \alpha_{j}=0$. Expanding the expression above, we obtain

$$
\begin{aligned}
\frac{\partial f}{\partial t}= & |\alpha|^{2} \nabla_{p} \nabla_{p} f-\alpha_{k} \alpha_{j} \nabla_{j} \nabla_{k} f+\alpha_{j} \nabla_{k} \alpha_{j} \nabla_{k} f-\alpha_{k} \nabla_{j} \alpha_{j} \nabla_{k} f \\
& +\alpha_{j} \nabla_{k} f \nabla_{j} \alpha_{k}-\alpha_{j} \nabla_{k} f \nabla_{k} \alpha_{j} \\
= & \Delta f-\alpha_{k} \alpha_{j} \nabla_{j} \nabla_{k} f-\alpha_{k} \nabla_{j} \alpha_{j} \nabla_{k} f+\alpha_{j} \nabla_{k} f \nabla_{j} \alpha_{k} \quad \text { Q.E.D. }
\end{aligned}
$$

Short Time Existence. Since the evolution of f is not a fully parabolic equation, it is not entirely clear that the system has short time existence. We will prove that the system does indeed have solutions for a small time interval by regularizing the system and proving estimates independent of the added term.

We will now consider the following regularized system:
$(\diamond)_{\varepsilon}$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \beta_{\varepsilon}=*\left(\alpha \wedge d f_{\varepsilon}\right) \\
& \frac{\partial}{\partial t} f_{\varepsilon}=\Delta_{\alpha} f_{\varepsilon}-\operatorname{div}(\alpha)\left\langle\alpha, \nabla f_{\varepsilon}\right\rangle+\left\langle\nabla_{\xi} \alpha, \nabla f_{\varepsilon}\right\rangle+\varepsilon \Delta f_{\varepsilon} \\
& \beta_{\varepsilon}(\cdot, 0)=\beta_{0}(\cdot) \in \Omega^{1}\left(\mathbf{M}^{3}\right) \\
& f_{\varepsilon}(\cdot, 0)=f_{0}(\cdot) \in C^{\infty}\left(\mathbf{M}^{3}\right)
\end{aligned}
$$

where β_{ε} and f_{ε} will be viewed as independent variables, $\varepsilon>0$, and $|\alpha|^{2}=1$.
3.4. Theorem. Let $\left(\beta_{\varepsilon}, f_{\varepsilon}\right)$ be a solution to $(\diamond)_{\varepsilon}$ with time interval $\left[0, T_{\varepsilon}\right)$. There exist constants $a_{k l}=a_{k l}\left(\alpha, f_{0}, g_{i j}\right)$ and $b_{k l}=b_{k l}\left(\alpha, f_{0}, g_{i j}\right)$, independent of ε, such that

$$
\begin{aligned}
& \left|\partial_{t}^{l} \nabla^{k} f_{\varepsilon}\right|^{2} \leq\left\|f_{0}\right\|_{k+2 l} e^{a_{k l} t} \\
& \left|\partial_{t}^{l} \nabla^{k} \beta_{\varepsilon}\right|^{2} \leq\|\alpha\|_{k+2 l} e^{b_{k l} t^{t}}
\end{aligned}
$$

for $t \in\left[0, T_{\varepsilon}\right)$.
Proof. For any $\varepsilon>0$, standard parabolic theory gives a solution for the time interval $\left[0, T_{\varepsilon}\right.$). The estimates will follow from an induction argument on the number k of spatial derivatives. The full theorem follows since one time derivative may be bounded by two space derivative. Let $X^{k}=\left(-\alpha_{l} \nabla_{j} \alpha_{j}+\right.$ $\left.\alpha_{j} \nabla_{j} \alpha_{l}\right) g^{l k} \in \mathscr{X}\left(\mathbf{M}^{3}\right)$.
$k=0$. Notice that the evolution equation for f_{ε} depends only on $g_{i j}$ and α. Therefore, we will consider the evolution of f_{ε} first. The equation

$$
\frac{\partial f_{\varepsilon}}{\partial t}=\gamma_{i j} \nabla_{i} \nabla_{j} f_{\varepsilon}+X_{i} \nabla_{i} f_{\varepsilon}+\varepsilon \Delta f_{\varepsilon}
$$

gives

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{\varepsilon}^{2}=\Delta_{\alpha} f_{\varepsilon}^{2}-2 \gamma_{i j}\left(\nabla_{i} f_{\varepsilon}\right)\left(\nabla_{j} f_{\varepsilon}\right)+X_{i} \nabla_{i} f_{\varepsilon}^{2}+\varepsilon\left(\Delta f_{\varepsilon}^{2}-2\left|\nabla f_{\varepsilon}\right|^{2}\right) \tag{3.6}
\end{equation*}
$$

