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COMPLEMENTED HILBERTIAN SUBSPACES IN
REARRANGEMENT INVARIANT FUNCTION SPACES

YvVEs RAYNAUD

Introduction

A classical paper of Rodin and Semenov [RS] studies the closed subspace
generated by Rademacher elements in a symmetric space X (defined on the
interval [0, 1]) and gives a necessary and sufficient condition on X for this
subspace to be 1somorphlc to the space /,. Let M be the Orlicz function
defined by M(u) = e*" — 1, and L,, be the associated Orlicz space on [0, 1],
Il llar its norm. Then this condition reads:

(1) 3C <o, Vf € L([0,1]), lflix < Cliflln

or equivalently the closure # of L[0,1]) in L,, is (algebraically) included
in X.

When this condition is realized, this /, subspace is complemented in X if
moreover X is (algebraically) included in the dual Orlicz space £* =
L, ([0,1D (M, is the Young conjugate of the function M; it is given, up to
equlvalence by M, (t) = ty/log et ), or equivalently:

(2) 3C <= VfeX, lIfllm, < Clifllx.

This was shown independently by Rodin and Semenov (1979) [RS2] and
Lindenstrauss and Tzafriri (1979) [LT2]. These results were extended by
Bravermann (1982) [B] in a short note, showing that if a sequence (X;) of
independent individually distributed random variables spans /, in the rear-
rangement invariant space X, then the variable X; belong to L, and £ C X.
If moreover (X;) span a complemented closed space, then X C £*.

In the first two sections of this paper we show that, roughly speaking,
condition (1) characterizes when the r.i. space X contains a subspace isomor-
phic to I, (in short “hilbertian subspace”) while conditions (1) and (2)
characterize the situation where X contains a complemented hilbertian
subspace. This gives an answer to a question of E. M. Semenov (as reformu-
lated in [T)).
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COMPLEMENTED HILBERTIAN SUBSPACES 213

However, as is well known, there exist Orlicz functions ¢ which are not
majorized by M, (resp. nor majorizing M, ) but such that L, contains a
hilbertian (resp. complemented hilbertian) subspace; the elements of the /,
basis being disjoint elements of L, (in fact this can be obtained in the
sequence space [,—see [LT]). Thus we have to discard this case by an
additional hypothesis, to be able to obtain (1) and (2) as necessary conditions.
We add also an order continuity hypothesis on X (note that if X is not
order-continuous, it contains /., hence /,).

The characterization of the existence of hilbertian subspace by condition
(1) was already obtained by E. V. Tokarev [T], using a result of Gaposhkin
[G] and Rosenthal’s embedding theorem for hilbertian subspaces of L;. The
proof given here is reformulated in order to extend to the case of [, -sub-
spaces (1 < p < 2), and to introduce to the proof of the complemented case.
This second case was partially solved by Tokarev in the same paper, in fact
for subspaces belonging to a particular class Ky(X) (in our terminology,
when the unit ball of the space is X-equiintegrable). In the case where X is
g-concave, for a g < 2, this implies the conclusion of our Th. 4, since all
hilbertian subspaces of X are then in the class K, (X). It is possible in fact to
prove directly (using Lemma 10 below) that, under our hypotheses, if X
contains a complemented hilbertian subspace, then it contains another one
which belongs to the class K,(X). This gives an alternative proof of our
result (Theorem 4), which however does not lead to the quantitative version
we give in §3.

In this section, given the additional assumption that X does not contain
¢o, we show the equivalence of the existence of a factorization

L, -t x T,

of the identity of the Hilbert space with ||7r|| ||i|| < C and of the existence of
two variables A.G € X, B.G € X', where G is a normal Gaussian variable
independent from (A4, B), and (A, B) = 1, ||[4.Bllx|IB.Gllx < C.

Note also that the analogous problem, for finite dimensional spaces /5 was
considered in the chapter 9 of [Ka], where a criterion is given for a general
Banach lattice not to contain /5’s uniformly complemented. If one defines
the constants d,(X) to be the least constants such that L[|f;|| < d,[IXf,ll for
all disjoint families of n vectors in X, this criterion reads:

liminf d,.(log n) ~'/* = 0.

In the case of r.i. spaces, say on [0, 1] it is easy to see that under this
condition, /, cannot be a sublattice of X, and X does not embed alge-
braically in L, ; i.e., the condition (2) is violated. However this criterion
seems to be generally stronger than the negation of condition (2).
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In the last two sections, we investigate when a rearrangement invariant
function space X is isomorphic to its Hilbert valued extension X(/,). (This
question for spaces with unconditional basis is studied in [KaW]). For an
Orlicz space this happens exactly when its Boyd indices are non trivial, i.e.,
when it is reflexive (Section 4). For a g-concave, g < 2, r.i. space over [0, 1], a
necessary and sufficient condition is that the lower Boyd index of the space is
non-trivial (strictly greater than 1) (Section 5). Note that, by known results,
the non-triviality of both Boyd indices is equivalent (for order-continuous r.i.
spaces) to the fact that X has an unconditional basis (in fact, that the Haar
basis is unconditional): see [LT2], Theorems 2¢6 and 2cll. This could
perhaps give a way to generalize our results to more general r.i. spaces.

We refer to [LT2] for basic facts about rearrangement invariant function
spaces. The definition of r.i. space we consider is that of [LT2]; more
precisely the function space X (over I =[0,a] or = [0, %)) is r.i. iff i): for
every x € X, its rearrangement x* has same norm, and ii): either simple
integrable functions are dense in X, or X has Fatou property ([LT2], p. 30).
If (Q, o, u) is an arbitrary measure space, X({, &7, u) is the space of
measurable functions on ) whose rearrangements are in X(I).

A reference for ultrapowers and ultraproducts in [H].

1. [ -subspaces of rearrangement invariant spaces

If X is a Banach lattice, we denote by X’ the Nakano dual of X, i.e., the
space of o-order continuous elements x* of the dual: x, € X, x,]0 =
{x,,x*) = 0. When X is order continuous then X' = X* and X embeds
isometrically in X".

ProrosiTiON 1. Let X be an order continuous rearrangement invariant
function space, and 1 < p < 2. Assume that X does not contain the space l, as
sublattice. Then X contains 1, as subspace iff X" contains a p-stable random
variable (a Gaussian variable when p = 2).

