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THE GENERALIZED MCSHANE INTEGRAL

D.H. FREMLIN

Introduction

An interesting definition of the Lebesgue integral on [0, 1], as a limit of
suitable Riemann sums, was developed by E.J. McShane in a series of
papers; see [16] for a full account of this, including extensions to such spaces
as Rn and RN, as indicated in 1G below. It is characteristic of such definitions
of the integral that they are readily adaptable to provide a theory of
integration for vector-valued functions, and this was done for the McShane
integral on [0, 1] by R.A. Gordon [13]. McShane was primarily concerned to
provide an intuitively and technically straightforward construction of the
Lebesgue interval, and made no attempt to push his method to the most
general case. My aim in this paper is to show that, with a little effort, a
successful generalization can be found, which can deal with functions from
any of a wide variety of topological measure spaces to a Banach space, is
related in interesting ways to other known integrals, and has a satisfying
number of properties of its own.
The context in which I work is that of ’r-finite outer regular quasi-Radon

measure spaces’ (see 1Ba-c below); this covers most of the important
topological measure spaces which have been described. The paper has four
sections.

1. I begin by defining the integral (1A-1B) and showing that it does
indeed agree with Gordon’s version when the domain space is [0, 1], and with
McShane’s versions when the range space is R and the domain space is one
of those he considers (1C-1G). I continue by showing that the McShane
integral lies between the Bochner and Pettis integrals (1K, 1Q), and in
particular always agrees with the ordinary integral when the range space is R
(10).

2. In the second section I give some results of a technical type, showing
that ’limsup’ in the definition of the integral may be replaced by a simple
limit (2D) and that the two natural definitions of f agree for measurable
sets E(2E-2F).. I then describe the relationship between the McShane and Talagrand
integrals; this follows the lines established in [10] for the case in which the
domain space is [0, 1]. If the unit ball of X* is w*-separable, then an
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X-valued McShane integrable function is properly measurable, so is Tala-
grand integrable if its norm has finite upper integral (3D). (However, a
Talagrand integrable function need not be McShane integrable, as shown
already by an example in [10].)

4. In the last section I give two theorems concerning the integral of a weak
limit of a sequence of McShane integrable functions (4A, 4E), with corollar-
ies. I conclude with three open questions (4G).
Some of the results here have been circulated in University of Essex

Mathematics Department Research Report 92-4.

1. The McShane integral

I propose to use this name for a method of integrating vector-valued
functions which is adapted from the integration process described in [16]. As
I wish to make rather a large step (from real-valued functions defined on Rn

or Rn to vector-valued functions defined on tr-finite outer regular quasi-
Radon measure spaces), I give a full list of the definitions and theorems in
the elementary theory as I develop it, even though most of the proofs will not
involve any new ideas.

1A DEFINITIONS. Let (S, , E,/z) be a non-empty tr-finite quasi-Radon
measure space which is outer regular, that is, such that /zE inf{/G"
E

___
G } for every E E. A generalized McShane partition of S is a

sequence ((Ei, ti))in such that (Ei)in is a disjoint familyof measurable
sets of finite measure,/(S \ U i nEi) 0 and t S for each i. A gauge on
S is a function A: S - such that s A(s) for every s S. A generalized
McShane partition ((Ei, t))in is subordinate to a gauge A if E c_ A(ti) for
every N.
Now let X be a Banach space. I will say that a function b: S X is

McShane integrable, with McShane integral w, if for every e > 0 there is a
gauge A: S such that

n <n

for every generalized McShane partition ((Ei, ti)) n of S subordinate to A.

1B Remarks. (a) For the elementary theory of quasi-Radon measure
spaces see [4], [6] and [7]; the same idea, expressed in a more general context,
underlies the ’Radon spaces of type (ota) of B. Rodriguez-Salinas [18], [17].
The principal examples of tr-finite outer regular quasi-Radon measure spaces
are

((i) all totally finite Radon and quasi-Radon measure spaces;
(ii) all Lindel6f Radon measure spaces (e.g., Lebesgue measure on Rn);
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(iii) all subspaces of such spaces (1L below);
(iv) finite products of such spaces ([6], 4C, or [7], A7Ea);
(v) all products of probability spaces of these types ([6], 4F, or [7],

A7Eb).
(b) The essential facts I shall need here are that a quasi-Radon measure/z

is inner regular for the closed sets (that is, /E sup{/xF" F
___
E, F is

closed} for every measurable E) and z-smooth (that is,/z( LI W) supa /G
for every non-empty upwards-directed family ’ of open sets).

(c) In addition, we shall need to know that an outer regular quasi-Radon
measure is locally finite (that is, every point belongs to an open set of finite
measure). If it is r-finite, it has the following property, stronger than what is
declared by the definition of ’outer regular’ given in 1A: if E is any
measurable set, and e > 0, there is an open set G

_
E such that/(G \ E) <

e. Another elementary fact about outer regular measures is that if/x is an
outer regular measure on S, and f: S [0, [ is an integrable function, then
for any e > 0 there is a lower semi-continuous function h: S [0, ] such
that f(t) < h(t) for every S and fh < e + ff.

(d) I had better remark straight away that my version of the McShane
integral is well-defined, in the sense that any given function has at most one
value of the integral. Of course this is just because there are enough
generalized McShane partitions: if S = and A: S is any gauge, there
is a generalized McShane partition subordinate to it. To see this, observe that

{G: G < S, G
_

is an open cover of S, so that (because/z is z-smooth)we have

H sup(/z(H n U 0): ’0 ’ is finite}

for every open H
___

S; now, because / is r-finite, there is a sequence
(Gi)ie N in such that /(S\ LI iNGi) 0. If we choose for each a
t S such that G

_
A(ti) and write E G \ I,.J j<iaj for N, we shall

have a generalized McShane partition ((Ei, ti))i N subordinate to A.
Now because the family of gauges on S is directed downwards (if A0 and

A are gauges, so is s A0(s) n Al(S)) this shows that for any particular b
there will be at most one w satisfying the definition above.

(e) It will be convenient later to say that if (S, , E,/) is a r-finite outer
regular quasi-Radon measure space, then a partial McShane partition of S is
a countable family ((Ei, ti)) i where (Ei)i z is a disjoint family of sets of
finite measure, and ti S for each i; and that it is subordinate to a gauge A
if E c_ A(ti) for every i.

(f) There is a technical fault in the definition of the McShane integral
above. It ignores the case S . On the other hand, I certainly wish to count
the empty set as a quasi-Radon measure space, and to accept the empty
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function as McShane integrable, with integral zero. Of course this is a
triviality, and in the proofs below I shall systematically pass the case S
by, though I do wish it to be included in the statements of the results.