Thus, the weak maximum principle implies that $f_{\varepsilon}^{2}(\cdot, t) \leq f_{\varepsilon}^{2}(\cdot, 0) \leq\left\|f_{0}\right\|_{0}$ for all $t \geq 0$.
$k=1$. We may also obtain the evolution equation

$$
\begin{aligned}
\frac{\partial}{\partial t}\left|\nabla f_{\varepsilon}\right|^{2}= & 2 \nabla_{p} f_{\varepsilon}\left(\gamma_{i j} \nabla_{i} \nabla_{j} \nabla_{p} f_{\varepsilon}+\nabla_{p} \gamma_{i j} \nabla_{i} \nabla_{j} f_{\varepsilon}+X_{i} \nabla_{i} \nabla_{p} f_{\varepsilon}+\nabla_{p} X_{i} \nabla_{i} f_{\varepsilon}\right) \\
& +2 \nabla_{p} f_{\varepsilon} \gamma_{i j} R_{p i j q} \nabla_{q} f_{\varepsilon}+2 \varepsilon \nabla_{p} f_{\varepsilon}\left(\Delta \nabla_{p} f_{\varepsilon}-R_{p q} \nabla_{q} f_{\varepsilon}\right)
\end{aligned}
$$

Gathering terms, we obtain

$$
\begin{align*}
\frac{\partial}{\partial t}\left|\nabla f_{\varepsilon}\right|^{2}= & \Delta_{\alpha}\left|\nabla f_{\varepsilon}\right|^{2}-2 \gamma_{i j}\left(\nabla_{i} \nabla_{p} f_{\varepsilon}\right)\left(\nabla_{j} \nabla_{p} f_{\varepsilon}\right)+2 \nabla_{p} \gamma_{i j} \nabla_{i} \nabla_{j} f_{\varepsilon} \nabla_{p} f_{\varepsilon} \\
& +X_{i} \nabla_{i}\left|\nabla f_{\varepsilon}\right|^{2}+2 \nabla_{p} X_{i} \nabla_{i} f_{\varepsilon} \nabla_{p} f_{\varepsilon}+2 \gamma_{i j} R_{p i j q} \nabla_{q} f_{\varepsilon} \nabla_{p} f_{\varepsilon} \\
& +\varepsilon\left(\Delta\left|\nabla f_{\varepsilon}\right|^{2}-2\left|\nabla^{2} f_{\varepsilon}\right|^{2}-2 R_{p q} \nabla_{p} f_{\varepsilon} \nabla_{q} f_{\varepsilon}\right) . \tag{3.7}
\end{align*}
$$

If we are to get rid of all of the second derivative terms, we must better understand the structure of $\nabla \gamma$. Choose an orthonormal frame so that at the point $x \in \mathbf{M}^{3}, \alpha=(0,0,1)$. It is easy to see that $\gamma_{33}(x)=0$. Recall that we are assuming $|\alpha|^{2}=1$. Thus $\alpha_{i} \nabla_{p} \alpha_{i}(x)=\nabla_{p} \alpha_{3}(x)=0$. So

$$
\begin{equation*}
\nabla_{p} \gamma_{i j} \nabla_{i} \nabla_{j} f_{\varepsilon} \nabla_{p} f_{\varepsilon}(x)=0 \quad \text { if } i=j=3 \tag{3.8}
\end{equation*}
$$

Using $2 a b \leq \delta a^{2}+\delta^{-1} b^{2}$ with $\delta>0$, we see that this term may be dominated by

$$
-2 \gamma_{i j}\left(\nabla_{i} \nabla_{p} f_{\varepsilon}\right)\left(\nabla_{j} \nabla_{p} f_{\varepsilon}\right)
$$

at the expense of a term $\delta^{-1}\left|\nabla f_{\varepsilon}\right|^{2}$.
We may now use the fact that $|\nabla X|^{2}$ and the curvature tensor $R_{i j k l}$ are independent of time and are bounded to conclude that $\exists C_{1}>0$ where $C_{1}=C_{1}\left(X, R_{i j k l}\right)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\nabla f_{\varepsilon}\right|^{2} \leq \Delta_{\alpha}\left|\nabla f_{\varepsilon}\right|^{2}+X_{i} \nabla_{i}\left|\nabla f_{\varepsilon}\right|^{2}+C_{1}\left|\nabla f_{\varepsilon}\right|^{2}+\varepsilon\left(\Delta\left|\nabla f_{\varepsilon}\right|^{2}+2 C_{1}\left|\nabla f_{\varepsilon}\right|^{2}\right) \tag{3.9}
\end{equation*}
$$

