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BOUNDARY VALUES OF ANALYTIC FUNCTIONS
IN THE BANACH SPACE pt(o’) ON CRESCENTS

JAMES ZHIJIAN Qiu

1. Introduction

A simply connected domain [l is called a crescent if it is enclosed by two
Jordan curves, which intersect at a single point. We call this point the
multiple boundary point. The theory of Banach spaces of analytic functions
on crescents has been studied by a number of authors, but there still are
many unanswered questions. Though a crescent fl has a nice and simple
boundary topologically, it does not have many of the nice properties that a
Jordan domain possesses. For example, , the set of polynomials, is not
always dense in the Hardy space nt(’)) (where [1, o)) and this density
property depends on the geometrical properties near the multiple boundary
point (see, [3]). J. Akeroyd shows [3] that if f is bounded by two tangent
circles, is always dense in Ht(12); but this is not always true for the
corresponding Bergman space Lt(f) (see [4]). We say a crescent is A-type if
it is contained in D and is enclosed by OD and another Jordan curve whose
part near the multiple boundary point coincides with the (two) sides of an
angle. It is not difficult to show the polynomials are not dense in Ht(12) if
is an A-type crescent.
To introduce our results we first need some definitions. A measure r is a

harmonic measure of a simply connected domain G if r rn q3-1, where rn
is the normalized Lebesgue measure on OD and q3 is the boundary value
function of a conformal map 0 of D onto G. Two harmonic measures of a
domain G are boundedly equivalent. So if we say r is the harmonic measure
of G, we shall mean o- is a harmonic measure of a fixed point in G. Let
pt(o) be the closure of , in Lt(o-). A point w is called an analytic bounded
point evaluation (abpe) for Pt(o) if there exists a neighborhood U of w so
that for each point A in U there exists a function k, Lq(o-) such that

p(,) fpk do’, p ,, and sup {llk II} < . (1)
hU

Let f(w)= ffkwdcr for each f pt(o-). The function f is analytic on
abpept(o’), the set of abpe’s for pt(o’).
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Fix a crescent fl with harmonic measure r. For the sake of simplicity, we
assume that f c D and OD c 012. Now a fact is:

either abpeP (r) 12, or abpeP (o’) D;

the former equality is equivalent to ,. being dense in Hr(O) (Theorem 1 of
[14]). In this paper we tacitly assume that

abpePt ( o) D.

We show (Theorem 2) that every function f pt(o) has nontangential limits
almost everywhere with respect to rn on OD. Moreover,

f(a) lim f(z) a.e. m on OD,

where the limits are taken in nontangential sense. In other words, every f in
pt(o-) has a boundary value (function) on the circle. Now a natural question
is raised:

If f Pt(cr) and flOD is bounded, is flz) bounded?

In the classical Hardy space case, it is well known that if f pt(m) and f(z)
has a bounded boundary value, then j(z) itself is a bounded analytic
function. The measure rn actually is a harmonic measure for D; it would be
very reasonable for us to expect the same is true for the functions in the
space Pt(o). Unfortunately, this is no longer the case in general.

In Section 2 we present a counter-example. In fact, we construct a domain
(with harmonic measure o-) and an unbounded function h pt(o’) such

that has a continuous boundary value on OD.
Can we have a positive answer to the question for some of these crescents

In Section 3, we give an affirmative answer if l) is an A-type crescent.
Lastly, let/x be a finite positive measure with compact support in the plane

and let S be the operator defined by S,(f) zf for each f Pz(/x). As an
application of the last result, we prove that if - is a positive measure carried
by D and if l) is an A-type crescent, then S+, and S are similar if and only
if - is a Carleson measure on D.
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2. A counter-example

The proof of the following lemma is elementary.

LEMMA l. Let a and b be two positive numbers with b > a. Let Ga, b denote
the crescent enclosed by the circles

Then

z z
1

Z
1 1

-iexp b-] exp b-a z- 1 1

-iexp b-a b-a z- 1 + 1

is a conformal map of Ga, b onto D.

The next result is well known and it can be proved by applying a famous
theorem of F. and M. Riesz [12, p. 70].

LEMMA 2. With the notions above, let x fbl(O) and let s be arclength
measure on OGab; then

dto -lfabl ds

2Let W be the crescent enclosed by circles CO OD and C {z" Iz 71
41/2}; let W2 be the crescent enclosed by C and C2 {z" Iz 71 7}; let

6W3 be the crescent enclosed by C2 and C3 {z" Iz v v}; and let W0

be the crescent enclosed by OD and C3.