(g) It is in fact possible to define a McShane integral on outer regular
quasi-Radon measure spaces which are not (r-finite. As however such a space
must consist of a (r-finite part together with a family of closed sets, of strictly
positive measure, on each of which the topology is indiscrete (see [12], 13),
the McShane integral outside the (r-finite part corresponds just to uncondi-
tional summability of appropriate families in X; and the extra technical
complications (we have to use uncountable families ((Ei, ti))i I instead of
sequences) seem more trouble than they’re worth. It might however be right
to consider such an elaboration if one wished to extend these ideas to the
context of linear topological spaces.

(h) A slightly simpler alternative definition of the McShane integral, which
some readers may prefer, may be found in 2D below.

1C We are now ready for some elementary facts about the McShane
integral. I give no proofs as the arguments are of a type familiar from [16].

PROPOSITION. Let (S,E, E,/) be a (r-finite outer regular quasi-Radon
space and X a Banach space.

(a) If dp, : S ---> X are McShane integrable functions with McShane integrals
w, z respectively then dp + d is McShane integrable, with integral w + z.

(b) Let Y be another Banach space and T: X--) Y a bounded linear
operator. If dp: S -)X is McShane integrable, with McShane integral w, then
Tdp: S -) Y is McShane integrable, with McShane integral Tw.

(c) If C c_ X is a closed cone and (: S--) C is a McShane integrable
function, then its McShane integral belongs to C.

Remark. Of course the principal use of (b) is with Y R, and the
principal use of (c) is with X R, C [0, [.

1D Readers familiar with [16] will already have observed that my defini-
tion of the McShane integral is significantly different from (and more
complex than) the most natural generalisations of the work in [16]; a much
simpler expression is used in [10] and [8]. The extra elaboration of my
definition here is necessary to deal with the wider context in which I operate.
However I must of course justify my terminology by showing that in the
limited contexts considered in [16] and [13] my formulations agree with the
simpler ones. The first point is that for compact spaces S there is no need to
take infinite McShane partitions. Let us say that a finite strict generalized
McShane partition of S is a family ((Ei, ti))i< n such that E0,..., E is a
finite disjoint cover of S by measurable sets of finite measure (I find it
convenient still to allow E for some i) and t S for each < n. Now
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we have the following:

1E PROPOSITION. Let (S, E, E,/z) be a compact Radon measure space and
X a Banach space; let dp: S - X be a function. Then dp is McShane integrable,
with McShane integral w, if and only if for every e > 0 there is a gauge A:
S - E such that whenever ((gi, ti)) <n is a finite strict generalized McShane
partition of S subordinate to A then Ilw Y"i antzEich(ti)ll <- e.

Remark. I follow [4] in taking a Radon measure space to be a Hausdorff
locally finite quasi-Radon measure space in which the measure is inner
regular for the compact sets.

Proof. Evidently any McShane integrable function (h: S X must satisfy
the condition offered, as this merely restricts the class of partitions consid-
ered (of course a finite McShane partition can be extended to an infinite one
by adding empty Ei.) For the reverse implication, suppose that b, w satisfy
the condition. Let e > 0 and let A. S be a gauge such that

w E ixEidp(ti)
i<n

for every finite strict generalized McShane partition ((Ei, ti)> <n subordinate
to A. Now let <(Ei, ti)>ie N be an infinite generalized McShane partition
subordinate to A. Because S is compact, we can find a finite cover of it by
sets of the form A(t); accordingly, adding finitely many negligible sets E to
the beginning of the sequence if necessary, we may take it that S U i NEi
For each e N choose an open set a such that

Ei
_

Gi A(ti ) and I(G Ei)ll(ti)II 2-ie"

There is a k N such that S LI i<kGi Now if n >_ k, we have S
U i<_nGi, so there is a disjoint family (E)i<n of measurable sets such that
g E

_
G for every _< n and S [.Ji<_nE. But in this case ((E, ti))in

is a finite strict generalized McShane partition of S subordinate to A, so we
must have

W E lE’dP(ti)
i<n

On the other hand, we also have

i<_n i<n

<- E (E; gi)l[(ti)ll <_ E 2-i <-- 2e.
i<n i<_n
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So

i<_n

for all n >_ k; as e is arbitrary, 4 is McShane integrable with integral w.

1F The definitions of [16] do not as a rule refer to partitions into
arbitrary measurable sets; instead they use various types of ’interval’ for the
Ei--e.g., half-open intervals in R. I can give a general criterion for the
applicability of such methods, as follows.

PROPOSITION. Let (S, , E,/x) be a compact Radon measure space and X
a Banach space. Let ’_ , be a subalgebra of , such that whenever
F
_
G
_

S, F is closed and G is open there is an A s" such that F
_
A
_
G;

let

_
s" be such that every member of is a finite disjoint union of

members of . Then a function dp: S X is McShane integrable, with
McShane integral w, iff for every e > 0 there is a gauge A: S --) . such that

i<_n

for every finite strict generalized McShane partition ((Ci, ti)) <n of S, subordi-
nate to A, such that C for every < n.

Proof. (a) Of course a McShane integrable function (as I have defined it)
must satisfy the condition.

(b) For the converse, I use the following facts.
(i) If EE and E_G and r/ >0 there is an Ae’such that

A
_
G and /x(EAA) < r/. For take any closed set F

___
E, open set H

___
E

such that/z(H\ F) < r/, and take A such that F
_
A G N H.

(ii) Suppose that A: S --, is a gauge and that ((Ei, ti))i<_n is a strict
finite generalized McShane partition of S subordinate to A. Then for
any e > 0 there are Ao,...,A such that ((Ai, ti))i<_n is a strict
finite generalized McShane partition of S, subordinate to A, and
,inlx(AiAEi)llch(ti)ll < e. To see this, take r/ > 0 so small that 2(n +
1)2r/maxi<_nllqb(ti)ll <e. Now for each < n take A’ d such that A’ c_
A(ti) and I(EiAA’i) < rl. Set

A=S\ UA’i  .
i<n

Because S is compact and Hausdorff and S U i<__nA(ti), the set

{G" G , :li < n, A(ti)
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is an open cover of S and has a finite subcover, and there are closed sets
Fo,...,Fn such that F/_ A(ti) for each and LI i<_nFi S; consequently
there are A’,..., A’, e’ such that A’ c_ A(ti) for each and IJinA’ S
(take A’ such that F/c__ A’

_
A(ti) for each i). Now set

A, (A’, (A \ 0

for each _< n. Evidently A0,..., An

and A c._ A(ti) for each i. Also
are disjoint, belong to ’ and cover S,

I-* ( E AA ) <- I( E AA’) + tzA + _,
i(E C A )

j<i

< ’q + (n + 1)’O + i’o < (2n + 2)’0

for each i. So, g(EaA,)l[4(ti)l[ < 2(n + 1) 2

i<n
max i)
t<n

as required.
(c) Now suppose that b satisfies the condition. Let e > 0 and let A:

S --, 5E be a gauge such that [Iw Ei ntzCiqb(ti)[[ <- e whenever ((Ci, ti))in
is a strict finite generalized McShane cover of S by members of ’ subordi-
nate to A. Let ((Ei, ti))i n be any strict finite generalized McShane cover of
S subordinate to A. By (b), there are disjoint A0,..., An such that
I,J i<_nZ S, A c__ A(ti) for each and -inl(EiAAi)lldp(ti)l[ < e. By the
hypothesis on , we can express each Z as a disjoint union Cio tA tA

Ci, k(i) of members of (. Now write ij--ti, for j < k(i); we see that
((Cij, tij))i < n, <_ k(i) is a strict finite generalized McShane cover of S subordi-
nate to A, so

i<_n i<__n i<_n

 z,I  (t,)II

<_2e.