Thus, if we consider the combination $W=\left|\nabla f_{\varepsilon}\right|^{2}+C_{1} f_{\varepsilon}^{2}$,

$$
\begin{equation*}
\frac{\partial}{\partial t} W \leq \Delta_{\alpha} W+X_{i} \nabla_{i} W+C_{1} W+\varepsilon \Delta W \tag{3.10}
\end{equation*}
$$

and the weak maximum principle implies

$$
\begin{equation*}
|\nabla f|^{2}(t) \leq W(t) \leq W(0) e^{C_{1} t} \tag{3.11}
\end{equation*}
$$

$k>1$. The bounds for higher derivatives of f_{ε} follow in a similar fashion. That is, $\exists\left\{C_{i}\right\}_{i=0}^{k-1}$ where $C_{i}=C_{i}\left(X, R_{i j k l}\right)>0$, such that

$$
\begin{gather*}
\frac{\partial}{\partial t}\left|\nabla^{k} f_{\varepsilon}\right|^{2} \leq \Delta_{\alpha}\left|\nabla^{k} f_{\varepsilon}\right|^{2}+X_{i} \nabla_{i}\left|\nabla^{k} f_{\varepsilon}\right|^{2}+\sum_{i=0}^{k} C_{i}\left|\nabla^{i} f_{\varepsilon}\right|^{2} \\
+\varepsilon\left(\Delta\left|\nabla^{k} f_{\varepsilon}\right|^{2}+2 C_{k}\left|\nabla^{k} f_{\varepsilon}\right|^{2}\right) \tag{3.12}
\end{gather*}
$$

Note that, as in (3.9), terms of the form

$$
\left(\nabla_{p_{1}} \cdots \nabla_{p_{k}} f_{\varepsilon}\right) \nabla_{p_{1}} \gamma_{i j}\left(\nabla_{i} \nabla_{j} \nabla_{p_{2}} \cdots \nabla_{p_{k}} f_{\varepsilon}\right)
$$

have been dominated by cross terms coming from the Laplacian

$$
\gamma_{i j}\left(\nabla_{i} \nabla_{p_{1}} \cdots \nabla_{p_{k}}\right)\left(\nabla_{j} \nabla_{p_{1}} \cdots \nabla_{p_{k}}\right)
$$

By induction, the terms $\sum_{i=0}^{k-1} C_{i}\left|\nabla^{i} f_{\varepsilon}\right|^{2}$ are bounded and W may be chosen as above to be a linear combination of the $\left|\nabla^{i} f_{\varepsilon}\right|^{2}$. Again, one obtains the inequality

$$
\begin{equation*}
\frac{\partial}{\partial t} W \leq \Delta_{\alpha} W+X_{i} \nabla_{i} W+C W+\varepsilon \Delta W \tag{3.13}
\end{equation*}
$$

and the full result follows.
The evolution of β is zero order and essentially only depends on first derivatives of f_{ε}. Hence, the corresponding result for β_{ε} is trivial since the estimates for f_{ε} have been established. Q.E.D.

We now wish to make the following comments.
3.5. Remarks. (i) The estimates of Theorem 3.4 depend strongly upon the initial conditions since the equation is ostensibly diffusing in only 2 out of the 3 directions.
(ii) Since transverse diffusion is no longer a local phenomenon in a foliated region, point-wise techniques may not be appropriate to obtain stronger estimates.
(iii) The divergence term in the evolution equation of f has the natural interpretation of measuring the "mean curvature" of the distribution null (α).

The above estimates actually tell us that f and all its derivatives are still bounded at the time T_{ε}. Therefore, one may extend the flow past this time.
3.6. Corollary. The estimates above actually imply that $T_{\varepsilon}=\infty$.

This does not mean, of course, that the flows converge at $t=\infty$. We now may state the main result which allows us to construct solutions to (\diamond) as a limit of solutions to $(\diamond)_{\varepsilon}$ as $\varepsilon \rightarrow 0$.
3.7. Theorem. System (\diamond) has a unique solution (β, f) on $\mathbf{M}^{3} \times[0, \infty)$. Furthermore, if $\beta_{0}(\cdot)=\alpha(\cdot)$ and $f_{0}(\cdot)=*(\alpha \wedge d \beta+\beta \wedge d \alpha)(\cdot, 0)$, then

$$
f(\cdot, t)=*(\alpha \wedge d \beta+\beta \wedge d \alpha)(\cdot, t)
$$

Proof. Uniform convergence of $\left(\beta_{\varepsilon}, f_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$ follows directly from Theorem 3.4 and the Arzela-Ascoli theorem. The uniqueness of solutions follows easily from the weak maximum principle of parabolic equations. The
fact that f_{ε} is algebraically related to β_{ε} when $\varepsilon \rightarrow 0$ follows also from uniqueness. Q.E.D.

