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A CHARACTERIZATION OF TWISTED FUNCTION RINGS

ANDREW B. CARSON

1. Introduction

In this paper all rings have identity and all morphisms preserve the
identity. We shall assume familiarity with the Pierce Sheaf (cf. [12] for a
detailed treatment and [5, Chapter 1] for a summary) k(R) of a ring R over
X(R), the Stone space of the Boolean algebra B(R) of all central idempotents
of R. (X(R) is also called the Boolean spectrum of R.) There is a canonical
isomorphism R -= F(X(R), k(R)) that represents any ring R as the ring of all
global sections of k(R) over X(R). For any Boolean space X, ring F with the
discrete topology, and families {Ca: a .} and {F: a } of closed
subsets of X and subrings of F, let (X, F; {(X,, F,): a }) denote the
ring of all continuous functions f: X- F such that f(C)_ F,, for all

In [3] and [4] results from [1] were generalized to partially classify those
rings R that can be written in the above form, where X X(R) and F is
indecomposable. In particular any commutative ring R has this form if (i) it
is yon Neumann regular (i.e., it satisfies O/r)(Bs)(rsr r)), (ii) it is an algebra
over some field L with algebraic closure F, (iii) it is algebraic over L, and (iv)
B(R) is either countable or is complete as a Boolean algebra. In terms of
sheaves, this was equivalent to showing that there was an embedding k(R)

_
X(R) F, where X(R) F is viewed as the simple sheaf with the product
topology. If (iii) or (iv) is omitted, then, by [5], R can be represented as the
ring of certain specified functions f’. Uf - F, where each Uf is a dense open
subset of X(R). However such a representation is not as nice as one in which
each f has the same compact domain. If only (iv) is omitted, the well known
Arens and Kaplansky results [1] establish that R is isomorphic to a ring of
certain twisted functions defined on the Boolean space X(F (R)L R). In 2 we
shall show that certain ring embeddings give rise to a very general kind of
twisting on sections of sheaves. We apply these results in 3 to accomplish
our main goal (the characterization of all rings of twisted functions given in
theorem 3.7) and finish with applications to particular rings. The full details
of this work show that many rings which can not be represented as functions
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defined on their Boolean spectra, can be represented using twisted functions
defined on some "non-standard" (in the analysts’ sense)version of this space.
To the best of our knowledge, "non-standard spectra" have not previously
been used to represent rings.

In essence, the results in this paper have been deduced from the behaviour
of certain sheaf morphisms, with assistance from the model theory of satu-
rated structures. At present few Jalgebraists are familiar with saturated
structures. Nonetheless this paper should be accessible to algebraists willing
to accept the properties ascribed to saturated structures in Proposition 2.10
and Lemma 3.3. Our results provide (further) evidence that model theoretic
methods can be fruitfully applied to some problems that are strictly algebraic.

Convention. Throughout this paper we shall assume that all rings R have
clopen support. (i.e., {x X(R):r(x) 0} is clopen (closed and open) in
X(R), for all r F(X(R), k(R)).) This assumption involves no loss of general-
ity in 3 and is reasonable in 2 as, by [4, proposition 1.3], any function ring
would have this property, even if we did not assume it. (Function rings are
formally defined in 3.2.)

2. Representations using twisted sections

In this section we shall define a very general kind of twisting, on sections of
sheaves and use it to represent rings. Following some necessary topological
results, we shall see that the domain space and twisting can (but need not)
always be chosen so as to be closely related to certain groups of homeomor-
phisms of the domain. This symmetry ensures that our results still retain
much of the flavour of previous ones, such as [1, Theorem 6.1]

DEFINITION 2.1. Let .’ be a sheaf of rings over a Boolean space Y.
(1) A twisting o- on (Y, a) (or more briefly on ’) is a pair= (E, {y, z:

(y, z) E}) such that;
(i) E is an equivalence relation on Y;
(ii) y,z: z is an isomorphism, for each (y, z) E;
(iii) Or, y is the identity map and Or, w w, z Oy, z, whenever (y, z),

(y, w), and (w, z) E; and
(iv) the map (r(x), x, y) y, x(r(x)) is a continuous map D ’,

where

D (r(x), x, y): r F(Y, .),

is topologized as a subset of _x Y x Y.
The above twisting is denoted by -= (E, ).

and (x,y) E}
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(2) Let F(Y, ., if-) {r F(Y, .)’dPy.x(r(x)) o’(y), whenever
(y, x) E}, where o-= (E, ) is a twisting on .’.