Now if we connect z 1 and z i/100 by a segment l, then separates
W2 into two parts. We use V to denote the part completely contained in the
upper plane. Set

U=Won{z’Imz>O}

and set

G=U-V.

G is a crescent and we use to to denote its harmonic measure. Besides the
point z 1, OV has two other singular points (which are the intersection
points of with C and C2), and OG has four more singular points (which are
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the intersection points of with C2 and C2 and the intersection points of the
real axis with Co and C3). For some technical reasons we, in addition, modify
OG and OV slightly at a small neighborhood of each of those ’bad’ points so
that G and V have smooth boundaries except at z 1. With these notations,
now we have:

LEMMA 3. Let hj be the restriction of

-rci )exp z 2 1 + 1

exp

to W., j 1, 3, and let h 2 be the restriction of

exp( -rri
z 1) -1

-rri
exp z-1 +1

to W2. Then hj maps W. conformally onto D for each j 1, 2, 3. Moreover, if s
is arclength measure on OG and " is the harmonic measure of V, then to is
boundedly equivalent to the measure

1 ([Imz[)(*)
[z- 112exp rr s

IZ 112

and " is boundedly equivalent to the restriction of (,) to OV.

Proof Using Lemma 1 with a 1 and b 3, we see h --fl,3 maps W
conformally onto D. Similarly, with a 3 and b 5 for W2, we see f3,5 h2.
Setting a 5 and b 7 for W3 in Lemma 3 yields the desired result for
f5,7 h3. This proves the first part of the lemma.
Now an easy computation gives

exp( -rriz-l) +1

exp ( z 1)-1

2rri ( -ri )(z- 1)
2exp z-l

exp( -rri 2 for j 1,3
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and

-zri)exp z- 1 1

exp + 1z-1

(z- 1)
2exp z- 1

exp( -rri 1)z-i) +

So we see that

Ihjls and Iz 112
exp

Iz 112
7r s are boundedly equivalent.

But w and r are boundedly equivalent on W., j 1, 3, so using Lemma 2,
we conclude that

and
Iz- 112exp -[z_ 112 " s are boundedly equivalent.

Similarly, z and the restriction of

[z 112exp zr
Iz 112

to OV are boundedly equivalent.

LEMMA 4. With above notations, abpept(o) Ufor all [1, ).

Proof Let a G and let q be a conformai map of D onto G that sends
0 to a. Set oa m qS. It is well known that

p(a) fp dooa for each

So it follows by H61der’s inequality that

Ip(a)l _<

Thus, a bpept(oo), so we conclude
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From Lemma 3 we see that - and to iOV are boundedly equivalent; it follows
that"

V c bpept(,r) c bpept(tolOV) c bpept(to).

Consequently,

An appeal to Harnack’s inequality (see [1]), one can easily show that

bpeP’ ( to ) abpePt ( to )

Thus

G U V c abpept(to).

Next we show that abpeet(to) is connected. This is equivalent to show that
pt(to) contains no non-trivial characteristic function (see [18]). Let A c OG
such that Xa pt(to). So there exists {Pn) C such that flxa -Pn In dw
0. Recall the Hardy space Ht(G) consists of all analytic functions f such that
[fl has a harmonic majorant on G. For f Ht(G), the norm can be defined
as Ilfll u(a)/, where u is the least harmonic majorant of f. As a sequence
in Ht(G), our given sequence {Pn} converges to a function, say x, in Ht(G).
Since Xa

2
Xa, it follows that x 2 x. Since G is connected, this implies that

either x 1 or x 0. Hence, Xa 0 or Xa 1.
Let W abpept(to). If W 4: U, then W is a slit simply connected domain

whose boundary is contained in the union of two Jordan curves. This implies
that no conformal map from D onto W is almost one-to-one on OW with
respect to m. On the other hand, according to Thomson’s theorem ([18], we
have an isometrical isomorphism map from Hoo(W) to pt(to) 0 Z(to). Using
Theorem 94 of [13, Miller-Olin-Thomson], we conclude that W must be
nicely connected. This is a contradiction; hence, 14/" U. So the proof is
complete. D