Remark 2. Let X([0, 1]) be the restriction of the space X to the interval
[0,1] (in the case it is defined on [0, «)). Let ‘/;,, resp & be the closure of
L (0,1D inzthe weak L, space L, ., resp. in the Orlicz space L, ([0, 1]
(M(u) = e* — 1). Then X” contains a p-stable, resp. Gaussian variable iff
the space ./, resp.  is (algebraically) included in X ([0, 1)).

This remark is simply a consequence of the classical estimation of the tail
of a p-stable random variable vy, (see [F]: P(ly,| > ) =77 for t — o,
Hence L, ([0, 1]) is simply the space of functions which are majorized, up to
a rearrangement, by an homothet of Iypl + 1. In the Gaussian case, note that
the Orlicz space L, ([0,1]) coincides with the Lorentz space L, (0,1])
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(which consists of functions which are majorized by a function equimeasur-
able with an homothet of |G| + 1, G a normal Gaussian variable): see [LT2],
Thm. 2b4 and its proof.

Remark 3. When X is order continuous, the Fatou property (X = X”) is
equivalent to the fact that X does not contain ¢, as subspace. In this case,
again with the hypothesis that X does not contain [, as sublattice, X
contains [, iff it contains a p-stable (resp. Gaussian) variable.

Proof of Prop. 1. (a) We prove first the necessity.

Let E be a I, subspace of the r.i. space X (defined for instance on [0, »)
equipped with Lebesgue measure A). Then the norm on X is equivalent to
the L,(U) norm on elements of E, for some measurable subset U of finite
measure. For, if not, there is a sequence (f,), in the unit sphere of E such
that Va > 0, [§|f,|dA — 0 as n — . Using the order continuity of X, we
deduce that Vk, || If,] A If,| llx = 0 as n — ; after suitable extraction we
obtain a I -basis (f,), in E and a disjoint sequence (f,), which are equiva-
lent for the norm of X, a contradiction.

We use now the following fact, which is a consequence of the paper [DCK]
by Dacunha-Castelle and Krivine on subspaces of L, (see also [A)]); in the
hilbertian case, as noticed in [T], it is also a consequence of Gaposhkin’s
result on the central limit theorem for sequences of functions ((G], Thm.
1.5.1) and of Rosenthal’s theorem on subspaces of L, (IR}, Thm. 1). Every
infinite dimensional [/, subspace of a space L,(U) contains a normalized [,
sequence of functions whose distributions are asymptotically conditionally
p-stable (with same parameter) and conditionally independent. More -pre-
cisely, there exist a superspace L(U X S, A ® o) (where o is a probability),
a function Y in L (U X S, A ® o) which has conditional p-stable distribution
(i.e., Y(w, +) is a p-stable variable for a.e. w € U), and a normalized
sequence (f,) in L,(U) which converges “weakly conditionally in distribu-
tion” to Y, in the sense that for every bounded continuous function ¢ €
C,(R),

Jim o(f,) = [@(Y(+,5)) do(s)

where the limit is taken in the o(L,, L,) sense; or, equivalently,

Ve L(U), (f.f) =5 (f,Y)

where “dist” refers to the usual weak convergence of probability distributions
(or more generally of finite measures). This second definition is only appar-
ently stronger than the first one, in the case of L,-bounded sequences. We
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refer to [BR] for an extensive study of this kind of distributional convergence
(which we call in short “wcd” hereafter).

We shall use the whole information given by this result only in §2, and use
here only the fact that the distribution of (f,) converges to that of Y. Using
[LT2], remark following 1.b.18, it is easy to see that Y € X” (with ||Y|lx» <
liminf, . If,llx). But Y is equimeasurable with a function of the form
A ® vy,, where A € L{(U) and v, is a p-stable variable (defined on (S, o).
Since conditional expectation operators act on X”, we see that

” = —1
aly ® y, € X"(U X S) (wherea— XY fUAdA),

hence vy, € X"(S, o).

(b) The sufficiency of the condition results in the hilbertian case from the
Rodin-Semenov theorem (see [LT2], Thm. 2b4). In the [ -case, we have to
work a little bit more. Suppose that X” contains a p-stable random variable
y,- It is well known that v, can be realized as a product G ® y'/2, where G
is a normal Gaussian variable, and y is a positive (p/2)-stable variable.
Consider in X(Q X §) the sequence (G, ® Y,)%_;, where the G, are inde-
pendent normal Gaussian variable, and the Y, are independent truncated
square roots of (p/2)-stable positive variables (Y,> is equimeasurable with
Y1y <. For all f € X"(Q X ), we have

dist

f+G,®Y, —f+T,

where T' is a p-stable variable independent from f (to fix ideas, let us
consider that I' € X"(T)). Hence

“,?Lij,?f”f + G, ® Y, llxaxs) = If + Tllxnaxsxry-
But if f takes itself the form G ® &, G Gaussian in L°(Q), h € L°(S), then
IGeh+G,®Y,l ="G ® (h* + Y,,2)1/2|| s”G ® (h* + y)1/2||
=IGeh+G,®y'? | =IIGeh +Tl;
thus we have in fact the equality

lim [If + G, ® Y, llx"@axs) = If + Tllx"axsxr)-

n—o

The end of the reasoning is now a matter of folklore, inspired from [KM]
(see also the proof of Lemma 10). Let E = span[G, ® Y, ], . The preceding
shows that the spreading model generated by the sequence (G, ® Y,), over
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E is isometric to the space generated by E and a sequence (T,), of
independent p-stable random variables (in a suitable extension X”(Q) X § X
TVY); ie.,

n

x+ Y arl;

JJ
i=1

Vx €E, lim lim --- lim

ook, —>x ky—oo

n
x + ‘Zlaijj ® Yy,
i=

We have moreover that, for all k; <k, < ...k

n’

n
x+ 2 a,G,®Y, +a,.,G,0®Y, + L afl;
j=1 j>n+1

(3

—_—
m— oo

n
x+ Y a,G, @Y, + 3 al;

j=1 ji>n

and this convergence is uniform for X|a,|” < 1. Note that in (3), the lefthand
side is simply

’

n 1/p
x+ Y a;,G,®Y, +a,,,G,®Y, + ( Yy |aklp) T,
i=1 k>m+1

while the righthand side equals

n 1/p
x+ Y a,G,®Y, +a,. I "‘( )y |ak|p) L ||

j=1 k>m+1

If we choose n, ., such that the difference of the two sides in (3) is less than
£27% (for all (a,) with T]a,|” < 1), this procedure gives a subsequence
(G,, ®Y, ) which is (1 + &)/(1 — &) isomorphic to /,. O

2. Complemented hilbertian subspaces of r.i. spaces

The main result of this section is the following Theorem 4 on comple-
mented embeddability of /, in an r.i. space. In the remainder of this section
we associate to such a complemented hilbertian subspace conditionally
Gaussian variables in both the spaces X and X', which will be the main tool
in Sections 3 and 5.