(3) Elements of F(Y, .’, if-) may be called --equivariant sections.

(Analogous notation for function rings is discussed in remark 3.1.)
Clearly there is a unique twisting if-= (E, ) on _’ (called the trivial

twisting) for which (x, y) E iff x y. Of course, in this case, R-=
F(X(R), k(R)) F(X(R), k(R), ,-). We shall show that the embeddings R _c
S described in Definition 2.2 (ii) give rise to a twisting if- on k(S) such that
R F(X(S), k(S), if). In subsequent applications we shall pick S such that
the topology on k(S) is well enough understood that the representation
R -= F(X(S),k(S), if-) is more illuminating then the representation R -=
F(X(R), k(R)).

DEFINITION 2.2. In this definition let -: R -= F(X(R), k(R)) and ^: S -=
F(X(S), k(S)) be the standard isomorphisms, where R and S are rings.

(i) A monomorphism f: R - S is conformal iff f(B(R))__ B(S). When
f is conformal, let 7rf: X(S)--. X(R) be the continuous onto map
corresponding to f via Stone’s theorem.

(ii) A monomorphism f: R - S is a local monomorphism iff it is confor-
mal and, for___.____each y X(S), the map k)(R)---> k(S) given by

?(rrf(y))- f(r(y)) is a monomorphism, where r varies over R.
(These maps are a minor alteration of the morphism of ringed spaces
(X(S), k(S)) ---> (X(R), k(R)) corresponding to f, that is described in
[12, Definition 6.1 and Theorem 6.6]. In general they exist whenever f
is conformal, and are merely well defined homomorphisms, even if f
is a monomorphism.)

We now characterize the local monomorphisms.

DEFINITION 2.3.
order formulae

Let id(e), e < f, and nz(e, r) be, respectively, the first

and

e 2 e A (Vr)(re er),
id(e) A id(f) A e el,

id(e) A (tf)[(0 f < e) =* rf 0].

LEMMA 2.4. Suppose that f R - S is a conformal ring monomorphism
and that R has clopen support. Then f is a local monomorphism in each of the
following cases.

(1) kx(R) is a simple ring, for each x X(R).
(2) /fR nz(e, r) then S nz(f(e), f(r)), for all r R and e B(R).
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(3)
(4)

f(B(R)) is a dense Boolean subalgebra of B(S).
f: R --, S is a (logical) elementary embedding.

Proof Let R -= F(X(R),k(R)) and S F(X(S),k(S)) be the stan-
dard maps, assume without loss of generality that f is the inclusion R

___
S,

and let zr 7rf. For each y X(S), let (R)y" k(y)(R) kr(S) be given by
(r(y)) -o (y).

(2) Suppose that 0 ?(r(y)) kr(y)(R) for some r R and y X(S).
As R has clopen support, there exists e B(R) such that ’(r(y)) 0,
R nz(e, r), and thus S nz(e, r). Thus (R)y(?(Tr(y))) (y) 0 for, if not,
there would exist f B(S) such that 0 f < e and fr O.

Cases (3) and (4) follow from (2). Case (1) is trivial.

In fact condition (2) (above) holds iff f is a local monomorphism.
We now use the Pierce sheaf to represent rings using twisted sections.

DEFINITION 2.5. Retain the notation from Lemma 2.4 and assume that f:
R

___
S is a local monomorphism. Let .(R, S) (or more properly .o/’(f)) be

{f(y) ky(S): r R and y X(S)}. Let -(R, S) (-(f)) be the twisting
(E, ) on .’(R, S) given by

(i) (x, y) E iff zr(x) zr(y), and
o.

(ii) dPy, x is the composition x(R, S)-lkx)(R)= ky)(g) y(R, S).