LEMMA 5. If

g( z) ( z -1)2/texp( zr z + l
1- z

then g pt(to).
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Proof We first show that g Lt(oo). Let z x + iy. By Lemma 3 there
is a positive constant c such that

fig ( z )l do) < cfig ( z)l ]z11exp Imz )iz ll2rr ds

<_ cf [(z 1)[2/texp -7- I1 z[ 2

1 (Imz)[z- 1[
2exp

[z- 1[ 2rr
ds

<c exp zr
Ii-z[ 2 exp

II-z12

<c exp rr
I1-zl 2

ds

It is easy to verify that

exp
1 x 2 y2 )rr

l1 z[ 2

is constant on each circle Ci, 1, 2, 3. So we conclude that g Lt(og). Now
set

Tr z+l )gn( Z ) ( Z 1) 2/texp --t- 1 z i/n

Then gn is in the function algebra

A(U) {f" f is analytic on U and is continuous on U}

and hence

gn pt(oo) for each n.

Moreover, since

for all z e G,
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we have

,n- z+l )Ign(Z)l =[(z- 1)2/t[ exp 7 1-z-i/n

( r 1- x2 yE y/nI(z 1)[2/texp -7- [1 z i/n[ 2

(rr l_--_x2_-y 2 )--I(Z 1) 12/texp 7-[1 z 7/-] 2

-< I(z 1)I/’exp -- I1 zl
[g(z)[.

Apparently, gn g pointwise. It follows by Lebesgue dominated conver-
gence theorem that g Pt(to). o

THEOREM 1. There is a crescent with harmonic measure r and there is
an unbounded function h Pt(tr) such that

abpePt(r) D and h [OD is continuous

Proof Choose the region G and the function g as in Lemma 5. Let q be
a conformal map of D onto U, where U is the region as in Lemma 4. Since U
is a Jordan domain, it follows by a theorem of Carath6odory that q can be
extended to be a homeomorphism from D onto U [19, p. 353]. For the sake
of simplicity, we still denote this homeomorphism by q. Let 1 q-l(G) and
let tr be its harmonic measure. Now we claim that

olO Pt(r) and o-llOG pt(to).

The proofs for them are very similar and we only prove the first one. To show
that q[01 Pt(tr), it suffices to prove that q[01 P(tr). Since q P=(m),
there is a sequence of polynomials {pn} such that it weak-star converges to q.
That is,

fo q pn)fdm 0 for each f L (m).
D

Since 1 c D, it is a well-known fact that the measure tr[OD is absolutely
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continuous with respect to m. It now follows that

fo ( o -pn)fdtr -* 0 for each f Ll(tr).
D

Also, the weak-star convergence implies that {p,} is uniformly bounded on D
and it pointwise converges to q on D. Using the Bounded Convergence
Theorem, we conclude

acD(q --pf,,)fdo -- 0 for each f Ll(tr).

Therefore, we have

f0a(q p,)fdtr 0 for each f Ll(tr).

That is, {p,} weak-star converges to q; and hence q P=(tr). The claim is
proved.
The restriction of q to 1 is a conformal map of fl onto G. So tr q-1 is a

harmonic measure of G. Thus, tro q-1 is boundedly equivalent to to. Let g
be the function as in Lemma 5. There is a sequence of polynomials {%} such
that

q,, g in pt(to).

Let h g q. We have

Ih -qn qgl do"-- LGIg- qnl d(o" q

Since q Pt(tr) n L=(tr), and since pt(o-) n L=(tr) is a Banach algebra, it
follows that

qn q9 pt(o.) 0 Z(o’).

Consequently,

h pt(o).

Now we want to show that

abpept ( o-) D.

Let tr be a conformal map of gl onto D. In light of Theorem 1 of [14], the
fact abpept(o-) D is equivalent to the fact that a is not in Pt(r). To prove
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the latter, we argue by contradicting; suppose there is a sequence of polyno-
mials {Pn} such that

flPn a]t do- O.

Note that

f0 IO qg-1 --Pnqg-llt d(O-q9
G

-1) f012lO pnlt do" ---) O.

Also note that Pn -1 pt(to)for each n. It follows that

01 q-i pt(to).

On the other hand, the restriction of a q-1 to G is also a conformal map of
G onto D. Using Theorem 1 of [14] again, we conclude

abpept ( to ) G 4: U,

a contradiction to Lemma 4, Hence abpept(o") D.
Finally, one verifies that

g( z) ( z --1)2/texp( w"

l z+’--’---l )
is continuous on 0D and g is unbounded on G. Since q is a homeomorphism
from D onto U, we see that h g q is the desired function. The proof is
complete, rq

3. On A-type crescents

The following theorem says that f has boundary values on OD for each f
in pt(o").