E ICijc(ti)
<n, j <k(i)

+E

As e is arbitrary, the criterion of 1E shows that b is McShane integrable.

1G Examples. Examples relevant to the work of [16] are
(i) S [a, b], = {[c, d[: a < c < d < b} u {{b},}
(ii) S 1-1in[ai, bi] "’= {I-Ii<nCi: C i ti <_ n} where / consists of

intervals, as in (i).
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For infinite products, if each S is a compact Radon probability space with
an associated family ., then the corresponding cylinder sets in S IIiSg, of
the form I-IiCi where each C belongs to /d {Si} and {i: C 4 Si} is finite,
do the same for S.
Of course [16] uses gauge functions of the form 6: S ]0, oo[ rather than of

the form A: S - ; but the translation from one to the other, in a metric
space (S, p), is trivial, if we match 6(s) to the open set A(s) {t: p(t, s) <
(s)}.

In [13], [10] and [8], ’partitions’ into non-overlapping closed intervals are
used systematically; but of course these could be read throughout as half-open
intervals without it making any difference.

1H The next step is to show that my version of the McShane integral
agrees with the ordinary integral in the case X R. For the case S [0, 1],
this is already covered by 1F and the results of [13]; for other S we still have
some work to do. In fact I show a more general result in one direction: for
any Banach space X, if b: S X is Bochner integrable, with Bochner
integral w, then it is McShane integrable, with McShane integral w. (For the
definition and elementary properties of the Bochner integral, see [2].)
We need two fairly straightforward lemmas.

1I LEMMA. Let (S, , ,/z) be a g-finite outer regular quasi-Radon mea-
sure space and X a Banach space. Let E c_ X be a set of finite measure and
x X; let oh" S - X be the function which takes the value x on E, 0 elsewhere.
Then ch is McShane integrable, with integral w IzE.x.

Proof Let e>0. Let F be a closed set and G an open set such that
F
_
E

___
G and tz(G\F) < e. Set A(s) G if s F, G\F if s G\F,

S\F if s S \ G. Then an easy calculation shows that limn_,oollw-
Z,intzEich(ti)ll < ellxll whenever ((Ei, ti))i N is a generalized McShane
partition of S subordinate to A.

1J LEMMA. Let (S, , E,/z) be a g-finite outer regular quasi-Radon mea-
sure space andXa Banach space. Let d" S Xbe a function and e > O. Then
there is a gauge A: S --, such that

E Eill(ti)ll < fll(t)ll(dt) +
iN

whenever ((Ei, ti))i N is a generalized McShane partition of S subordinate
to

Proof If-fllck(t)llg(dt) oo, this is trivial. Otherwise, let g" S R be a
function such that g(t) > (t)II for every and fg 7 II II. Now let h be a
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lower semi-continuous function such that g(t) < h(t) for every t and fh <
fg + e (see 1Bc). Set A(t) {s" h(s) > ll4,(t)ll} for each t; this works.

1K THEOREM. Let (S, 5E, X,/x) be a it-finite outer regular quasi-Radon
measure space and X a Banach space. Let dp S X be a Bochner integrable
function with Bochner integral w. Then dp is McShane integrable with McShane
integral w.

Proof. Let e > 0. Then there is a ’simple’ function " S X, of the form

(S) X when s F/, 0 if s U F,.,
i<n

where Fo,..., F are disjoint sets of finite measure and each x X, such
that

fll (s)  (s)llm(ds)

Set w0 ,i<nffl,Fi.xi’ then Itw w011 e. Now Lemma 11 tells us that $ is
McShane integrable, with McShane integral w0; let A0 be a gauge such that

lim sup IlWo- ElEi$(ti)
n <n

E

whenever ((Ei, ti))i N is a generalized McShane partition of S subordinate
to A0. Also Lemma 1J tells us that there is a gauge A on S such that

E tEil[ (ti) (ti)II -<
iN

whenever ((Ei, ti)>iN is a generalized McShane partition of S subordinate
to A 1.

If we now take A(s) Ao(S) N Al(s) for each s S, we see that A is a
gauge on S and that

for every generalized McShane partition ((Ei, ti)>i N of S subordinate to A.
As e is arbitrary, 4 is McShane integrable with McShane integral w.

1L My next objective is to prove a result in the opposite direction: if b:
S R is McShane integrable, it is integrable in the usual sense. This will
lead directly to a more general result: if b: S X is McShane integrable, it
is Pettis integrable. My route to this takes us past some further useful facts.
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Recall that if (S, , E, ) is any quasi-Radon space, and A
_
S is any set

(not necessarily measurable), then (A, A, EA,/XA) is a quasi-Radon measure
space, where A is the induced topology on A, EA {E f3 A" E E}, and

gA(B) =min{gE’B=AtE} forBY_,A.

(See [6], 5B and [7], A7D.) It is easy to see that if (S, , E,/) is g-finite or
outer regular, so is (A, A, EA, A)" Accordingly, if X is a Banach space and
b" S X is a function, we may discuss the McShane integrability of b A:
A X. Now we have the following results. The first is an elementary lemma.

1M LEMMA. Let (S, , E,/z) be a non-empty tr-finite outer regular quasi-
Radon measure space and X a Banach space. Suppose that b S - X has the
property that for every e > 0 there is a gauge A" S - such that

i<n i<n

whenever ((Ei, ti)) N and ((Fi, Ui)) N are generalized McShane partitions

ofX subordinate to A. Then dp is McShane integrable.

Proofi Take e, A as above. The point is that if ((Fi, ui))i N is a
generalized McShane partition of S subordinate to A, and r: N --* N is any
bijection, than ((Fi), UTr(i)))i N is also a generalized McShane partition of S
subordinate to A, so that

i<n i<n

It follows at once that there is some k N such that

sup
n>k i<_n

where w ,i<_klFi(ti). Now

lim sup
i<n

whenever ((Ei, ti))i N is a generalized McShane partition of S subordinate
to A.

If for each e > 0 we use the method above to find a gauge A and a vector
w, we see that IIw w -< 3(e + r/) for all e, r/ > 0; so that w lim owe
is defined in X (this is one of the few points where we need X to be
complete), and of course w will be the McShane integral of b.
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1N THEOREM. Let (S, , ,/z) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. If S - X is McShane integrable, then
h A is McShane integrable for every A

_
S.