We introduce two notations:

If X is an r.i. space over [0, ), we denote by X([0, 1]) its restriction to the
interval [0, 1].

If f, g are two functions in X, resp. X', we denote by {f, g) the duality
bracket, i.e., the integral [fgdA.
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THEOREM 4. Let X be an order continuous rearrangement invariant func-
tion space (over [0,1] or [0,)), not containing 1, as complemented sublattice.
Then X contains a complemented hilbertian subspace iff both X' and X" contain
a Gaussian variable, or equivalently & c X([0,1]) c #'.

Proof of Theorem 4. The sufficiency of this condition results from the fact
that it implies that Rademacher functions span a complemented hilbertian
subspace (see [LT2],Thm. 2b4). Now we prove the necessity. By the proof of
Proposition 1, it suffices to prove that both X and X' must contain an
hilbertian subspace which is strongly embedded (i.e., on which the topology
of X, resp. X', agrees with the L,(A4)-topology, relative to some integrable
subset A of [0, ©)). Assume that this is not the case. Consider a projection P:
X — X, the range of which is an hilbertian subspace, generated by a
sequence (g,)7_,, which is equivalent to the natural /,-basis. Since X* = X’,
the projection P takes the form

Pf= E <f’hn>gn
n=1

where (h,);_, is a sequence in X’ which is biorthogonal to the sequence
(g,)5_(g,, h,,> =9,,) and which is clearly equivalent to the I,-basis.
Suppose for instance that X’ does not contain a strongly embedded hilber-
tian subspace. Then for all N > 1, there exists some 4 € span(h,), , y such
that ||#]lxy = 1 and ||1[0 il < < 27N, Proceeding inductively, we obtain a
sequence of functions h, = e ,a(”)hj in X ', which are disjoint succes-
sive blocks of the h], satisfying ||h llx = III[0 nin llL, <27". We have
la®ll; = (E;c;, la{™|?)1/2 ~ 1. Choose B(") = (BM); € I, with [IB™, =
la]3 ! and r B‘”)a(”) =1, and set g, =X, B(")gj Then P: X — X:
Pf=XXf,h >g,, is another projection onto an hilbertian subspace of X,
with moreover 4, — 0 locally in measure as n —  (i.e., in measure on every
integrable subset of [0, «)). Since the unit ball of every r.i. space is bounded
in measure, so is the sequence (g,),,, and hence §,,71 — 0 locally in measure
as n — o, On the other hand [g,h,d\ = (g,, h,> = 1. The same is true
when X is supposed not to contain a strongly embedded hilbertian subspace.

So we can suppose w.l.o.g. that the sequence (g,.%,,), (Which is bounded in
L)) is not L,-equiintegrable. By passing if necessary to a subsequence, we
can suppose that there exist a 8 > 0 and disjoint sets (A4,) so that:
Ja,\fal 18,1 dX = c, > 8. Now, the formula

Of = Yey'(fily |h,)1, |8,

defines a bounded projection in X, whose range is a sublattice isomorphic to
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1,, which provides a contradiction. In fact, choosing unimodular elements
u,v € L, with 1, |h,| =1, uh,, 1, |g,| =1, vg,, we have

Of = vY.c; 1, P(Luf ) = vR(uf)

Up to the coefficients ¢, !, the operator R is “block-diagonally” extracted
from P, hence bounded by a well-known argument due to Tonge (see [LT],
Prop. 1c8), and so is Q. On the other hand the (unconditional) basic
sequences g, =1, g, and k), == 1, h, are dominated by the (/,) sequences
(g,), resp. (h,). For, denoting by (¢,) a sequence of independent Bernouilli
random variables, we have for every sequence (A,) of scalars (with finite
support):

|=. <
X X

EE

A8,
n

Y E,A,8
n

an/\ngn
n

X

<E,

~

X

Y e,M,8,
n

> A,8,
n

X

where the first inequality is a consequence of the pointwise inequality

EG

Y E,A,80
n

<E,

ZSnAngn
n

(as long as |g,| < |g,| pointwise), while the second one is simply the
triangular inequality. Thus the sequences (g)) and (c, ') are both domi-
nated by the [,-basis, and since they are biorthogonal, they are in fact
equivalent to the /,-basis. O

ProrosiTiON 5.  Let X be an r.i. space over Q) = [0, 1] or [0, ®), satisfying
the conditions of Theorem 4. For every projection P: X — X with hilbertian
range E, there exist an l,-basic sequence (x,) in E and a biorthogonal l,-basic
sequence (x.,) in the range of P* such that:

(1) the sequence (x,) converges wcd to a conditionally gaussian variable
A®GeX"(Q x[0,1D;
(i) the sequence (x!) converges wcd to a conditionally gaussian variable
B® G eX'(Qx][0,1];
Gii)) (A4,B) > 0.

Proof. The reasoning of the proof of Thm. 4 shows that if P is defined by
Pf=Yr_[f,h,g,, where (g,) is a l,-sequence, there exists an integer n,
such that (g,), ,, and (%,), ., span closed spaces of X, resp. X' whose
topology coincides with that of some L,(A) (A of finite measure). By
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Gaposhkin’s Theorem there are sequences of successive disjoint /,-normal-
ized blocks x, (resp. B ® G). We have 4 ® G € X"(Q2 x [0,1) and B® G
€ X'(Q X [0, 1]). But in fact Gaposhkin’s result is that, after extraction of a
subsequence, every system of block coefficients a™ = (a{®), with ||a™||, =
1 and |la®™|l. — 0 gives rise to this wcd convergence. So we may take
I,-conjugate systems of block-coefficients for the x,’s and the x’s, and
obtain that {x,, x,,) = 3,,,, i.e., these sequences are biorthogonal.