THEOREM 2. Let 12 be a crescent with harmonic measure o". If abpePt(o")
D, then fhas nontangential limits almost everywhere with respect to m on OD

for every f pt(.). Moreover,

f(o") lim f(z) nontangentially a.e. m on OD.
Z-)O"

Remark. The hypothesis abpept(o")--D implies that l) is a crescent
which has 0D as its outer boundary. Also note that we do not require 12 to
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be an A-type crescent (see the definition of A-type crescent at the beginning
of this article). Theorem 2 works for all crescent with abpeet(o") D.

Proofi Suppose that f pt(o’). Choose Pn such that

flPn --fl dr O.

Let q be a conformal map of D onto 12 and let q3 denote the boundary value
function on OD. Note

flPn f dm O.

Since Pn (9 pt(m) for each n, we get

fopt(m).

Now we claim that

;oq(z) =f(z) forallzD.

Let L -1(0" OD) (note, OD is a part of 0f). It follows that L is an
open arc on the unit circle OD (this can be proved using Carath6odory’s
Theorem [19, p. 353]). Since f(z) is continuous at every point of 0f OD, it
follows that for every eix L,

lim fop(z)=f( lim q(z))
Z eix z eix

=f((eix))
=f((eiX)),

where all limits are taken nontangentially. On the other hand, if we take the
nontangential limit

lim f’(z) (fo (9)(eix) f((eiX))
Z eix

for almost every x [-Tr, 7r]. Consequently, the nontangential limit

lim [/o q(z> f’< z)] 0
z e
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for almost every point eix on the arc L. Applying Lusin-Privaloof’s theorem
[19, p 320], we conclude

foq(z) =f’(z) forzD.

The claim is proved.
Now let J qS-I(0D) (again, OD is a part of the boundary of f). Again

applying Carath6odory’s Theorem we see J is an arc on the unit circle. Since
both OD and J are smooth, q-1 preserves angles at almost every point of OD.
Therefore, for almost every/3 OD we have

lim f(w) lim f(q(z))
W Z -1()

lim fo+(z)

lim "(z)
z--(/)

f q3(Z)(q3-1(jS))
=f(fl)

where all limits are nontangential. The proof is complete. []

The next lemma can be found in [3]; a proof can also be given using
Lemma 2 (one may also consult Ahlfors [1, p. 236]). We state it her for
reader’s convenience.

LEMMA 6. Let G be a Jordan domain such that OG is smooth except at one
point a. Suppose that OG forms an angle a at a with a < 7r. Then the harmonic
measure for G and the measure (Iz a 1)s are boundedly equivalent, where
s is arclength on OG.

The work in [3] is the inspiration of the next lemma as well as our work on
A-type crescents.

LEMMA 7.
Then

Let f be an A-type crescent and let tr be its harmonic measure.

abpept ( o") D.

Proof. Let y be the Jordan curve such that y u OD 012. Without loss of
generality we may assume z 1 is the multiple boundary point of 0. Since
f is an A-type domain, there exist two segments c y and 2 y such that

11 and 12 together form an angle at z 1 (note, by definition a crescent is
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enclosed by two Jordan curves, so y has only one intersection point with
OD). Clearly also forms an angle a with the vertical line Re z 1, for
each 1, 2. We may assume that 0/1 < 0/2 < "/7" (note, 0/i > 0 by the defini-
tion of an A-type crescent). Using the above lemma we can find constants
c>0and r>0suchthat

do.]OD > c Iz 11 dm.

This implies that log(do./dm) Ll(m). Now a simple application of Szeg/5’s
Theorem [9, p. 136] shows that abpeet(o.) D. So the conclusion follows by
the above measure inequality. D

The next theorem is a maximum principle type result for functions in
pt(o.) on A-type crescents.

THEOREM 3. Let 12 be an A-type crescent with harmonic measure o.. If
f pt(o.) and flOD L=(o.), then f pt(o.) L=(o.).

Proof
such that

Suppose that f Pt(o-) and IOD L(o.). So there exists {Pn} C

--fl do" --+ 0 as n - 0.

We may assume that z 1 is the multiple boundary point. As in the proof of
the previous lemma, there exist two constants c > 0 and r > 0 such that

do"lOD >_ c lz i dm.