Note that our definition of (and hence of the twisting -(f)) requires
the hypothesis "f is a local monomorphism." Verification that .o/’(R, S) is a
subsheaf of k(S) and that -(R, S) actually is a twisting on _’(R, S),
presents no difficulty. If R is commutative then all stalks of k(R) and
.(R, S) are indecomposable, so that (i) .z(R, S) is a reduced sheaf (cf. [12,
page 15]). Thus, letting R F(X(S), _’(R, S)), we get (ii) X(S) X(R), (iii)
B(S) B(R), and (iv) k(R)= .(R, S). Conclusions (i)-(iv) hold for differ-
ent routine reasons when B(R) is dense in B(S). However in all cases R is
the subring of S generated by R u B(S).

THEOREM 2.6. Retain the notation from Lemma 2.4 and Definition 2.5
and (crucially) the assumption that f: R c_ S is a local monomorphism. Then
g -= F(X(S), .(f), -(f)).

Proof Let .’= ..W(f), -= -(f), and Y= X(S). The map [R: R
F(Y,, Y-) is an embedding, as . is a subsheaf of k(S). Note that
(R)- l(f(y)) ?(zr(y)), for all r R and y Y.

Let s F(Y, _W, o-) be arbitrary. To finish the proof, we must find r R
such that [R(r) ? S. By a modification of standard arguments, such as
[12, Theorem 4.4], it suffices to let y Y be arbitrary, and obtain er B(R)
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and ry R, such that y(y)= 1 and sr yy. The existence of ry R,
such that g(y) y(y), follows from the definition of _’(f). Let Uy {z Y:
s(z) r(z)}. Note that zr(Uy) 7r(Y- Ur) since, if z Uy, z2 Y
and zr(Zl) zr(z2), then

S(Z2) (z2, zl(S(Z1) ) (z2, zl(y(Z1) ) Oz2 ol(y(Z1) )

Oz2((qT"(Z1))) y(Z2).

Consequently 7r(Uy)= X(R)- zr(Y- Uy), so that 7r(Uy) is open in X(R).
Thus there exists ey B(R) such that y(Tr(y)) 1 yet ’y(X) 0, whenever
x r(Ur). It follows routinely that Sy ?yr and y(y)-- 1, as was re-
quired, rn

Arens and Kaplansky’s concept of twisted functions applied to the ele-
ments of a ring T (X, F) of continuous functions. They utilized a group
G of certain automorphisms of F and a representation g g* of G into the
group of homeomorphisms of X. They called an element T twisted iff
g(t(x)) t(g*(x)), for all g G and x X. Clearly the orbits of G* in X
play the role that the equivalence classes of E do in our concept of twisting.
We see no way of introducing anything completely analogous to their group
G of automorphisms, into our context. However it is still desirable (and
sometimes possible) to work directly and analogously with a suitable group of
homeomorphisms of X.

DEFINITION 2.7. Let ff-= (E, ) be a twisting on a sheaf ’ of rings over
a Boolean space X and G be a group of homeomorphisms of X. Then:

(1) ff- is called G-symmetric iff the orbits of G acting on X are just the
equivalence classes of E.

(2) (G, ) can be used to denote oq-, when Y- is G-symmetric.
(3) If - is G-symmetric, then the elements of F(X,’, -) may be

called (G, )-equivariant or (ambiguously) G-equivariant sections.

If - and G are both trivial, then - is G-symmetric. Our next goal is to
show that less trivial examples abound. The following concept will be used to
construct suitable homeomorphism groups.

DEFINITION 2.8. Suppose that p W where W is a Boolean space. Then:
(a) p is atomless iff it has a neighbourhood containing no isolated points.
(/3) p is atomic iff it has a neighbourhood containing no atomless points.
(y) p is transitional iff it is neither atomic nor atomless.
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Warning: All elements of the one point compactification of N are atomic.
Thus an atomic point need not be isolated.