4. Strong maximum principle

We wish to show f becomes positive instantly. Intuitively, the "heat" generated by regions where $f>0$ should travel infinitely fast over finite distances of the foliation and cause the function f to become positive. Of course, as in the case of the standard heat equation, we cannot expect the temperature to rise at distances infinitely far away from a source.

We will prove a version of the strong maximum principle for weakly parabolic equations. See Bony [Bn] for an excellent presentation in the case of degenerate elliptic equations. We have modeled our proof on [PW, chapter 3] and [GT].
4.1. Definition. We will say that an operator of the form

$$
L(u)=a_{i j} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+b_{i} \frac{\partial u}{\partial x^{i}}+c u-\frac{\partial u}{\partial t}
$$

is uniformly weakly parabolic (U.W.P.) with respect to $\xi \in \mathfrak{X}\left(\mathbf{R}^{3}\right)$ if the matrix $a_{i j} \geq 0$ satisfies
(i) $a(\xi, \xi)=0$ and
(ii) $\lambda|X|^{2} \leq a(X, X) \leq \Lambda|X|^{2}$ for $X \perp \xi$ and $\lambda, \Lambda \in R^{+}$.
4.2. Hopf Lemma. Let $E \subset \mathbf{R}^{3} \times \mathbf{R}^{+}$and let L be U.W.P. (w.r.t. ξ) with $f \geq 0$ satisfying

$$
\begin{equation*}
L(f)=a_{i j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+b_{i} \frac{\partial f}{\partial x^{i}}+c f-\frac{\partial f}{\partial t} \leq 0 \tag{4.1}
\end{equation*}
$$

where the coefficients $a_{i j}, b_{i}$, and c are bounded. Let p be a point on ∂E where f is zero and assume that at p a tangent ball B_{1} to ∂E can be constructed such that $B_{1} \subset E$ and $f>0$ in B_{1}. Suppose further that the inward normal $\partial / \partial \nu$ of B_{1} at p is not parallel to any vector in span $\{\partial / \partial t, \xi\}$. Then $(\partial / \partial \nu) f(p)>0$.

Proof. Assume for simplicity that the center of B_{1} is the origin in E. Also, we may assume that $f>0$ on ∂B_{1} except at p. Let $R=r$ be the radius of B_{1} and define

$$
\begin{equation*}
v(x, y, z, t)=e^{-K R^{2}}-e^{-K\left(x^{2}+y^{2}+z^{2}+t^{2}\right)} \quad \text { for } K>0 \tag{4.2}
\end{equation*}
$$

Let B_{2} be a ball of radius less than R centered around p (see Figure 4.1). We will denote the spatial position vector by $\vec{r}=(x, y, z)$ and \vec{r}_{i} will denote
the i th component of \vec{r}. Then, for large enough K

$$
\begin{equation*}
L(v)=-2 K e^{-K\left(x^{2}+y^{2}+z^{2}+t^{2}\right)}\left(2 K a_{i j} \vec{r}_{i} \vec{r}_{j}-a_{i i}+b_{i} \vec{r}_{i}+t\right)-c v<0 \tag{4.3}
\end{equation*}
$$

in the compact region $D=B_{1} \cap B_{2}$ as long as \vec{r} is not collinear with ξ and $\partial / \partial t$ and $|\vec{r}|^{2}>0$. The conclusion follows exactly as in [PW] by considering $w=f+\varepsilon v$ for small ε. Q.E.D.

Note, we will identify ξ with its dual 1-form in \mathbf{R}^{3} so that, with a slight abuse of notation, we may use the definition in (2.2) for $d_{\xi}(p, q)$.
4.3. Theorem (Strong Maximum Principle). Let f be a solution on $\mathbf{R}^{3} \times[0, T]$ to the operator $L(f) \leq 0$ as given above. If $f \geq 0$ at $t=0$ and if $\exists q \in \mathbf{M}^{3}$ such that $f(q, 0)>0$, then $f(p, t)>0$ for all $t \in(0, T]$ and for all p $\operatorname{such} d_{\xi}(p, q)<\infty$.