Hence

flPn --fltlz iI am --+ O.

We express the last limit as

fODI Pn( Z 1) r/t fo(Z 1) r/tl

where f0 flOD. Set u fo(z 1)r/t. Then

u fo(Z 1) r/t pt(m).
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Since (z 1)r/t is bounded, it follows from the hypothesis that

u L(m) n Pt(m) P(m).

re /2r thenNow if we let v =j0

U ut/2r( Z 1)--1/2.

One can directly check that

sup
r<l 1 rei

1/2
dO

so (1/(1 Z))1/2 pl(m) (see [8], or [101). Obviously IAt/2r P(m), it now
follows that

U ulS2r(z 1) -’/2 pl(m);

fO u2r/t pt/2r(m)

But f0 L(m), so

fo L(m) n pt/2r(m) P(m).

Now let^f0 the analytic extension of f0 on D. We note fo H(D) and
lim a f0(A) nontangentially a.e. [m] on OD. Combining this fact with the
proceeding theorem, we obtain

lim f(z) f0(z)] 0 nontangentially a.e. [m on OD.
z h

Using Lusin-Pfrivaloff’s theorem [19, p. 320], we conclude

f(z) =fo(z) for each z D.

Hence f is bounded on D. But f(z)= f(z) a.e. [rlz 0O n D, so we
obtain

f L(o-) n P’(o-).

The proof is complete, t3
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4. An application to operator theory

A positive measure 7. on D is a Carleson measure if there is a positive
constant c such that for all [1, ),

Ilpll,<) cllpllz_,t<m> for p .
A theorem of Carleson [10, p. 238] shows that a measure 7. on the unit disc is
a Carleson measure if and only if there exists a positive constant A such that

tZ(Ch) < Ah

for each Carleson square

Ch {z re it" 1 h < r < 1; o < < o + h}.

THEOREM 4. Let f be an A-type crescent and let tr be the harmonic
measure of 12. If z is a finite positive measure on D, then S+ and S are
similar if and only if z is a Carleson measure on D.

Proof Suppose that S+ and S are similar. Let A: p2(o- + 7-) --+ p2(o-)
be an invertible operator such that

AS+, S,A.

For every p , one verifies that

A(p) (A(1))p and A-l(p) (A-l(1))p.

Moreover, if we let u A(1) and v A-1(1), then

(2)

and

IlZ II lip II II p + IIZ- 111 lip II. (3)

Replacing p by znp in (1) and letting n , we obtain (note, Izl < 1 on D)

Ilupll0 IIAII lip lib0 for each p , (4)
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where tr0 trlOD. Now we claim that

u e L(o).

In fact, (3) implies that the operator Mu, defined by

M,( p) up for each

is a bounded linear operator on p2(o-0). So we have

flunl 2 dro flMun(1)12 do

IIMu 2nf do.o

IIMull2no’o(OO) for each n > 1.

Thus,

U
2n

do’o(OD) for all n.

Hence

lu(z)l IIMull a.e. [tr0] on OD,

which proves the claim. By Theorem 3 we conclude

lul IIMull a.e. [tr].

Now we claim:

1 1
a.e. [r + ’]A-I"I" A(1) uU

Let {Pn} such that Pn converges to A-l(1) in p2(o + "r). By passing to
a subsequence if necessary, we see that Pn ---)A-l(1) a.e. [tr + z]. Now the
continuity of A implies that

UPn ---) 1 in p2(o’).

So there exists a subsequence {Pni such that UPn converges to 1 a.e. [tr].



IN THE BANACH SPACE pt(o’) ON CRESCENTS 321

Since

D D abpep2(tr + z) abpep2(tr) D,

it follows that pn converges to t3, the analytic extension of v on D, uniformly
on compact subsets of D. But v t3 a.e. on D, so uv 1 a.e. [tr + 7.]. Thus
v 1/u a.e. [tr + 7.]. The claim is proved. Now for p , we have

It follows that 7. is a Carleson measure on D.
Conversely, assume that 7. is a Carleson measure on D. There exists a

constant c > 0 such that

Ilpll, c llpll for each p

Define an operator A: p2(o’) -- p2(o" + 7") via A(p) =p for each p .
Then (4) implies that A is bounded. A is one-to-one and onto, so it follows
by the Open Mapping Theorem that A is invertible. Clearly, AS, S,+,A.
So S and S+, are similar. []
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