Remark 2.9. It is easy to find a first order formula atmc(z) such that if
W X(T) for some ring T, and if e B(T) and the clopen set C_ W
correspond via Stone’s theorem, then all points in C are atomic iff T w
atmc(e). Similarly, there are formulae atmlss(z) and trans(z) such that
T W atmlss(e) iff all points in C are atomless, and T w trans(e) iff C
contains a transitional point. If b is any of the above formulae assume,
without loss of generality, that it has been chosen such that - 0/z)(b(z) =
id(z)).

In the next proposition, saturated (A-saturated) structures are used in two
distinct ways, to construct Boolean spaces with sufficiently intricate homeo-
morphism groups. Firstly, (iv) follows easily from this consequence of the
saturation hypothesis, where h(z) is trans(z) and R --- F(X(R), k(R)) is the
standard isomorphism: Suppose that x X(R)/s fixed but arbitrary and that
h(z) is any first order formula such that whenever f B(R) satisfies f(x) 4 O,
then there exists g B(R) such that 0 q g < fand R h(g). Then there exists
e B(S) such that S h(e) and, wheneverf B(R) andf(x) 4 O, 0 4 e < f.
Conclusions (i) and (ii) follow similarly, when h(z) is (z--z). Secondly, in
conclusion (v), there exists a homeomorphism g: C1 -= C2, since the Boolean
algebras corresponding to C and C2 are isomorphic. (They are isomorphic
as they are saturated, elementarily equivalent, and have the same cardinality.)
Trivially, g can be extended to a homeomorphism of X(S). We omit detailed
proofs, as similar arguments have been routine to model theorists since
saturated structures were first defined. (cf. [7, p. 524], for historical back-
ground material.) Conclusion (iii) follows from definition 2.8 and the hypoth-
esis "B(R) -< B(S)", without recourse to arguments involving saturation.

PROPOSITION 2.10. Suppose that f: R c_ S is a conformal ring monomor-
phism such that B(R) -< B(S) and that B(S)/s [B(R)[ +-saturated. Let Y
X(S), X X(R), and let 7r be the map rrf Y - X. The_n:

(i) (zr- l(x))O- or- l(x), for all x X (o and are the topological
interior and closure operators respectively.)

(ii) [.J {(Tr-l(x)): x X} is a dense open subset of Y.
(iii) If x X is atomic, then 7r-l(x) consists only of atomic points. The

corresponding result applies if x is atomless.
(iv) If x X is transitional, then (Tr-l(x)) contains a transitional point.

Suppose in addition that B(S) is saturated. Then:
(v) Suppose that C and C2 are disjoint clopen subsets of Ycontaining only

atomless points. Then there is a homeomorphism g: Y Y such that
glcl: C1 -> C2 and glc2: C2 C1 are homeomorphisms, and g(y) y,
whenever y q C kJ C2.
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THEOREM 2.11. Suppose that f: R
_
S is a local monomorphism such that

B(R) -< B(S), B(R)I < B(S)I, and B(S) is saturated. Then there is a (G-
symmetric of course) twisting (G, ) on .(f), for some group G of
homeomorphisms of X(S), such that R F(X(S), .(f), ). Thus R is the
ring of all --equivariant sections from F(X(S), .’(f)).

Proof Let Y= X(S), X= X(R), 7r= 7rr" YX, .,=_a(f), and
(E, ) -(f). The twisting is constructed from - as follows:

(i) G {g: Y --, Y is a homeomorphism such that for each x X there
exists a clopen set Cx

_
7r-l(x) such that g(Cx )= Cx and

g(y) y, for all y 7r"--’f(x) C,g}.
’g ’g

(ii) {r,z: Y and z(eY) are in the same orbit of G.}.

This theorem asserts that F(Y,_o/’, oq-)= F(Y,.’, ). To see that
F(Y, .o/’, -) F(Y, .’, ), let tr F(Y, .’, -). Thus r,z(tr(z)) tr(y),
whenever 7r(y) 7r(z) (i.e., whenever (x, y) E). Note that each orbit of
G is contained in an equivalence class of E. We now have r,z(tr(z))=
r,z(tr(z)) tr(y), whenever g G and g(z) y. Hence tr F(Y, .’, ).