By continuity of the solution, $\exists \delta>0$ such that $f(q, t)>\delta$ for $\forall t \leq t_{0}$. If $d_{\xi}(p, q)<\infty$, then let $\gamma(s)$ be a path from p to q which is an integral curve of the plane field ξ^{\perp}. Choose a coordinate chart (x, y, z, t) in a neighbor-

Fig. 4.1
hood of γ such that $\partial / \partial z=\xi, \partial / \partial x \perp \xi$, and $\left(s, 0,0, t_{0}\right)=\gamma(s)$. In this coordinate chart, one may then apply directly the arguments given in [PW] to finish the theorem.

An alternative method of proof (see Figure 4.1), suggested to us by G. Huisken, is the following. Expand a ball B_{R} around q until it touches a zero of f at a radius of $B_{R_{0}}$. The Hopf Lemma implies that this point will be somewhere on the y, z, t equator. Now, deform the ball into a family of ellipses E_{a} given by $(a x)^{2}+y^{2}+z^{2}+t^{2}=R_{0}$ for $a \geq 1$.

If E touches a zero before it reaches p, or if E actually reaches p, the zero must be away from the equator. The Hopf Lemma then yields a contradiction to the fact that the derivative of f at such a point must vanish. Q.E.D.

5. Conductive one-forms

For Corollary 1.5, we wish to show that the set $\mathfrak{5}$ of "conductive" one forms is non-empty. The procedure is to find a divergence free vector field V on \mathbf{M}^{3}. Recurrence properties of the flow lines of V allow us to decompose the manifold into solid tori. In order to construct $\alpha \in \mathfrak{C}$, we glue in standard contact forms, ${ }^{2}$ called "propellers," along the cores of the tori. Between the propellers, the forms will meld into foliation forms. We wish to express our gratitude to W . Thurston for his suggestions in this section.
5.1. Theorem. © is a non-empty set for every compact, orientable 3-manifold.

Proof. We first establish a result about nonvanishing, divergence free vector fields. It was brought to our attention that the following lemma was first demonstrated by Asimov [As] and Gromov [Gv] for manifolds of any dimension with zero Euler characteristic. For the sake of completeness we sketch an elementary proof.
5.2. Lemma (Divergence Free Vector Fields). On every compact, orientable 3-manifold, $\exists V \in \mathfrak{X}\left(\mathbf{M}^{3}\right)$ and volume form $\mu \in \Omega^{3}\left(\mathbf{M}^{3}\right)$ such that $V \neq 0$ and $\mathfrak{R}_{V} \mu=0$.
5.3. Remark (petitio principii). If we are willing to assume the existence of a contact form η, then the canonical vector $T \in \mathfrak{X}\left(\mathbf{M}^{3}\right)$ of η is divergence free for the volume form $\mu=\eta \wedge d \eta$. Recall that T is defined by $\eta(T)=1$ and $i_{T} d \eta=0$.

[^2]Sketch of Lemma. Recall $\mathfrak{R}_{V} \mu=d \cdot i_{v} \mu$. Let $\mu=v \cdot r d r d \theta d s, v>0$, be a volume form on a torus T_{R} or cylinder C_{R}

$$
\begin{aligned}
T_{R} & =\{(r, \theta, s) \mid r \leq R ; \theta, s \in[0,2 \pi)\} \\
C_{R} & =\{(r, \theta, s) \mid r \leq R ; \theta \in[0,2 \pi) s \in[0,1]\}
\end{aligned}
$$

embedded in \mathbf{M}^{3}. Note that the vector field

$$
Z=(e(r, \theta) / v) \frac{\partial}{\partial s}
$$

is divergence free.
5.4. Definition. (i) A whirlpool $\mathfrak{B}=\left\{T_{R}, Z\right\}$ is a vector field

$$
Z=e(r, \theta, s) \frac{\partial}{\partial s}
$$

with $e \geq 0, \operatorname{supp}(e) \subset \subset T_{R}$ and $\mathfrak{R}_{Z} \mu=0$.
(ii) A rip current $\mathfrak{R}=\left\{C_{R}, Z\right\}$ is a vector field