Proof. Let w be the McShane integral of b, and e > 0. Let A: S
be a gauge such that limsuPn__,oollw- EinlxEidP(ti)ll < e whenever
((Ei, ti)) N is a generalized McShane partition of S subordinate to A.
Let AA(S) A r A(s) for s A; then AA is a gauge on A. Let ((Ei, ti)) N

and ((F/, ui))iN be generalized McShane partitions of A subordinate to
AA. For each N choose /i,/ y’ such that E ff-’i 0 A, IAEi
F F C A and IAFi Fi. Set

U (i f’ A(ti)) f’ U (1 f A(ui) ).
iN iN

For N set

E? n n Ji n A(ti) \ U E,
j<i

Fi* n N ffi CI A(ui) \ U Fj*.
j<i

Then U iNE U iNFi*= H; moreover, /zE/* AEi and /xF/* =/XAF
for each i.

Fix any generalized McShane partition ((Hi, vi))iN of S subordinate to
by writingA. Define H;, Ui, H[’, U

H’Hi E U2i ti, 2i+ Hi \ H, U2i + Ui’

H2’i Fi*, u2i ui, H2i+ Hi \ H, u2i + ui

"))i N are both generalizedfor each N. Then ((H/’ v))is and ((H, v
McShane partitions of S subordinate to A. So

limsup E
n--oo <n <n

< 2e.

But on translating this through the definitions above, we see that

lim sup AEif(ti)-- E AFt’f(Ui)I1_<
n--o <n <n

So the criterion of Lemma 1M is satisfied, and 4) A is McShane integrable.

Remark. If A is such that /x.(S\A)=0, then fbA fb; this is
because, in the construction above, ((E,ti))iN will be a generalized
McShane partition of S subordinate to A.
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See also 2E below.

10 THEOREM. Let (S, , ,/x) be a tr-finite outer regular quasi-Radon
measure space and h" S R a function. Then h is McShane integrable iff it is
integrable in the ordinary sense, and the two integrals are equal.

Proof (a) If h is integrable in the ordinary sense, it is Bochner integrable,
and therefore McShane integrable, by 1K.

(b) If h is McShane integrable, it is measurable; this is a special case of 3C
below, but to avoid suspicion of circularity I sketch a proof here. Suppose, if
possible, otherwise. Then there are a </3 in R and E E such that
0 < E < o and/z*A =/*B E, where

A {t’t E,h(t) <a} and B= {t’t E,h(t) >fl}.

As remarked at the end of 1N, the McShane integrals (McS) fh E, (McS)
fh A and (McS) fh B must all be equal. But applying 1Cc to (h A) a
we see that (McS) fh A < aAA aE, and similarly (McS) fh B >
/3/xE; which is impossible, because aloE < IE.

If we now set F {s" h(s) > 0}, then we have a McShane integral (McS)
fhF. Now if g" F [0, [ is any function which is integrable in the
ordinary sense, and dominated by h, we must have

fFg (McS)fg < (McS)fhrF;
because h is measurable, it follows that fFh is defined. Similarly, fS\Fh is
defined, so that h is integrable.

1P The Pettis integral. Let (S, ,/) be a measurable space and X a
Banach space. Recall that a function th: S X is Pettis integrable if for every
E E there is a we X such that fef(4(x))l(dx) exists and is equal to
f(we) for every f X*; in this case ws is the Pettis integral of b, and the
map E we: , X is the indefinite Pettis integral of b.

1Q THEOREM. Let (S, , E,/x) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. If oh: S - X is McShane integrable, with
McShane integral w, then it is Pettis integrable, with Pettis integral w.

Proof. For every E we have a McShane integral we of b E, by 1N.
If g X* then gb E: E R is McShane integrable, with integral g(we),
by Proposition 1C. But we have seen in 10 that this means that the ordinary
integral fegch exists and is equal to g(we). As g is arbitrary, b is Pettis
integrable, with indefinite Pettis integral E we; and the Pettis integral of
d iS Ws W.
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Remark. This generalises Theorem 2C of [10].

2. Further basic properties of the generalized McShane integral

I give some technical results which will enable us to move more freely in
the later parts of this paper.

2A We need to recall some well-known facts concerning vector measures.
Suppose that E is a tr-algebra of sets and X a Banach space.

(i) Let us say that a function v: E X is ’weakly countably additive’ if
f(([.J iNEi)) "-EiNf(,Ei)for every disjoint sequence (Ei)i N in E and
every f X*. The first fact is that in this case v is countably additive, that is,
Ei rvEi is unconditionally summable to v(U rEi) for the norm topology
whenever (Ei)iN is a disjoint sequence of measurable sets with union E
([19], 2-6-1; [3], p. 22, Corollary 4).

In particular, an indefinite Pettis integral is always countably additive.
(ii) If now /x is a measure with domain E such that ,E 0 whenever

/zE 0, then for every e > 0 and there is a 6 > 0 such that IlvEII _< e

whenever/xE < .
In particular, if v is an indefinite Pettis integral, it is absolutely continuous

in this sense with respect to the original measure.
(iii) Thirdly, suppose that (’n)nN is a sequence of countably additive

functions from E to X such that vE limn_oovnE exists in X, for the weak
topology of X, for every E E: then v is countably additive. (Use Nikodgm’s
theorem ([1], p. 90) to see that , is weakly countably additive.)

2B LEMMA. Let (S, E, E,/x) be a or-finite outer regular quasi-Radon mea-
sure space, X a Banach space and d?: S X a McShane integrable function.
Then for any e > 0 there is a gauge A: S E such that

i<n

whenever ((Ei, ti)) <n is a partial McShane partition of S subordinate to A,
and E [A i<nEi

Proof Recall that by 1N-1Q we can identify E ,E fEb as the
indefinite Pettis integral of b. Let A: S --, be a gauge such that

limsup IIf- i<n
-lEi(ti)

whenever ((Ei, ti))i N is a generalized McShane partition of S subordinate
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to A. Now let ((Ei, ti))i< n be a partial McShane partition of S subordinate
to A, and E U i<_nEi Let ((Fi, ui))iN be a generalized McShane parti-
tion of S \ E, subordinate to A, such that

limsup Iiu(S \E)
m

E ]2,Fif(ui) E.
i<m

(Readers will have no difficulty in dealing separately with the case E S.)
If we set

En+ + Fi tn+ +i u

for N, then ((Ei, ti))i N is a generalized McShane partition of S subor-
dinate to A. So

,E E IEidp(ti)
i<_n

m-oo <n +m <m

as required.

2C PROPOSITION. Let (S, , E,/z) be a tr-finite outer regular quasi-Radon
measure space, X a Banach space and d: S- X a McShane integrable
function. Then there is a gauge A: S - E such that ,iNlEidp(ti) exists, as
an unconditional sum for the norm topology of X, whenever ((Ei, ti))i N is a
generalized McShane partition of S subordinate to A.