To prove the reverse inclusion let tr F(Y, ., ). By the construction of

-= -(f) (in Definition 2.5) it suffices to show that, where x X is fixed
but arbitrary, there exists r F(Y, ., Y-) such that (tr r)l-k) 0. We
only give the proof when x is transitional, as easier versions of our argument
apply to the other two cases. The reader should clarify the following steps
with a diagram. Use Proposition 2.10 (iv) to choose a transitional point
y ’-l(x). By the construction of . and - there exists r F(Y, _, -)
(= R) such that r(y)= or(y). Chosen clopen C such that y C, C_
7r- l(x)O, and (tr r)lc 0. As y is transitional, there exist points Ys and
yp C such that yp has a clopen neighbourhood U

__
C containing no

isolated points and ys is isolated. Suppose contrary to our wishes that
(tr- r)l-kx)4: 0. By Proposition 2.10 (i), there exists clopen non empty
D

___
zr-l(x) such that tr(z) 4: r(z), for all z D. Note that C n D . We

shall now establish:

(,) There exists dD, cC, and gG, such that g(d)=c and
g(c) d.

If D contains an isolated point z, then g G where g(zs) y, g(y)
zs, and g(y)=y whenever y {y,z}. Otherwise Proposition 2.10(v)
yields g G such that g(D) U and g(U) D. As tr F(Y, .,) and
r R --- F(Y, ., Y-) F(Y, _o/’, ), (,) establishes the theorem via the
following contradiction: tr(d) tr(g(c)) gc),c(tr(c)) dgc),c(r(c))
r(g(c)) r(d). rq
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3. Representing rings via twisted functions

In this section we apply Theorems 2.6 and 2.11 when R
_
S is a local

monomorphism and S is a ring of continuous functions defined on its
Boolean spectrum, to represent R as a ring of twisted functions (cf. Remark
3.1 and Theorem 3.5.) In Theorem 3.7 we obtain a characterization of those
rings that can be represented using various kinds of twisted functions. Some
particular rings are so represented in application 3.8. To begin, we clarify
(and define) the relationship between twisted sections and twisted functions.

Remark 3.1 (Including some definitions). Suppose that f: R __. S is a
conformal monomorphis, where S -= ((X(S), F), for some indecompos-
able F and isomorphism Let

R F(X(R), k(R))

be the standard isomorphism. Note that:
(1) B(R) B(S) and there is a continuous onto map 7rf: X(S) X(R),

which we denote by 7r in this remark.
(2) k(S) is the simple sheaf X(S) F with the product topology, where

kx(S) {x} F F, for each x X(S) (cf. [12, Definition 11.2]).
(3) There is an isomorphism A-l: -a(X(S), F) I’(X(S), k(S)) given by

A-l(tr)(x) (x, tr(x)). Thus A: F(X(S),X(S) F) ’(X(S), F)is
an isomorphism.

(4) Using (3), f is a local monomorphism iff the map (R): k(y(R) F
given by (R)y(P(Tr(y))) (y) (where r varies over R) is a monomor-
phism, for each y X(S).

Now assume that f: R
_
S is a local monomorphism.

(5) For each y X(S), let Fy Oy(kr(y)(R)). Thus

y
(f) k(y)(R) =-F

_
F.

Consequently

(6) r(x(s), .’(f)) -= ’(x(s), F; {({y}, Fy): y X(S)}.

It is traditional (although not necessary) to avoid repetitions of the Fy in
situations similar to (6) as follows: Let {F: a } be an indexing of {Fr:
y X(S)}, with q X(S) and F :g F, whenever a :g/3 and a,/3 .
Fix arbitrary a and let C, {y X(S): Fr

_
F}. As elements of

(X(S), F) are locally constant and C n rR({Y X(S): f(y) F}), we
see that C is closed in X(S).
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By modifying arguments from [1] we have C,
_
C itf F

_
F, for all a

and/3 , and

(7) F(X(S), _’(f)) -= (X(S), F; {(C,, F,): a ..’}).