$$
Z=e(r, \theta, s) \frac{\partial}{\partial s}
$$

with $e \geq 0, \operatorname{supp}(e) \subset \subset C_{R}$ and $\mathfrak{R}_{Z} \mu=0$ for $s \in[0.1,0.9]$.
Now, let $V \in \mathfrak{X}\left(\mathbf{M}^{3}\right)$ be a gradient-like vector field [Mn] for a Morse function $h: \mathbf{M}^{3} \rightarrow \mathbf{R}$. Let $B_{m}^{i} \subset \mathbf{M}^{3}$ be tiny coordinate balls around $p_{m}^{i} \in \mathbf{M}^{3}$ where p_{m}^{i} is the m th singularity $1 \leq m \leq n_{i}$ of index $i \in\{0, \cdots, 3\}$. Note that $\operatorname{degree}\left(V\left(p_{m}^{i}\right)\right)=(-1)^{i}$. Let $S_{m}^{i}=\partial B_{m}^{i}$ and $B=\cup B_{m}^{i}$. Since the Euler characteristic $\chi\left(\mathbf{M}^{3}\right)=0, \Sigma\left(n_{i}(-1)^{i}\right)=0$.

On $\mathbf{M}^{3} \backslash B$, it is not hard to construct a volume form μ for which V is divergence free. This is accomplished by dragging surface measures defined on S_{m}^{0} by the flow generated by V until they are swallowed into the spheres S_{m}^{3}. A simple cut and paste argument may be employed if a singularity of index 1 or 2 is encountered (see Figure 5.1). We may extend μ to be a volume form on all of \mathbf{M}^{3}.

The divergence theorem tells us that the total flux across the balls vanishes:

$$
\int_{\partial\left(\mathbf{M}^{3} \backslash B\right)} i_{V} \mu=\int_{\mathbf{M}^{3} \backslash B} d \cdot i_{V} \mu=\int_{\mathbf{M}^{3} \backslash B} \mathfrak{Z}_{V} \mu=0 .
$$

Since $\chi\left(\mathbf{M}^{3}\right)=0$, a system of rip currents \mathfrak{R}, starting and ending in B and

Fig. 5.1
transverse to V, may be installed to redistribute flux so that

$$
\operatorname{flux}\left(V, S_{m}^{i}\right)=\int_{S_{m}^{i}} i_{V} \mu=(-1)^{i}=\operatorname{degree}\left(V\left(p_{m}^{i}\right)\right)
$$

Hence, in $\mathbf{M}^{3} \backslash B,(V+Z) \neq 0$ and $\mathfrak{R}_{V+Z}=0$. We rename the vector field again by V.

Since $\chi\left(\mathbf{M}^{3}\right)=0$, we may completely pair singularities of opposite degrees. Let $\{p, q\}$ be one such pair with surrounding balls $\left\{B_{p}, B_{q}\right\}$. For $\mathfrak{R}=\left\{C_{R}, Z\right\}$, a fast moving rip current connecting the two balls, let B_{p-q} be a barbell shaped, smooth approximation of the set $B_{p} \cup C_{R / 2} \cup B_{q}$ (see Figure 5.2). Now V, restricted to $S_{p-q}=\partial B_{p-q}$, is a non-vanishing, degree 0 vector field. The flux of V across S_{p-q} is zero and we may assume V is divergence free in a collar neighborhood $N_{p-q} \subset B_{p-q}$ of S_{p-q}.

Note that $d \cdot i_{V} \mu$ is a closed form on B_{p-q}. By Stokes' theorem,

$$
\int_{B_{p-q}} d \cdot i_{V} \mu=\int_{S_{p-q}} i_{V} \mu=0
$$

and by de Rham's theorem, $d \cdot i_{V} \mu=d \tau$ where $\tau \in \Omega^{2}\left(B_{p-q}\right)$ has support

Fig. 5.2
in $B_{p-q} \backslash N_{p-q}$. Since

$$
\mu: \Omega^{2}\left(B_{p-q}\right) \rightarrow \mathfrak{X}\left(B_{p-q}\right)
$$

is nondegenerate, there is a unique vector field W with support in $B_{p-q} \backslash N_{p-q}$ such that $i_{W} \mu=-\tau$. Then $X=V+W$ is divergence free in B_{p-q}, but may vanish in $B_{p-q} \backslash N_{p-q}$. Again, relabel $V+W$ as V.

We may now put in a thin whirlpool $\mathfrak{B}^{1}=\left\{T^{1}, Z^{1}\right\}$ along which moves fluid from one pole of B_{p-q} to the other through $C_{R / 2}$ and then recirculates, transversally to V, in $M \backslash B$ (see Figure 5.3). Now $T^{2}=B_{p-q} \backslash\left(B_{p-q} \cap T^{1}\right)$ is again a solid torus and one may check that, by construction, V is transverse to the longitudinal lines of ∂T^{2}. We then finish the argument by putting in a complementary whirlpool $\mathfrak{B}^{2}=\left\{T^{2}, Z^{2}\right\}$ which circulates fast enough that $V+Z^{1}+Z^{2} \neq 0$ in B_{p-q}. Finally, one may find a metric, conformal to the original metric, whose volume form agrees with the one constructed above.
Q.E.D.