It is clear that we may suppose that A, B > 0, so to prove (iii), it suffices to
prove that the functions 4 and B are not disjoint.

Suppose at the contrary that A and B are disjoint, i.e. that there exists a
set U € & such that 1,4 = 0 and 1;,B = 0. We then have

wed

1,.x, >, 0 and 1,x, — 0;

a fortiori this convergence happens in distribution, hence in measure. Thus
the L,-bounded sequences 1,x,x, and 1,.x,x, converge to zero in mea-
sure, but at least one of them does not converge to zero in norm (since
Jx,x,, dA = 1). As in the proof of Thm. 4, we can then exhibit two biorthogo-
nal sequences (y,) and (y,) in X resp. X', which are dominated by (x,),
resp. (x/), (hence equivalent to the I,-basis), and give rise to a projection
X — X whose range is a complemented hilbertian sublattice of X, a contra-
diction. 0O

Before the end of this section, and in close relation with Prop. 5, we give a
result on the projection onto the span of conditionally independent Gaussian
variables, which will be used in Sections 3 and 5.

ProposITION 6. Let X be an r.i. function space over a product space
(Q xS, 3, u ®0). Let G be a normal Gaussian variable, and (G,) a
sequence of independent normal Gaussian variables in L°(S, 3., o).

(a) If there are A, B in L°(Q, o7, u) such that A® GEX, B® GEX’
with (A, B) = 1, then the sequence (A ® G,), spans in X a C-complemented
closed space, where C = ||A ® G|lx||B ® G| x.

(b) Suppose that X is order-continuous. Then conversely if A € L%(S, 3, o)
is such that the sequence (A ® G,);_; spans in X(Q X S) a complemented
closed subspace, then there exists a function B € L°(Q, 7, u) such that
BGeX(Qx3),{A,B)=1,and

4 ® GlixllB® Glly < C.
In particular, X' contains a Gaussian variable.

Proof. (a) The sequences (A4 ® G,) and (B ® G,) span isometric copies
of I, in X, resp X'. We define a projection R: X - X by: Rf = £, _{f,
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B ® G,)A ® G,. The norm of R is evaluated as follows:

IRfllx =

X

1/2
(Z|<f,B ® G,,>|2) I4 ® Gllx
(Zan<f’B ® G,,>)||A ® Gllx forsome a, €R, Y a?=1
n

- <f, La,B8G >|IA ® Gliy

< ||f||X
n

X!
= lIflxlIB ® Glixl4 ® Gllx

Hence [|IRfIl < CIIfll.

(b) Now we prove the converse. We can w.l.o.g. suppose that (S, 3, u) is
the product space RN equipped with the standard Gaussian measure 7y, and
that G, is the nth coordinate map RN — R. The orthogonal group O(n) acts
on R”, leaving the n-dimensional gaussian measure invariant; let us consider
that O(n) acts on RN, by changing only the # first coordinates. Each element
U of O(n) gives rise to an isometry of X, again denoted by U, and defined by

Uf(w,(x,--5 %) Xpp15---) = f@, U*(xq, ... X,), Xy q -0 )

Note that if (u;;) is the matrix of U (relatively to the natural basis) and
f=ZX7_1A; ® G; (where the A, are o#measurable functions) then U.f =
X, ():,u,,)\,) ® G

Let E = span[A ® G,I"_, and P be a given projection from X onto E,
and set

R, =f U*PUdo,(U),
O(n)

where o, is the normalized Haar measure on the compact group O(n). R,
is clearly a projection onto E, invariant under the action of O(n) G.e.,
VV € O(n), R,V =VR,) and of norm |IR,|| < ||P|l. Note that R,R,, =
RmRn = Rm An*

The set (R,)%_, is relatively compact in the weak operator topology (due
to the reflexivity of E), and has a unique cluster point R (because if f € X
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depends only on « and the n first coordinates, then Vm > n, R,,f = R,f),
which is invariant under the action of O(n) for all n € N. Let us write:

Rf = i<f’hi>A®Gi

i=1

where h; € X*(Q X RN) (note that X’ = X* as X is supposed to be order
continuous). Then for every U € O(n),

RUf = f: (Uf,hj>A ® G;
i=1
i (f,U*h)A ® G, = f‘, (f,h;ioU)A ® G,

i=1 i=1

and, on the other hand, (u;;) being the matrix of U,

URf = ig();ui,.<f, hyA ® G,-) > <f, Lt ,>A ®G,

i=1

whence we obtain

Considering the sequence (h,)7_, as a measurable map h: O X RN — RY,
and associating to U € O(n) the bijection U of Q X RN acting only on the n
ﬁrst~ coordinateOls in RN as U, we have thus the functional equation:
hoU=U-°h.

If U belongs to the subgroup I'; n of O(n), whose elements leave the first
coordinate inchanged, we obtain in particular: hy = h;e oU, hence h, =
Jr, Bae «Uda, (U), where o, is the Haar measure on I, ,, hence h, is
clearly a (measurable) function of w, X, 20X Xy yq,... . Let &, be the
measure-complete o-algebra generated by o7, G, Y7 Gz, wtp--- and
% = N,%,. Then h, is & -measurable for all n, hence 9" measurable. But
%, = a(, G,) (the measure-complete o-algebra generated by & and G,):
for, if feL, is of the form f=g-¢(G,,...G,), where g€ L, is
o(&7, G,)-measurable, and ¢ is a continuous bounded function on R”, set
fe =8 &(Gyipn---Guiny); then E%=f, = E~f by symmetry; hence

f + - +f
E%f = BTk s 0Ee(G,,...G,)

by the law of large numbers applied to the f; = ¢(G; 44, - - - Gipt1yn)-
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Finally 4w, x,,...) = H(w, x,) a.e., and, using the relation 4 o U=U-h
for U the orthogonal symmetry exchanging the coordinate x, and x,, we
have

h(w,x,...x....) =H(w,x;) ae. (Vk = 2).

Using now the relation Ao U = Uo h for U being the central symmetry, we
obtain

(1) H(w,-x) = —H(w,x) fora.e. (v, x);

and if U is the transformation

(x1,x5) = ( 2 2

we obtain

+ H(w, + H(w,
(2) H(w,xl‘/Tz_xz)= C x1)‘[2_ (@, x) fora.e. w, x, x,.