Proof Let w be the McShane integral of b. Let (Sk)kN be an increas-
ing sequence of open sets of finite measure with union S. For each k N let
A k" S - E be a gauge such that

i<_n

whenever ((Ei, ti)) <_n is a partial McShane partition of S subordinate to A
k

and E U i<_nEi (see 2B). For t S set k(t) min{k" Sk, [lb(t)[[ _< k},

m(t) Sk(t) n n Aj(t);
j<k(t)

then A is a gauge on S.
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Suppose that ((Ei, ti))i N is a generalized McShane partition of S subor-
dinate to A, and e > 0. Let p N be such that 2 -p < e. Set

I {i: N, k(ti) <_ p}, J N \ I.

By the remarks in 2A, -’i JfEi exists in X and there is an r0 N such that

J, m <i <n

whenever r0 < m < n. Next, E
_

Sp for every I, so E ItZE is finite
and there is an r > r0 such that PiI, i>rllZEi <- e.
Now suppose that r < m < n. We have

J, m <__i <n J, m <i <_n

(because E
_

A(ti) A,(ti) for J),

E IEit( ti)
l, m <i <_n

E
i1, m<i<n

Adding,

] /-,Eiqb (ti)
m<i<_n

< 3e.

As e is arbitrary, ()i<niEidP(ti))n N is a Cauchy sequence and has a limit
in X.
Of course the same argument applies to any rearrangement of ((Ei, ti)) N,

SO the series Ei NtX Eidp(ti) sums unconditionally.

2D COROLLARY. Let (S, , E,/x) be a g-finite outer regular quasi-Radon
measure space and X a Banach space. Then a function dp: S - X is McShane
integrable, with McShane integral w, iff for every e > 0 there is a gauge A:
S - such that ,irtxEib(ti) exists and [[EialxEiqb(ti) wll _< when-
ever ((gi, ti))i N is a generalized McShane partition of S subordinate
to A.

2E PROPOSITION. Let (S, , E,/z) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. Let E , and let dp: S- X be a
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function which is zero on S \ E. Then qb is McShane integrable iff qb E is
McShane integrable, and in this case the integrals are equal.

Proof. The case E O is trivial and as usual I will ignore it. We have
already seen in Theorem 1N that if b is McShane integrable then b E is
McShane integrable. Now suppose that btE is McShane integrable with
integral w. Let e > 0. By 2B, there is a gauge A0: E Z such that

i<n

whenever ((Hi, ti))i n is a partial McShane partition of E subordinate to A0
and H .Ji<nni Let u be the indefinite integral of bE, so that u is
countably additive (1P, 2A(i)). By 2A(ii)we can find a ( > 0 such that
IIHll _< e whenever H c_ E and /xH < (; now there is a closed set F c_ E
such that/z(E \ F) < 8 (see the second sentence of 1Bc).
For each nN choose an open set Gn__.E such that lz(Gn\E)<

2-e/(n + 1). Now define h. S 5E by setting

A0(t) fh G
A(t)=

S\F
if e E, n < II(h(t)ll < n + 1,
if t S\E.

Let ((Ei, ti))ie N be a generalized McShane partition of S subordinate to
A. For N set E E tq E if E, otherwise; now set U LI i,E
for n N, and U LI rUn. By the choice of A0,

Next,

i<n

E ]zEidP(t) , IE(ti)
i<_n i<n

i<n, tiE

kN in, tE, kll4(t)ll<k+

<- E (k +
kN

<_ 2-ke 2e,
kN

(E E)II
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SO

i<n

for every n. Now vU limn_.oovUn, and tz(F \ U) tz(F \ U rEi) 0
because F t E whenever t f E; so (E \ U) < t and IIw vUII <_ e.
Accordingly

lim sup
noo i<_n

As e is arbitrary, th is McShane integrable, with integral w.

2F COROLLARY. If (S, , E,/x) is a tr-finite outer regular quasi-Radon
measure space, X is a Banach space and qb: S - X is a McShane integrable
function, then b x(E) is McShane integrable for every E ,.

Proof ForbtE=(bx(E))E.

2G COROLLARY. /f (S, E, E,/x) is a tr-finite outer regular quasi-Radon
measure space, X is a Banach space and d: S - X is zero almost everywhere,
then it is McShane integrable, with integral O.

Proof. For if E (t: tb(t) : 0}, feb E 0.

3. The Talagrand integral

I come now to a discussion of the relationship between the McShane
integral, as I have defined it, and the Talagrand integral.

3A DEFINITIONS. Let (S, ,/) be a probability space and X a Banach
space, with dual X*.

(a) A function 4): S - X is Talagrand integrable, with Talagrand integral w,
if

w lim --1
_

((Si)
n-->oo n <n

for almost all sequences (Si)i N SN, where Sr is given its product proba-
bility. (See [20], Theorem 8.)

(b) Recall that a set A of real-valued functions on S is stable (in
Talagrand’s terminology) if for every E E, with /xE > 0, and all real
numbers a </3, there are m, n > 1 such that IX*m+nZ(A, E, m, n, a, fl) <
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(IzE)m+n, where throughout the rest of this paper I write Z(A, E, I, J, a, [3)
for

{(t,u)" EI, u E’,f A, f(t(i)) <a Vi I, f(u(j)) > [3 Vj J},

and/Z*m+n is the ordinary product outer measure on Sm X Sn.
(c) Now if X is a Banach space, a function b" S-X is properly

measurable if {hb: h X*, Ilhll _< 1} is stable. Talagrand proved ([20],
Theorem 8) that b is Talagrand integrable iff it is properly measurable and
the upper integral f II ok(t)II(dt) is finite.

(d) We shall need to know that if A
_
Rs is stable, then T, the closure of

A in Rs for the usual product topology of Rs, is stable; this is because

Z(,E,I,J,a,[3) _Z(A,E,I,J,a’,13’) whenever a < a’ <13’ <13.

The next proposition requires a lemma about gauges in quasi-Radon
spaces.

3B LEMMA. Let (S, , ,/x) be a quasi-Radon probability space and A.
S -) a gauge. Then

(a) {x" x SN, I(I.J iNA(x(i))) 1} has outer measure 1 in SN;
(b) writing tzn for the quasi-Radon product measure on S, we have

lim
noo

U A(u(i)))ln(du) 1.
i<n

Remark. The definition and properties of product quasi-Radon measures
are sketched in [7], A7E and discussed in detail in [6]. For the purposes of
this paper it would be enough to prove the lemma with /xn the ordinary
product measure of Sn. The crucial fact is that both product measures satisfy
Fubini’s theorem in the sense that if I, J are disjoint sets and /i,/zj,/zu J
the measures of SI, etc., then for any /Zlu-measurable set W g SIU we
have almost every section Wu {v: uv W} measurable, and
ftxj(Wu)txi(du) Iz jW.