Note that Fy can be recovered as Fy n{F: y C}, whenever a .
Let (E, )= o-(f) (cf. Definition 2.5). By (5), can also be viewed

as a collection of isomorphisms z,r’Fy =-Fz, where y and z X(S)
and zr(y) rr(z). By modifying Definition 2.5 to this setting we obtain:

(8) (X(S), F: {(C,,, F): a e }; oq-($)) (= ’(X(S), F; {({y}, Fy): y e
x(s)}; y-(f))

{r (X(S), F; {(Ca, Fa): ot J}): o’(z) dPz, y(O’(y)) when-
ever (y, z) E}.

By Theorem 2.6 we now have:

(9) R (X(S), F; {(C, F,,): a }; -(f)).

(10)

(11)

The natural analogues of (8) and (9) applyto the symmetric twisting
which exists whenever the hypothesis of Theorem 2.11 are

satisfied.
Elements of the rings from (8)-(10) are called twisted functions or
o-(f) equivariant functions or (ambiguously in (10)) G-equivariant
functions, t3

We have already spoken loosely of various kinds of function rings, in this
paper. A formal definition of these concepts follows.

DEFINITION 3.2. In this definition R always denotes a ring, ’ a class of
indecomposable rings, F an element of /, {F: a } a set of subrings of
F, Y a Boolean space, {C,,: a } a collection of closed subsets of Y such
that C

_
C iff F_ Ft (where a, fl ), and Y-a twisting on {Fr"

y Y}, as described in Remark 3.1.
(1) R is an --function ring iff there is a local monomorphism of the form

f: R
_
(Y, F).

(2) R is a standard --function ring iff it has the form

R ((X(R), F; {(C, F); a ,}).
(3) R is a twisted .--function ring iff it has the form

R (Y,F; {(C,,F,)’a J}; -),

where Y is the Stone space of some Boolean algebra A B(R), and the
canonical monomorphism R

_
’(Y, F) is local.
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(4) R is a non-standard /g-function ring iff it is a twisted :function ring
as in (3), A >- B(R), A : B(R), and - is G-symmetric for some
group G of homeomorphisms of Y.

Note that if o-= (E, ) and each r,z were an automorphism of some
fixed H

_
F rather than merely an isomorphism Fz Fr, then the ring R in

definition 3.2 (3) (.) would remain the same. Classical formulations of
twisting use such automorphisms rather than our "partial automorphisms"
y, z. Our formulation of twisting, via the partial automorphism cbr, z" Fz Fr,
can not always be reduced to the classical one. (To find a counterexample
example, let be the class of real closed fields and find o= (E, ) and
y, z Y such that z, : F a(-) a(v-) Fz satisfies z,y(x/)

x/.) However the following modification of [10, Chapter 4, 2, example
14, (p. 153] (with hints on page 124) shows that there are important situations
in which this is possible.

LEMMA 3.3. Retain the notation of Definition 3.2 and suppose that -=
(E, d). Suppose in addition that /g has the amalgamation property and that it
is the class of models of a set of universal sentences. Then there exists H ./g

such that H
_
F and each dpz, can be extended to an automorphism of H.

(In fact, H is simply a suitably chosen saturated element of ’.)
That the class of all fields satisfies the amalgamation property is both basic

and well known. In the 1960’s P. M. Cohn established the far deeper fact that
the class of all division rings also satisfies the amalgamation property, as a
consequence of his innovative work on free ideal rings. A very nice outline of
Cohn’s lengthly proof is given in [10, pp. 108-124].

COROLLARY 3.4. Suppose that R has the form (,) from Definition 3.2 (3),
that -= (E, ), and that

(i) g is the class offields, or
(ii) /g is the class of division rings and R is a yon Neumann regular ring

having no nilpotent elements.
Then R admits a representation as in (,), such that each dpz, y is actually an
automorphism of F, for all y, z Y.

Proof. In case (i) the corollary follows from Lemma 3.3 as the class of
commutative integral domains satisfies the state hypothesis. In case (ii) note
that . is the class of all rings satisfying

(Vr)(r 0 rr- 1).