Then H is a.e. equivalent to a function H, whose partial functions ﬁw:
x = H(w, x) are of class C' for a.e. w. (if ¢ is a centrally symmetric C!
function with compact support and integral 1, it is straightforward that
H,(x) =V2H,*¢o(x/V2) for a.e. (w, x)). Then, for ae. o, H verifies (1)
and (2) for all x, x,, x,, and by a standard reasoning, H(w, x) = B(w) - x.
Coming back to the projection R, we see that it can be written as

Rf= )Y (g,B® G)A® G,

i=1

Note that 4 € X, B € X', with ||[A|lx < ll4 ® Gllx/EIG| and ||Bllx < |IB
® Glix'/E|G|. From R(4 ® G;) = A ® G, we obtain (4,B) =1. O

3. Quantitative version of the preceding results

We say that the space [, is C-representable as complemented subspace of X
if the identity map of /, is C-factorizable through X, i.e., there exist linear
operators i: [, > X and 7: X — [, such that 7oi = id,, and |7l [lil < C.

In this section we prove the following improvement of Theorem 4 (with a
slight reinforcement of the hypotheses on the r.i. space):

THEOREM 7. Let X be a rearrangement invariant function space, not
containing c, as subspace nor l, as complemented sublattice. Then [, is
C-representable in X as complemented subspace iff there exist variables A ® G,
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resp. B ® G in X(Q X [0,1], resp. X'(Q X [0,1]) where G is a normalized
Gaussian variable, |A ® Gl|x||B ® Gllx < C and {A,B) = 1.

The proof of Theorem 7 involves several lemmas. We give first some
preliminary material.
A sequence (x,), in X is X-equiintegrable iff it satisfies the conditions

4 lim sup | x,1 = 0; inf  supll1ex,llx=0
(4) e kp" k (|xk|>M)”X o kp X llx

As is well known (see for instance [W]) in an r.i. space not containing c,,
every sequence (x,) has a subsequence x, for which there is a splitting
X,, =X+ xk, where each x) is disjoint from the corresponding x7, the
elements x}. are disjoint and the sequence (x}), is X-equiintegrable.

We shall also use repeatedly in the subsequent proofs the following well
known fact, which we will call the “Bessaga-Pelczynski perturbation princi-
ple”: if (x,) is a basic unconditional sequence which spans a complemented
subspace in X, and (y,) is a sequence in X such that [lx, — y,|l = 0, then a
subsequence (y,,k) is equivalent to (x, ), and spans a subspace which is
complemented in X. In fact, if P: X — span[x,] is a given projection, and 1r:
span[x,] — span[x, ] is the natural projection, then, if (n,) is sufficiently
lacunary, the restrlctlon J of 7P to F = span[ Yo, 1 is an isomorphism onto
E = spanl[x, ] and Q = J 7P is a projection. Note that this construction is
of almost isometric nature, i.e. we can obtain that the tails (y, )., are
(1 + ¢,,)-equivalent to (xnk)k>m (with ¢,, = 0) and, if (x,) is K-suppression
unconditional, the projection Q,, onto F = span| y,,k]k>m to be of norm
<1 + ¢, )IPIK.

In the same spirit we state the following very elementary fact, in order to
avoid further repetitions:

LemMA 8. Let F be a complemented hilbertian subspace of X, P: X » F a
projection, S: F — X a bounded operator. If PS: F — F is an (into) isomor-
phism, then SF is itself a complemented hilbertian subspace of X (and S an
isomorphism).

Proof. Sl|r is an isomorphism, so G = SF is hilbertian; J = P|s is an
isomorphism from G into F. Let 7w be a projection F — P(G). Then
Q =J 7P is a projection X - G. O

The following lemma precises Proposition 5 in the case X 2 ¢, and will be
given a quantitative version by Lemma 12:

LemmAa 9. Let X satisfy the hypotheses of Theorem 7. Then for every
complemented hilbertian subspace E of X there is a sequence which is X-equiin-
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tegrable, converges wcd to a conditionally Gaussian variable and spans a
complemented hilbertian subspace, and is arbitrarily close in measure to E.

Proof. Let (x,), be an l,-basis of E, and P be the projection onto E.

First we may suppose that the elements of E live on a w-finite subset U of
Q: if there is no w-integrable subset U such that the norm of X(Q) and that
of X(U) are equivalent on U, then using the order continuity of X we
construct recursively a sequence y, of disjoint blocks on the basis x, and a
sequence of disjoint elements y! of X such that |ly, — y.|l = 0; by the
Bessaga-Pelczynski perturbation principle, a subsequence of (y,) spans a
complemented hilbertian space, a contradiction. Then, reasoning as in §1, we
may suppose that the norms of X and of L,(U) are equivalent on E, and
that the x, converge (weakly conditionally in distribution) to a conditionally
Gaussian variable.

By passing if necessary to a subsequence we have a disjoint splitting
X, = x) + x}, where the elements x}, are disjoint and the sequence (x}), is
X-equiintegrable.

Let E’, resp. E” be the closed subspaces of X spanned by the sequence
(X)), resp. (X)) If x = X} _ja,x,, set 8'x = L, a,x} and §"x = L a,x7;
note that x = §'x + §”x, and that S’ and §” extend to bounded operators
from E to E', resp. E to E”, since the disjoint basic sequence (x7) is
dominated by (x,); i.e., X, a,x}|l < C ||X a, x|l where C is the uncondi-
tionality constant of (x,), (see the proof of Thm. 4). Then there exists M and
a subspace E, of E of finite codimension (spanned by the x,, kK > N;) such
that Vx € E,, |lx]| < M||PS’x||. For if not, there is a sequence (y,), in E,
with lly,ll =1, lIPS’y,ll = 0 and y, — 0 weakly. Note that y, — PS"y, =
Py, — PS"y, = PS'y, — 0. Again, using the Bessaga-Pelczynski perturbation
principle, we find a subsequence (z,), of (y,), such that the sequence
(PS"z,), is basic and equivalent to (z,). In particular [|[PS"z|| > 8|z for all
z € span(z,]. Since span(z,] is complemented in E, we deduce by Lemma 5
that span[S”z,] is complemented in X, and (§”z,) is equivalent to the
l,-basis. Hence X contains /, as complemented sublattice, a contradiction.

Thus we find E, on which [lyl| = [[Py’||, hence = [ly’|l. Let E} == {y'/y €
E.}. Then E, is hilbertian, and moreover is complemented by Lemma 8. Note
also that we have

p  dist
n p—o

0.