Proof. (a) Suppose, if possible, otherwise.
(i) Set h(x) (U iNA(x(i))) for each x SN. For any set I let -1,i be

the product quasi-Radon measure on S.
There is supposed to be a closed set W

_
Sr such that /xNW > 0 and

h(x) < 1 for every x W. Set

U {U" U an lbN\n{V" V aN\n uu w > 0}.
nN
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For u T set g(u)= (U i<dom(u)A(u(i))). Note that every member of T
has a proper extension which is still in T. Choose a sequence (Un)nN in
T as follows, u0 is to be the empty sequence. Given u T, choose
Un+ T such that un+ properly extends u and g(un/a)> sup{g(u):
un c u _. T} 2 -n. Now we see that if u Sk(n) for each n, (k(n)),, is
strictly increasing, so x U nNU,, SN, also, for each n N,

{V" V SN\k(n), (x k(n))v W} ,
so x W because W is closed. Consequently h(x) < 1.

Let F
_
S \ I,J i NA(x(i)) be a non-empty self-supporting closed set, so

that tz(F 3 G)> 0 for every open set G meeting F. Then, in particular,
/(F n A(t)) > 0 for every F, so there is a 6 > 0 such that /*D > 0,
where

D {t: t F,/x(F n A(t)) > 6}.

(ii) Because (g(Un))nCN is a bounded sequence, there is an n N such
that g(Un+l) g(Un) + 2-n < . We have

]’N\k(n){ U" U" U W} > O,

while

Ll,\k(n) U" ::li _> k(n), v(i) D} I,

so there is some > k(n) such that

IX\kf,o{V" U; V W, v(i) D} > O.

Set m + 1,

E {W’W Sm\k(n), ff’N\m{ Y" u:wY W} > 0};
then E is pm\k(n)-measurable and

/XSkk(.){V" U2 V W, v m \ k(n) E} O.

Consequently there is a v SN\k(n) such that v m \ k(n) E and v(i)
D.. But now consider

u=u;(vrm\k(n)).



58 D.H. FREMLIN

We see that u Tand uncu,so

g(u) <__ g(Un+ 1) + 2--n"

On the other hand, u(i) D, so

Thus

g(u) g(Un) > /z(A(u(i)) \
j<k(n)

a(u(j)))
> p,(A(u(i)) F) > 6.

g(Un+l) >_. g(u) 2 > g(Un) 2-n + ,
contrary to the choice of n.

This contradiction proves the first part of the lemma.
(b) The second part follows. For each n N define hn

setting
SN --> [a, b] by

hn(x) =Iz([.JA(x(i))) [xSN.
i<n

Then lim, _.ooh,(x) h(x) for every x, so

1 fh( -( )x)/zr(dx) lim fh,,(x)r(dx)= lim fix U h(u(i)) p,n(du),
n n <n

as required.

3C PROPOSITION Let (S, , X,/x) be a quasi-Radon probability space and
X a Banach space. Let d" S X be a McShane integrable function, and write

C {fd’f e g*, Ilfll -< 1}.

Then any countable subset of C is stable.

Proof (a) Let A be a countable subset of C. Take E E, with/xE > 0,
and a </3 in R. For m, n > 1 set nmn Z(A, E, m, n, ol, [); note that as A
is countable, Hm is/Xm+n-measurable. I seek an rn with l2mnmm < (/xE)2m.

Set e 61-(/3 a)tzE > 0. By Lemma 2B above, there is a gauge A. S
such that

E t’t’HiP(ti) fi_i
i<_n

<_8
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whenever ((Ei, ti))i <n is a partial McShane partition of S subordinate to A
and [.Ji<nEi H. The set E, with its induced topology and measure, is a
quasi-Radon measure space. So we may apply 3B to E, with an appropriate
normalization of its measure, to see that there is an rn N such that,mo > 0, where

D= (t" t Em, tz( .J E A(t(i))) > 1/41.E).
i<m

Suppose, if possible, that l2mnmm
take t, u D such that (t, u) nmm.

--(//,E)2m. Then nmm must meet D2;
Set

H= [,.J A(t(i)) N [.J A(u(i));
i<m i<m

then/xH > /zE.
Choose disjoint covers (Ei)i < m, (Fi)i < m Of H by measurable sets such

that E
_

A(t(i)) and F/_ A(u(i)) for each < m. Then we must have

IxEidP(t(i))- IxFi4(u(i))II -<2e.
i<m

Now (t, u) nmm SO there is an f A such that f(t(i)) < and f(u(i))
>/3 for every < m. f is of the form hb for some h of norm at most 1, so

E tzEi.f(t(i)) IxFi.f(u(i))
i<m

<2e.

However, f(t(i)) < a for each and F. <mEi tzH, so

E tzEi’f(t(i)) <_ alxH;
i<m

similarly ,i <mlxFi’f(u(i)) >- tzH, and we get

2e > (8 a)l,H > ( a) tzE 3e,

which is absurd.
This shows that A is indeed stable.

3D COROLLARY. Let (S, 5E, ,/x) be a quasi-Radon probability space and
X a Banach space such that the unit ball ofX* is *w -separable; let dp: S - Xbe a McShane integrable function. Then dp is properly measurable, and if
[[dp(s)[llz(ds) < 0% then dp is Talagrand integrable.
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Proof Let B0 be a countable w*-dense subset of the unit ball B of X*.
Then A {fb: f B0} is stable, by 3C. But because f fb: X* Rs is
continuous for the w*-topology on X* and the pointwise topology of Rs,
C {fb: f B} is the pointwise closure of A, and is therefore stable, by
3Ad. Accordingly th is properly measurable. Now the second clause follows
by Talagrand’s theorem.

Remark. These generalise Proposition 2L and Corollary 2M of [10]. Note
that they become false if we omit the hypothesis that the unit ball of X* is
w*-separable; see [10], 3A.

3E COROLLARY. Let (S, , ,/z) be a g-finite outer regular quasi-Radon
measure space and X a Banach space. If b" S - X is McShane integrable then
its indefinite Pettis integral has totally bounded range.

Proof (a) Consider first the case/zS 1. By 4-1-5 of [19], it is enough to
show that C {fb" f X*, Ilfll -< 1} is totally bounded for II1. This will
be so iff every countable subset of C is totally bounded. But 3C shows that
any countable subset of C is stable, and therefore totally bounded by [19],
9-5-2.

(b) It follows at once that the result is true whenever/zS < . For the
general case, let e > 0. The indefinite integral v of b is countably additive,
so there must be a set E S, of finite measure, such that IInll _< e
whenever H

___
S \ E is measurable. Now {vH: H , H

_
E} is totally

bounded, being the range of the indefinite integral of b E, so is covered by
finitely many e-balls; and therefore the range of v itself is covered by finitely
many 2e-balls.

4. Convergence theorems

I generalize and refine some results from [10].