Let $V \in \mathfrak{X}\left(\mathbf{M}^{3}\right), V \neq 0$ be a volume preserving vector field. $\varepsilon=$ $\varepsilon\left(g_{i j},|\nabla V|\right)>0$, to be chosen later, will be so small that for distances ε, V barely changes. Now, we choose a point $p_{0} \in \mathbf{M}^{3}$ and a neighborhood U of

Fig. 5.3
p_{0} of diameter $\varepsilon / 10$. Since $\operatorname{div} V=0$, the Poincaré recurrence lemma [Ar] implies that $\exists q_{0} \subset U$ such that an integral curve γ_{0} passing through q_{0} eventually returns to $r_{0} \in U$. Continue choosing points p_{i} and curves γ_{i} until $\forall p \in \mathbf{M}^{3}, \exists n$ such that $d\left(p, \gamma_{n}\right)<\varepsilon$. Since \mathbf{M}^{3} is compact, we need only finitely many integral curve segments to accomplish this. Now, keeping the curves mutually disjoint, we close off the ends of the γ_{i} to give circles which are "nearly" integral curves of V.

It is not hard to show that for ε small enough, the Voronoi (or nearest neighbor) cell decomposition (see Figure 5.4) given by the γ_{i} decomposes \mathbf{M}^{3} into the union of solid tori $\left\{T_{i}\right\}$. Let $\left\{T_{i}^{\prime}\right\}, T_{i}^{\prime} \subset T_{i}$, be smooth, solid tori with cores γ_{i} and let $A_{i}=T_{i} \backslash T_{i}^{\prime}$.

Fig. 5.4

Our model (see Figure 5.5) for a twisting contact form $\sigma \in \Omega^{1}(T)$ is a propeller [TW]. This is a generalization of the standard contact form $d z+$ $x d y-y d x$ whose null space makes a quarter turn at infinite distance from the z-axis. The propeller is constructed on cylinders or solid tori with fixed radius r_{0}. In cylindrical coordinates $(r, \theta, z), \sigma$ will be written as:

$$
\begin{equation*}
\sigma=a(r, \theta, z) d z+b(r, \theta, z) d \theta \tag{5.1}
\end{equation*}
$$

where $b \sim r^{2}$ for $r \sim 0$ near the origin.

Fig. 5.5

Surprisingly,

$$
\begin{equation*}
\sigma \wedge d \sigma=\left(b_{r} a-a_{r} b\right) \cdot r^{-1} \mathrm{vol} \tag{5.2}
\end{equation*}
$$

depends only on the derivatives in the r direction. This has the following geometric interpretation [TW]. For a fixed height z_{0} and angle $\theta_{0}, \sigma\left(r, \theta_{0}, z_{0}\right)$ is a contact form for $r \in\left[0, r_{0}\right]$ if the position vector $(a, b) \in R^{2} \backslash\{(0,0)\}$ is not colinear with $\left(a_{r}, b_{r}\right)$ and $\left(a_{r}, b_{r}\right) \neq 0$ (see Figure 5.1). We will ask that $a\left(r, \theta_{0}, z_{0}\right)=-1$ and that the position vector $\left(a\left(r, \theta_{0}, z_{0}\right), b\left(r, \theta_{0}, z_{0}\right)\right)$ moves in a counter clockwise direction for $r \in\left[0, r_{0}\right]$. One may then meld the propeller into a foliation near $r=r_{0}$ by slowing down the parametrization until the derivatives vanish. The winding number of this curve is related to the notion of "overtwisted" contact structures [E].

We remark that twisting σ in the $d \theta$ direction gives a contact form while twisting in the $d r$ direction adds "mean curvature" to the distribution. For example, the foliation form $d z+r^{2} d r$ has "bullet" shaped integral surfaces.

Now, along the boundary of the Voronoi cells $\partial T_{i}, V^{\perp}$ defines a plane field which may be pushed off the two-skeleton in such a way as to give a smooth foliation in A_{i}. This may be done in such a way that the defining one-form of this foliation, in cylindrical coordinates around ∂T_{i}^{\prime}, has no $d r$ component. Now, glue standard propellers into the T_{i}^{\prime} and have their $d z$ and $d \theta$ components match with α at ∂T_{i}^{\prime}.