So (x7), converges to zero in measure, and (x)), converges wcd to a
conditionally Gaussian variable (the same as for (x,),). O

The key for obtaining a quantitative version of Lemma 9 is the following:

LemmAa 10.  Let X be an order continuous r.i. function space and (x,), a
X-equiintegrable sequence which converges wed to a non-zero conditionally
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gaussian variable. Then for every € > O there exists a subsequence (x,, ); which
is (1 + &) equivalent to the 1, basis and such that the unit ball of F = span[x,, ;
is X-equiintegrable.

Proof. Choose a sequence of reals ¢, > 0 with %, _,¢, < &.

The sequence (x,) converges wed to 4 ® G, where G € Ly([0,1)) is a
normal gaussian variable and A € Ly (Q)issuchthat 4 ® G € X(Q X [0, 1]).
We may suppose that L ([0,1]) contains an auxiliary normal Gaussian
variable G’, independent from G.

Throughout the proof of this lemma, if x € X, we denote by x* the
non-increasing rearrangement of |x|; this is an element of X([0,%)) or
X([0,1D.

Now we construct a subsequence (x,,);, of (x,), such that for all k& we
have the following property, denoted by (Hp):

- ( Z/\?+pz) (A®G)*

k
( YAx, +pA®G
I=1

i=1

X

A % 1/2
5(25;‘)(2)\%"‘172) l4 ® Gllx VA,...A,,p €R.
i=1 i

Suppose that we have found the first & terms n, <n, < ...n, (possibly
k = 0). For every Ay,...A,, p € R we have

dlst
n p—ow

Aix, +pA® G + NyiX, 152 ZAx +pA®G +1,,,A®G

i=1

It

i

which has the same distribution as

=~

Y x, + (B, +0%) "4 8G.

i=1

This implies the convergence Lebesgue-a.e. of the non-increasing rearrange-
ments:

k *
( Z Aix,, + pA G + )\k“xn)
i=1

k *
e, ( Y hx, + (B +0%) "4 @ G) .
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As the sequence (x,) is X-equiintegrable, we deduce that this convergence

holds also in the sense of the X-norm. Now let
*

x

Aix, +pA® G + Ay, %,
1

L

I

b |

k *
1/2
F(Aye o Agy1sp) = ( Y AX, + (N +p?) TA® G) .
i=1

The X([0, «)) valued functions F, are equicontinuous on the compact set

i=1

k+1 172
Keop = {( Y ,\%+p2) < 1} C R**2,

this is a straightforward consequence of the Lipschitz inequality of Lorentz-
Shimogaki [LS],

Vu,v € X, llu*—v*llx<llu-vlx,

which is true for every r.i. space. Thus the convergence F, — F, holds
uniformly on K,,,. We choose n,,; >n, such that [|F, — F.l.<
g +114 ® Gllx, and we obtain

k *
( Y Ax, +pA®G + /\k+1x,,)

i=1

k *
_( ) Aixp, + (i1 + P2)1/2A ® G)
i=1 X

1/2
4 ® Glix

k
2 2
= €k+1( YA +p
i=1

This inequality together with (H,) implies (H, , ;). Now if £;A? < o, we apply
(H,) with p = 0, pass to the limit on k, and obtain finally

This implies that the sequence (x,,i) is (1 + &)-equivalent to the [, basis.

1/2

0 k 00 0 1/2
(Z)‘ixni) - (Z)@) (4 ® G)* 53(2)6) 4 ® Glix.
i=1 i=1 i=1

X
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Moreover, the proof of this inequality gives in fact that

o * o 1/2
(Sam) - [Z2] ooy
i=k i=k

® 1/2
ssk( Z)&) 4 ® Glix
X i=k

where 8, = L7_,¢,. This implies that, if (£*_,A2)'/? < 1,

<
X

+ 6,404 ® Gllx
X

[Ean)

i=1

[Ea)

i=1

+”1[0,M(U)](A ® G)*“X vYUcq.

In the case where u(Q) = 1, this implies that the unit ball of F = span[x, A
is X-equiintegrable. In the case w({)) = o, we may suppose that u is
o-finite; let ({2,), be an increasing sequence of w-integrable subsets whose
union is Q. Note that each sequence (lncx ), is X-equiintegrable and wcd
converging to 1,4 ® G. Then a dlagonal argument allows us to obtain a
subsequence (x,, fsuch that for every k, p with k > p,

0 * I 1/2 © 1/2
( Y A,.IQ;xnl_) - ( Y /\%) (g4 ® G)* < 3k( Y ,\%) I1g:A4 ® Glix
i=k i=k

i=k X

Hence if (£7_;1?)!"/? < 1 and q > p:

|/\

ZIA HTgex,, Il +
i=1

1902Ax

i=p

oo
IQfI Z )‘ixn,-
i=1

IA

D
Vr V lgex, | + (1 + €)ll1g.4 ® Glix
i=1

Letting g — o and then p — o« we obtain the second condition in (4) for the
X-equiintegrability of the sequence (x,). D

Remark 11. We can choose the subsequence (x,, ) such that every normal-
ized weakly null sequence (z,) in span[x, ] converges wed to the same
conditionally Gaussian variable.

It is sufficient to prove this fact when (z,) is a sequence of successive
l,-normalized blocks on the x, (since every weakly null sequence (z,) has a
subsequence (z,) which can be approximated in X-norm, and a fortiori
weakly condmonally in distribution, by such a sequence of disjoint successive
blocks on the basis (x,,)).
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It is clear by the preceding proof that for each IV € &7, we can choose the
subsequence (xnl_) such that for all k > k,, for every block z built on the x,,
i > k, we have

(1, 2)" = lizll2(1,4 ® G)*|| < §.lizll2ll1,4 ® GII.

By a diagonal argument, this can be done for all V' in a countable subset I'of
&. If the measure space (Q, &7, u) is separable, this shows that for every
V € X, and every sequence of successive disjoint /,-normalized blocks (z,) on
the (x,, ),

1,2, 51,4 0 G,

which shows that

7,2 40G.