Thus .’ can be axiomatized using universal sentences in a language ’ that
is suitable for rings and includes an additional unary operation symbol,
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corresponding to -1. The corollary would now follow from Lemma 3.3 so
long as each Fy were an .-substructure of F (i.e., were also a division ring.)
However this is so as, under our hypothesis, k(R) is a sheaf of division rings
and Fy --- k(y)(R), for all y Y. (cf. [3, p. 256, Remark (a)].) t3

In Definition 3.2 we may, when it is helpful to do so, specify the domain of
R to be . When convenient we shall also say that R is any of the above
kinds of function rings iff it is isomorphic to one of that kind. Of course, with
this usage, the domain of R is no longer unique, and R might be both
standard and non-standard. Note that the domain of a standard function ring
R (in the strict sense of our definitions) must be X(R).

For the rest of this paper, R denotes a ring, Y and Z denote Boolean
spaces, and g denotes a class of indecomposable rings. An easy translation
(va Remark 3.1 and Definition 3.2) of theorem 2.6 to function rings yields:

THEOREM 3.5. R is an function ring with domain Y iff it is a misted
function ring with domain Y.

When R is not a standard function ring, it can sometimes be represented
as a twisted or even non-standard function ring with a domain Y that is
closely related to X(R). In fact it is the inclusion B(R) c_ A in Definition 3.2
(3) and (4) that yields the familiar continuous onto map zr: Y X(R).
Whereas an intended embedding R A (X(R), F) may be defective in that
r*" X(R) F may fail to be continuous, for some r R, Y can often be
chosen such that r* can be lifted (through 7r) to a continuous map Y F,
for each r R. The full description of R then follows via twisting. Our
requirement that R c_ (Y, F) be a local monomorphism guarantees that the
twisting functions dPz, " Fr Fz, act on copies of the stalks of k(R), as they
do in previous work such as [1], although the conceptual framework used
there differs from ours. Later in this paper we shall, in essence, give more
details about the epimorphism 7r: Y X(R), by giving more details about
the inclusion B(R) c_ A. Specifically we shall seek representations of R for
which B(R) is dense in A (i.e., each non empty open subset of Y contains a
subset of the form 7r-l(v) where V is clopen in X(R)) or for which
B(R) -< A. In the latter case Y may be viewed as a "non-standard" version of
X(R), much as certain real closed fields with infinitesimals are viewed as
non-standard versions of the real numbers. Elements of zr-l(x), where
x X(R), may then be viewed as being infinitely close in Y. Thus there is an
interplay between our concept of non-standard, and the concept already used
by analysts.
Even if an intended map *" R (X(R), F) is defective as described

above, it will still be an embedding *" R Fx(R). Such maps arise naturally
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as follows:

Observation 3.6. Suppose that F is a ring such that, for each x X(R),
there is an embedding kx(R) - F. Then these embeddings induce

(a) an embedding l-Ixx(g)(kx(R)) Fx(R),
and thus (as R -= F(X(R), k(R)) FXR)),

(/3) an embedding *: R --* FXR).
If in fact * is an embedding

R -#’(X(R), F),

then range(r*) is finite, for each r R. Surprisingly, although the converse
fails, we do have"

THEOREM 3.7. Suppose that F is an indecomposable ring and that ’= {F}.
Then the following are equivalent"

(i) There exists an embedding *: R - Fx(g), arising as in observation 3.6,
such that range(r*) is finite, for all r R.

(ii) R is an --function ring.
(iii) R is a twisted function ring.
(iv) R is a non-standard --function ring.

Proof Identify R F(X(R), k(R)). Clearly (iv) - (iii) and (iii) (ii).
(ii) (i). Suppose that f: R - ((Y, F) is a local monomorphism, and

recall that rf: Y - X(R) is continuous and onto. For each x X(R) choose
Yx Y such that rr (Yx) x, and note that we have an embedding kx(R) - F
given by r(x)- f(r)(yx), where r varies over R F(X(R),k(R)). Thus,
letting * arise as in Observation 3.6, we have range(r*)

_
range(f(r)), for all

r R. Thus (i) holds as, since Y is compact and F is discrete, range(f(r)) is
finite, for each r R.