4A THEOREM. Let (S, , E,/z) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. Let ( dpn)n r be a sequence ofMcShane
integrable functions from S to X, and suppose that b(t) lim Chn(t) exists
in X, for the weak topology ofX, for almost every S. If moreover the limit

vE nlim fEbn
exists in X, for the weak topology, for every E ,, then c is McShane
integrable and fd vS.
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Proof. Fix e > O.
(a) Let h" S - R be a strictly positive function such that fh < e. Let F be

the set

(r, ce0,...,CZn)" r,n N, O0,..., O Q N [0, 1], E tXi 1}.
i<n

For 3’ (r, a0,..., an) F, write

r r, c Ol ( S ---> S
i<n

and

t" S, sup l[4,/(t)11 _< r, h(t) > (r + 1) -1,
iN

II (t) h(t)}.
Note that Ix*Ar < (r + 1)fh < oo; choose a measurable set Vr

_
A

v *A.
(b) If 3’ F and H

___
V is a measurable set then

such that

For take any f in the unit ball of X*. Then

f(vH)= lim f(fl_ISn)= lim fSb.n \ n-oo

But the sequence (fqbn)n N of measurable functions is uniformly bounded
on Av N H, which has the same outer measure as H; so in fact it is
uniformly bounded almost everywhere on H, and by Lebesgue’s theorem

Now

lim fHf$ fH( lim ffn)=
n--->oo

because If(t) -/v(t)l < lie(t) v(t)ll < h(t) for every e Ar H,
and therefore for almost every H. As f is arbitrary, IIvH fHCkll <- fHh.
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(c) Because th(t) is in the norm-closed convex hull of {tn(t)." n N} for
every t, and this is always a bounded set, S U vrAv, and we can find
a disjoint family (Av)vr of sets, covering S, such that Av c_Av for
every 3’. Let (ev)vr be a family of strictly positive real numbers such that
Evr(rv + 1)ev < e.
For each y, let v > 0 be such that IIvEII _< % whenever/zE < 6v (see

2A(ii)-(iii) above); let Gv

_
Vv be an open set such that /z(Gv \ Vv) <

min(ev, 6v). Let Av: S --, E be a gauge such that

i<n

whenever ((Ei, ti)) <n is a partial McShane partition of S subordinate to Av
and E U i<nEi; such exists by 2B (using 1Ca-b to see that bv is McShane
integrable). Applying 2B again (or 1J), this time to h, there is a gauge A*.

S- .such that .intzEih(ti) < 2e whenever ((Ei, ti))in is a partial
McShane partition of S subordinate to A*. Now set

for every t Av, y F; then A. S is a gauge.
(d) Let ((Ei, ti))ie N be a generalized McShane partition of S subordinate

to A. I seek to estimate vS- Xn, where xn Y’.i<ntzEi(ti). Fix n for the
moment.

Set Iv {i: < n, Av} for each y; of course all but finitely many of the
Iv are empty. For Iv, set E E n Vv. We have E

___
A(ti)

___
Gv, so

E lz(Ei\E) <- ev,
1

and

E tz( Ei \ E/)II ti)ll rvev,
lv

because (t)II rv for e Av. Consequently, if we write

Yo E txE6( ti),
i<n

we shall have [Ix y011 < Errvev < e.
For each < n, let y(i) be such that Zv(i). Then we have

6(ti) 6v(i)(ti)II h(ti) for each i.
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So

E  e;ll  (ti) bv(i)(ti)II < E tzEih(ti) < 2e,
i<n i<n

because E c_ A*(ti) for each i. Accordingly, writing

Yl - IzgdPv(i)( ti),
i<n

we have IlXn- Y lll 3e.
Set H U{E" Iv} for each y. Because E __C_ Av(ti) for each e Iv,

we have

Consequently, writing

Y2

we have [[Yl Y211 Ever% < e and IlXn
Next, for any 3’, H

_
Vv, so we have

Y211 -< 4e.

by (b)above. So writing Y3 EvruH we have Ily2- y3ll fh and Ilxn
y3l[ < 5e.

If we set H U{Eg: I}, then/z(H \H) < 8, so that

IIn nll % for each 3’.

Accordingly Ilx=- y4[I 6e, where

)4 ,r’E lnv I](/yFHV) 1( <
Thus

< 6e.
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Because u is countably additive (2A(iii)) and uE 0 whenever/xE 0,

i<n

This shows that b is McShane integrable, with integral vS.

Remark. This strengthens and generalizes Theorem 21 of [10].

4B COROLLARY. Let (S, , ,/x) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. Let oh: S - X be a Pettis integrable
function and ( Ei) N a cover of S by measurable sets. Suppose that d E is
McShane integrable for each i. Then is McShane integrable.

Proof. Apply 4A with b,(t) (t) for t U < nEi, 0 elsewhere.

4C COROLLARY. Let (S, , ,/x) be a tr-finite outer regular quasi-Radon
measure space and X a separable Banach space. Then a function d" S X is
McShane integrable iff it is Pettis integrable.

Proof If b is McShane integrable then it is Pettis integrable, by 1Q.
Conversely, if it is Pettis integrable, then for each k N, set

Sk {t’t S, II(t)ll -< k}.

Because X is separable, every Sk is measurable; moreover, b Sk is Bochner
integrable, therefore McShane integrable, by 1K. Now b itself is McShane
integrable by 4B.

4D COROLLARY. Let (S, E, E,/x) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. Let dp: S - X be a Pettis integrable
function which is measurable in the sense that d- 1[G] for every norm-open
set G

_
X. If either (S, , ,, tx) is a Radon measure space or there is no

real-valued-measurable cardinal, then d is McShane integrable.

Proof The point is that there is a separable closed linear subspace Y of
X such that /x(S \E)= 0, where E t-l[Y]; see [5], 2. Now bE is
McShane integrable by 4C and b S \ E is McShane integrable by 2G.

Remark. For S [0, 1] this is Theorem 17 of [13].

4E THEOREM. Let (S, , ,/x) be a tr-finite outer regular quasi-Radon
measure space and X a Banach space. Let ( Chn)n r be a sequence ofMcShane
integrable functions from S to X such that b(t) limn hn(t) exists in X, for
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the weak (resp. norm) topology ofX, for almost every S. If

C {f(n’f - S*, Ilfll -< 1, n N}

is uniformly integrable, then is McShane integrable, and fb lim
for the weak (resp. norm) topology ofX.

Proof (a) Let f X*. Then ( fn)n e N is a uniformly integrable se-
quence of real-valued functions which is convergent at almost every point of
S to fb. Consequently limn_.oo fefcn is defined for every E , and has
modulus at most Mllfll, where M SUPh e C f lhl < o. We therefore have an
indefinite Dunford integral v: X** of b, and (vE)(f) limn_,oo fEfn
for every f X*, E ; evidently v is additive. In fact it is countably
additive. For if (En)n e N is an increasing sequence in Z, with union E, then
limn_= M 0, where M SUPhec fE\e, lhl, and livE- vEnl[ <_Mn for
each n.
Now following the argument for Theorem 4A line by line we find that it

proves that is McShane integrable as a function from S to X**, with
McShane integral vS. But of course vS is now approximated, in norm, by
sums of the form Ei<_nlzEidP(ti) which belong to X, and therefore uS X
and is McShane integrable as a function from S to X.