In the non-separable case, use the fact that the x, live in a separable
sublattice X(Q, 4, ) and that X is rearrangement invariant (I can be put
down into a fixed separable superspace (Q,<,u) of (Q,,u) by a
measure-preserving transformation leaving elements of & invariant). 0O

Lemma 12.  Let X satisfy the hypotheses of Theorem 7. If 1, is C-representa-
ble as a complemented subspace of X, then for every € >.0 there is a special
C(1 + e)-factorization of the identity of |, through X which maps the basis of 1,
onto a sequence which is X-equiintegrable and converges wed to a conditionally
Gaussian variable.

Proof. (A) Let
L, x I,

be a factorisation of id,, through X, with flzrll llill < C. Then E =i(l,) is a
complemented hilbertian subspace of X. We show first that we may suppose
that the /, basis of E converges wed to a conditionally Gaussian variable. As
at beginning of the proof of Lemma 9, we find in E a normalized sequence
x, = i(y,) which converges wcd to a conditionally gaussian variable. Strictly
speaking, this wcd convergence of (x,) was obtained only on a certain
u-integrable set U, such that the norms of X and that of L(U) are
equivalent on Ej; but, if (Qp)p is an increasing sequence of w-integrable
subsets containing U, whose union contains all the supports of the x,, we can
by a diagonal argument construct the sequence (x,) converging wed on each
set ), to a conditionally Gaussian variable. Then the sequence (x,), is wed
convergent on the whole of ) to a conditionally Gaussian variable. The y,’s
may be taken as successive norm one blocks on the basis of /,, hence forming
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isometrically a [,-basis. Let H = span[y,[7_, and Q be the orthogonal
projection of /, onto H. Then id, = (Q e 7)o i|y gives a C-representation of
H (itself isometric to /,) as complemented subspace of X, with /, basis (x,,).

(B) Note that every subsequence of (x,) gives raise to a C-representation
of I, as complemented subspace of X. Thus we may suppose that we have
the splitting x, = x; + x,, into X-equiintegrable and disjoint part. Let E
= span[x,], E' = span[x/], E” = span[x”]and §": E — E’, resp. §": E —> E”
the natural operators (S'x,, = x/,, $"x,, = x,). By the proof of Lemma 9, we
may suppose that (x),) converges wcd to a non-zero conditionally Gaussian
variable. After extracting a subsequence if necessary, we may suppose (by
Lemma 10 and Remark 11) that the unit ball of E’ is X-equiintegrable, and
that every weakly null sequence in E’ converges wcd to a conditionally
gaussian variable. As the x/, are asymptotically disjoint from the unit ball of
E’, (due to the X-equiintegrability of this unit ball), it is easy to see that the
restriction of §’ and §” to E, = span[x.],., satisfy |8'|g |l <1 + &(n),
18”1l <1 + &(n), with &(n) — 0 as n — «. Given & > 0, we may suppose
e(n) <e.

Let

L~ x I,

be a C-factorization of id L through X, the image by i of the natural basis
(e,) of I, being (x,). Let P = im be the induced projection from X onto
E = i(l,). Due to Lemma 8, and the hypothesis on X, the operator PS" is
strictly singular. Thus there exists a sequence (u,) of successive normalized
blocks on the basis (e,) such that PS"y, = 0 as n — «, where y, = i(u,).
Since i is an isomorphism into X, we have in fact 7S"y, — 0 as n — . But
u, —w8'iu,) = =(y,) — w8y, = 78"y, = 0, hence (after extraction) we
can suppose that the restriction to H = span[u,] of the operator I — 7S'i is
of norm < e. Let Q be the orthogonal projection from [/, onto H. We have

(T = Qms)lull =I(Q(I — 78))lull < e.

Then J = QnS'ily is invertible, and 77! < 1/1 —¢). Set i = ST L
H - X and 7' = Qm: X —» H. We have 7'i’ = id;; and

0 'l < (1 = &) Sl lill el < €1 = &) 7' (1 + &).

Finally (z,) = (8"i/"'u,) provides a C(1 — £)"!(1 + &) representation of
1, as a complemented subspace of X, and by the choice of (x,), the sequence
(z,) is X-equiintegrable and converges wcd to a conditionally Gaussian
variable. 0O



COMPLEMENTED HILBERTIAN SUBSPACES 231

LemMma 13.  Under the hypotheses of Theorem 7, if 1, is C-representable as a
complemented subspace of X, there exists a sequence (A ® G,), (of condition-
ally i.i.d. gaussian variables in X(Q X [0,1])) whose closed linear span is
C-complemented in X.

Proof. (A) We make first a little digression about complemented spread-
ing models in ultrapowers.

Let X be a Banach space and (x,)5_; a sequence without converging
subsequence. Let % be a non trivial ultrafilter over the index set N.

The sequence (x,), defines an element ¢, of the ultrapower X, =X,
then an element &, of X, = XN/%,... We define recursively a sequence
(X,), of successive ultrapowers and a sequence (£,),, £ € X,. Thus we
have

&y + -+ +aéillx, = lim lim ... lim IIalx + o tagx, llx
g, Rg—15 ny,

Vai,...a, €R.

The whole sequence (&), can be considered as living in the same space
X = T1,X,/% (which is an ultrapower of X) and spans in X the so-called
spreading model associated to the sequence (x,), and the ultrafilter %.
Suppose now that (x,), is the image of a 1-symmetric basis (e,), of a
reflexive space Z under a C-factorization of id, through X. For each k, set
Z, = spanle,,...e.]; for each multiindex (n,,...n,) €N, let o, .:
Z, — Z be defined by anl,:”nk‘(e,) =e,;set Z, ., =0, ,(Z)and let
Tn,,...,n, € the natural projection Z - Z, . Set
=g ! ° ° d i =]o .
Wn,,...nk o-nl,...nk rnl ,,,,, ny T an lnl,...nk l Unl,...nk’
we obtain a factorization m,  , °i, ., of id; through span[x,,, X, ]
with (|, i, .0 < C. Thus we have a C-factorization 7, o, of

id Z through X, by settlng

iy z = class of the family (i, ~~”kz)(nl,...nk)GNk

and

X = lim lim ... lim 7 (x )
nk’%nk 1,% nl,% Riyenns Ny Ny,...Np

when % is the class of the family (x,, ,,k)(,,1 _npent- (Here the limits are
norm limits in finite dimensional spaces ) The image by 7, of the basis of Z,,
is the sequence (¢,,...¢,). We thus obtain a C-factorization 7 < i of id,
through X by letting tZ be class of the family (i,r,, ,2z), and 7% =

3 s
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lim; 4 7, %, when X is the class of the family (%,),, where the limits are
taken, say, coordinatewise. The image of the basis of Z by 7 is the
“fundamental sequence of the spreading model” (¢,),,.