It clear that all points of \mathbf{M}^{3} are either at a propeller or are a finite distance from one. We may assume that $|\alpha|^{2}=1$ since, for a differentiable function $h, \tilde{\alpha}=h \alpha$ gives $\tilde{\alpha} \wedge d \tilde{\alpha}=h^{2} \alpha \wedge d \alpha$. Q.E.D.

6. Conclusion and acknowledgements

Existence of contact forms in higher dimensions, for the case of open manifolds, is completely answered by Gromov (see [H]). However, for closed manifolds of dimension greater than 3, this question is still unresolved. It is our hope that methods similar to the ones discussed in here will prove useful.

Also, one could hope that the set of forms which one converges to have some special properties with respect to the metric. In fact, one could attempt to construct a global foliation by starting with an initial one form α containing a Reeb component. Reeb components seem to act as heat sinks since f must travel an infinite distance along the null space of α to reach the compact torus leaf (see Figure 6.1) and never become contact inside [Gr]. Note that this phenomenon indicates that our solutions are not analytic.

It is the author's great pleasure to thank Richard Hamilton for his help and suggestions. His encouragement and support helped bring this idea to fruition. Special thanks to Matt Grayson for early computer simulations which suggested that flows of this type would work and to V.L. Ginzburg for

Fig. 6.1

Corollary 1.6. We wish to thank G. Huisken, W. Thurston and L.F. Wu for many fruitful discussions on this flow and to acknowledge discussions with Y. Eliashberg, M. Freedman, J. Lee, and L. Wang on related topics.

This work was started while the author held an Alfred P. Sloan Doctoral Dissertation Research Fellowship and was completed while the author was at the Centre for Mathematics and its Applications at the Australian National University. The author wishes to express his gratitude for the research environment and colleagues which the C.M.A. has provided.

References

[Ar] V.I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, no. 60, Springer-Verlag, New York, 1978.
[As] D. Asimov, Homotopy to divergence-free vector fields, Topology 15 (1976), 349-352.
[B] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. no. 509, Springer-Verlag, New York, 1976.
[Bn] J-M. Bony, Principe du Maximum, Inégalité de Harnack et Unicité du Problème du Cauchy pour les Opérateurs Elliptiques Dégénérés, Ann. Inst. Fourier. Grenoble 19 (1969), 277-304.
[CH] S.S. Chern and R.S. Hamilton, On Riemannian metrics adapted to 3-dimensional contact manifolds, Lecture Notes in Math. 1111 (1984), 279-305.
[CL] J.H. Cheng and J.M. Lee, The Burns-Epstein invariant and deformation of CR structures, Duke Math. J. 60 (1990), 221-254.
[E] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), 623-637.
[Gn] J. Gonzalo, Branched covers and contact structures, Proc. Amer. Math. Soc. 101 (1987), 347-352.
[Gr] M. Grayson, personal communication and computer simulations, 1990.
[GT] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations, Grundlehren Math. Wiss. vol. 224 Springer-Verlag, New York, 1983.
[Gv] M. Gromov, Partial differential relations, Springer-Verlag, New York, 1986.
[Gz1] V.L. Ginzburg, On closed characteristics of 2-forms, Doctoral Thesis, Berkeley 1990.
[Gz2] _, personal communication, 1992.
[H] A. Haefliger, Lecture notes on the theorem of Gromov, Lecture Notes in Mathematics no. 209, Springer-Verlag, New York, 1971.
[L] R. Lutz, Sur quelques proprietes des forms differentielles en dimension trois, These, Strasbourg, 1971.
[M] J. Martinet, Forms de contact sur les varietes de dimension 3, Lecture Notes in Mathematics, Proc. Liverpool Singularities Symp. 209 (1971), 142-163.
[Mn] J. Milnor, Lectures on the h-cobordism theorem, Princeton Mathematical Notes, 1965.
[NRT] S. Nishikawa, M. Ramachandran and P.H. Tondeur, Heat conduction for Riemannian foliations, Bull. Amer. Math. Soc. 21 (1989), 265-267.
[PW] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1967.
[TW] W.P. Thurston and H.E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347.

Centre for Mathematics and its Applications, Australian National University Canberra, Australia
Institute for Advanced Study
Princeton, New Jersey

[^0]: Received October 2, 1992
 1991 Mathematics Subject Classification. Primary 53C15; Secondary 53C12, 58G11, 57R30, 53C1S.

[^1]: ${ }^{1}$ It has been brought to our attention that such an α may be referred to as a "confoliation".

[^2]: ${ }^{2}$ It has been brought to our attention that this procedure may be referred to as "Lutz twisting".