(b) This deals with the case in which (n(t))nN is weakly convergent for
almost all t. Observe that we must have fF vF, the weak limit of
(fFfn)nN, for every F E (applying the result to (n F)nN).
Now suppose that in fact ((n(t))nN is norm-convergent for almost all t,

and let e > 0. Because C is uniformly integrable, there are a set E E, of
finite mea.sure, and a 6 > 0 such that fFlh[ < e whenever F E and
/x(F E) < 6; so that [IfFnll < e and IlfFbl] < e whenever n N, F E
and/x(E q F) < 6.
For each n N, set

An {t’t E, IIbm(t) ,k(t)ll < e/(1 +/xE) for every m > n}.

Then (E \ U nerAn) 0 so there is an n N such that ]d$Zn txE 6.
Let G be such that An G c__ E and tzG =/z*An. Then

f  ml[ fAn(m
< fAnl[
_< .*./(1 + e)
_<e
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for every rn > n. But also Ilfs\ll e and Ilfs\Gbmll e for every m,
because (E \ G) < 5, so II fd fqbmll < 3e for every rn > n. As e is
arbitrary, this shows that fb is the norm limit of (fqbn)n N, as claimed.

4F COROLLARY. Let (S, , E,/x) be a g-finite outer regular quasi-Radon
measure space and X a Banach space. Let (dn) N be a sequence ofMcShane
integrable functions from S to Xsuch that th(t) limn b(t) exists in X, for
the weak (resp. norm) topology ofX, for almost every t S. If

f sup tn(t)
nN

then is McShane integrable, and fth limn fdpn for the weak (resp.
norm) topology ofX.

4G Problems. I conclude with some questions left open by the work
above.

(a) Suppose that (S, ,/x) is a tr-finite measure space, X is a Banach
space, and th: S-. X is a function. Suppose that 1 and 2 are two
topologies on S making it an outer regular quasi-Radon measure space. If th
is McShane integrable for 1, must it be McShane integrable for 2?
The point here is that a given measure space can have a wide variety of

different quasi-Radon topologies on it. Consider, for instance, the case in
which S [0, 1] and/z is Lebesgue measure. In this case we have the usual
topology; the right-facing Sorgenfrey (or ’half-open interval’) topology, gener-
ated by sets of the form [s, t[; the left-facing Sorgenfrey topology; and, for
any strong lifting, the associated lifting topology ([14], p. 58, or [6], 3G). All of
these make/z quasi-Radon. I believe that I can prove that the usual topology
and the two Sorgenfrey topologies give the same McShane integrable func-
tions; for lifting topologies there seem to be difficulties.

I should remark that if the unit ball of X* is w*-separable, then all
quasi-Radon topologies on S give the same McShane integrable functions;
see [9].

(b) Suppose that (S, , E,/z) is a quasi-Radon probability space, X is a
Banach space, and b: S - X a Pettis integrable function. Does it follow that
the indefinite integral of b has totally bounded range?

This problem arises in the context of 3E. I showed there that the indefinite
integral of a McShane integrable function has totally bounded range. But the
question is, whether this is due to the special properties of the McShane
integral, or to the special properties of the underlying measure space (S, E,/z).
(Indefinite Pettis integrals in general do not always have totally bounded
ranges; see [11], 2D, or [19], 13-3-3.)

(c) Suppose that (S, , E,/x) is a g-finite outer regular quasi-Radon mea-
sure space, that X is a Banach space and that v: E - X is a function. Under
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what conditions will v be the indefinite integral of a McShane integrable
function from S to X? This can only be so if/x is countably additive (2A(i))
and has totally bounded range (3E). These conditions are certainly not
sufficient ([10], 3C); I do not know of any useful general sufficient condition,
discounting such as ’X has the Radon-Nikod3,m property’, which makes v
the indefinite integral of a Bochner integrable function.
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REFERENCES

1. J. DIESTEL, Sequences and series in Banach spaces, Springer, New York, 1984.
2. N. DUNFORD and J.T. SCHWARTZ, Linear operators I, Interscience, New York, 1958.
3. J. DIESTEL and J.J. UHL JR., l/’ector measures Amer. Math. Soc., Providence, R.I., 1977.
4. D.H. FREMLIN, Topological Riesz spaces and measure theory. Cambridge University Press,

Cambridge, 1974.
5. Measurable functions and almost continuous functions, Manuscripta Math. 33 (1981),

387-405.
6. Quasi-Radon measure spaces, Note of 2.6.82, University of Essex.
7. Consequences of Martin’s Axiom. Cambridge University Press, Cambridge, 1984.
8. On the Henstock and McShane integrals of vector-valued functions, Illinois J. Math.,

to appear.
9. The McShane and Birkhoff integrals of vector-valued functions, University of Essex

Mathematics Department Research Report 92-10.
10. D.H. FREMLIN and J. MENDOZA, On the integration of vector-valued functions, Illinois J.

Math. 38 (1994), 127-147.
11. D.H. FREMLIN and M. TALAGRAND, A decomposition theorem for additive set-functions, with

applications to Pettis integrals and ergodic means, Math. Zeitschr., 168 (1979), 117-142.
12. R.J. GARDNER and W.F. PFEFFER, "Borel measures" in Handbook of set-theoretic topology,

North-Holland, Amsterdam, pp. 961-1043.
13. R.A. GORDON, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990),

557-567.
14. A. IONESCU TULCEA and C. IONESCU TULCEA, Topics in the theory of lifting. Springer, New

York, 1969.
15. K. KUNEN and J.E. VAUGHAN, Handbook of set-theoretic topology, North-Holland, Amster-

dam, 1984.
16. E.J. MCSHANE, Unified integration, Academic Press, San Diego, 1983.
17. B. RODRIGUEZ-SALINAS, Quasi-Radon measures and Radon measures of type (), Rend.

Circ. Mat. Palermo 91 (1991), 142-152.
18. B. RODRIGUEZ-SALINAS and P. JIMENEZ GUERRA, Medidas de raddn de tipo () en espacios

topoldgicos arbitrarios, Mem. Real Acad. Ciencias Madrid, Serie de Ciencias Exactas
no. 10, 1979.

19. M. TALAGRAND, Pettis integral and measure theory, Mem. Amer. Math. Soc., no. 307, 1984.
20. The Glivenko-Cantelli problem, Ann. Probab. 15 (1987), 837-870.

UNIVERSITY OF ESSEX
COLCHESTER, ENGLAND