(i) - (iv). Assume (i). By Proposition 3.5 and Theorem 2.11, it suffices to
obtain a local monomorphism R - ,a(X(A3), F), for some saturated Boolean
algebra A3 such that IA31 > B(R)I and A3 B(R). Choose AI B(R)
such that A is B(R)I +-saturated. Let A2 be the Boolean completion of A1,
Y be the Stone space of A2, and let 7r: Y- X(R) be the continuous onto
map given by Stone’s theorem. For each x X(R), let Ux 7r-l(x)0, and let

U= U{Ux: x X(R)}.

Proposition 2.10 guarantees that U 4: 0, for all x X(R), and (as A is
dense in A2) that U-= Y. Define R ’(U, F) by 8(y)= r*(x), when-
ever y Ux and x X(R). As range (8) range(r*), we see that range ()
is finite, for each r R. Thus, as A2 is complete, [5, Proposition 5.32(A)]
asserts that each f can be extended to an element f of (Y, F). By our
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definitions we have (for all y U):

(?) The map k=(y)(R) --, F given by r(cr(y)) f(y) (where r varies over
R F(X(R), k(R))) is a monomorphism.

As U-= Y, (’1") also holds for all y . Use this fact to show first that
R (Y, F) is a well defined monomorphism and (trivially) that is local.
Note that, whenever 7r: Z Y is a continuous onto map and Z is a Boolean
space, the function R - ’(Z, F) given by [(z) f(Tr(z))(for all z Z)
is a local monomorphism. Thus, to finish our proof, it suffices to obtain a
Boolean algebra A3 _D A2, such that B(R) -< A3. (Routinely, when A3 exists,
it may be chosen so as to also be saturated and satisfy [A31 > [B(R)[.) By [2,
Lemma 9.3.9], the required Boolean algebra A3 exists iff B(R)---v A2. We
are now done, as B(R) -< A1, and as [6, Lemma 2.3] guarantees that A -v
A2 E

APPLICATION 3.8. Suppose that R is a commutative semi-simple algebraic
algebra over a field L. Moreover, suppose that:

(1) F is the algebraic closure of L, or
(2) R and (hence L) are formally real and that F is the real closure of L.

Then R is a non-standard {F}-function ring.

Proof Routinely (cf. [1]) R is avon Neumann regular ring, so that its
Jacobson radical is zero and its spectrum is homeomorphic to X(R). Thus
there is an embedding *: R Fx(R) of L-algebras. Moreover range(r*) is
finite, for all r R, as R is algebraic over L. The conclusion now follows
from Theorem 3.7. D

We finish this paper with some remarks.

Remarks. (1) Any of the rings from [3, p. 250], [5, example 5.31’], or [13, p.
139] satisfy (i)-(iv) from Theorem 3.7, yet do not have an elementary
extension that is an standard function ring, where ’ is the class of
ordered fields.

(2) If R has clopen elementary support (cf. [5, definition 3.4]), then R -< S
whenever R -< T and S is the subring of T generated by R u B(T). Conse-
quently if any of (i)-(iv) from Theorem 3.7 apply to such an R, then our
current proofs guarantee that there does exist a standard function ring
S>-R.

(3) The results from [1] showed that a commutative semi-simple algebraic
algebra over a field L with algebraic closure F could be represented using
twisted functions defined on X(R (R)L F). The methods used there were
entirely different, and did not involve anything analogous to our concept of a
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twisted function ring with a non-standard domain. New examples of twisted
function rings can easily be produced using Theorem 3.7.

(4) Naturally occurring examples of rings to which our work applies can be
found in [8] and [9]. Both [1] and [9] establish that there exist twisted function
rings that are not standard function rings.

(5) Application 3.8 can be strengthened to include the following conclu-
sion: R is an {F}-function ring with domain Y, where Y is the Stone space of
the Boolean completion of B(R). This follows from Theorem 3.5 since, in
both cases, [3, Theorem 3.4], [5, Lemma 5.27] and [13, Lemma 6.1] ensure
that there is an embedding R - ’(Y, F).

(6) We believe (but have not shown) that there is a function ring whose
domain can not be chosen to be the completion of its Boolean spectrum.

(7) The rings characterized by [5, Theorem 5.17 and Lemma 5.7(D)], can be
represented using Theorems 2.6 and 2.11, but usually not using Theorem 3.7.
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