(B) Now we use this ultrapower construction starting with the hilbertian
X-equiintegrable sequence given by Lemma 12. In this case the elements
(¢,)% =1 (constructed above) live in the band X, of the ultrapower X whose
elements are defined by X-equiintegrable families of elements of X. As is
well known, this band is nothing but a space X((, &7, 1), where ((, &7, i) is
(a Stone representation of) the ultrapower of the measure space ({2, &, u)
(or, equivalently, L,(Q, 7, 1) = [L(Q, &, w)];). Moreover, the distribu-
tion of the sequence (£,), is the limit of that of the (x,); to be more explicit,

dist
(x’ xnla xn27"'xnk) "1,%§"27%;~-~”k)% (xagl""gk) Vx EX,

where the convergence in distribution is evaluated against bounded continu-
ous functions on R**! [DC]. But we have

wed
(xnl’ xnz’ v xnk) Ry ®;n, 0. .. Ny —> O (Yl’ Y2’ . 'Yk)

where the Y; € L(Q X §) are conditionally Gaussian, independent and
identically distributed. Hence the sequence (&,), is conditionally equivalent
in distribution to a sequence of conditionally independent equidistributed
Gaussian variables, i.e.,

dist

Vx e X,Vk €N: (x,&,...6) ~(x,A® G, A®G,,... A8 Gy)

where 4 € Ly(Q, &7, u) and (G,), is a sequence of independent normal
Gaussian variables, defined on ([0, 1], A). We can suppose that 4 > 0 on a
subset U of ). Let %, be the A complete o-algebra generated by the
variable G, and ¢ that generated by o7, (the trace of & on U) and the
variables £,,...¢&,. There is an isomorphism 7 of measure algebras from
(€,ii) onto

(4, ®%,.. ®8,®..,u01...01...),

which is the identity on &/ and maps £; on 4 ® G;. This isomorphism T
generates a lattice isometry from the space X(#, u) onto

X(U x [0,1]Y, o, @ %, u ®A®N);
k

hence the sequence (Y}), = (4 ® G,), spans a complemented closed space
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in the last space. By a standard isomorphism theorem, we may replace [0, 1]¥
by [0, 1].

(C) More precisely we have Y, = m(e,) for a certain C(1 + ¢)-factorization
mei of id;, through X(Q X [0,1]). As (Y,) is isometrically equivalent to the
basis of /,, this means that span[Y,], is C(1 + ¢)-complemented in X(Q X
[0,1]). A more careful treatment would show that the tail (z,),.,, of the
sequence (z,), constructed in the proof of Lemma 12 provides in fact a
C(1 + ¢,,)-representation of /, as complemented subspace of X, with ¢,, = 0
as m — «; as a consequence, the sequence (Y)), spans in fact a C-comple-
mented space. O

Proof of Theorem 7. Theorem 7 is now an immediate consequence of
Lemma 13 and Proposition 6. O

4. On the isomorphism X = X(I,) for Orlicz spaces

It is well known (see [LT2], Prop. 2d4), that a separable r.i. function space
X with nontrivial Boyd indices is isomorphic (as a Banach space) to its
vectorial extension X(I,). In this section we show that the converse state-
ment is true for Orlicz function spaces.

First we fix some notations. If X is a Banach lattice of measurable
functions on (Q, &7, u), then X(I,) denotes the space of .#measurable
functions f: Q — [, (I, being equipped with its Borel o-field) for which the
scalar function @ — ||f(w)ll;, belongs to X, while X[/,] is the closure in
X(l,) of the algebraic tensor product X ® [, (consisting of finite sums

" fi®x;, fi € X, x; €l,). Our X[1,]is denoted by X(/,) in [LT2], while,
when X = X", the space X(/,) coincides with that denoted by X(/,) in
[LT2]. When X is order continuous, X(I,) = X[l,].

If ¢: R, — R, is an Orlicz function, i.e., a convex increasing function with
@(0) = 0, then L (Q, &, ) is, as usual, the space of measurable functions f:
Q) — R such that

e(clfl) e Li(Q, &, 1) for some ¢ > 0,

and we denote by M,, the closure in L, of the space of simple u-integrable
functions.
We have the following result.

THeOREM 14. The following assertions are equivalent:
@) L, is reflexive.

G) L » is isomorphic to L [1,].

(iii) L, is isomorphic to L (I,).

(iv) M, is isomorphic to M (1,).

This is a consequence of the following result.
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ProrosiTioN 15.  An Orlicz function space never contains a complemented
subspace isomorphic to 1,(1,).

Proof. Suppose that X = L contains /,(/,) as complemented subspace.
Then its bidual X** contains (/,(1,))** = (I(l,))* as complemented sub-
space. The structure of the dual of an Orlicz space is well known (see [An]
for the case where the measure space is finite, [Fer] for the general case). We
have:

L(Q, &, p) =L, (Q,,p) ®L(S,3,0)

where ¢, is the Young conjugate of ¢. (The L,-component is null if ¢
verifies the A,-condition; in the other case it is non-separable). Thus the
bidual is given by

X** =L (Q,,u) ® L(T,T,7) ® L(S,3,0)

where again L(T) is either null (if ¢ satisfies the A%-condition) or non-sep-
arable. On the other hand (I (/,))* contains /}(/,) as complemented sub-
space. Here [%(l,) can be defined in an abstract way by using Krivine
functional calculus (see [LT2], 1d1), but in fact it identifies with the Banach
space M whose elements are the sequences (u,,) in (/,)* such that

< 1}

is finite. If w,=0 for n> N, then (u,), identifies to TN ,u, ®e,
(Ce,) is the natural basis of /,). This space in turn isometrically identifies to a
subspace of (/(1,))* by setting

<(/"‘n)n’ (xi,n)i,n> = Z( My s (xi,n)i>

N
() = Sup{ Yl x)/N21,x,€l,Vn=1,...N;
i=1

N
Y x
n=1

for every (u,), € M and (x, ), , € L.(,). If F € (I.(I,))*, we define PF €
I¥(l,) by PF = (w,), where Vx €1, {u,,x) =(F,x®e,); then P is a
natural projection from (I.(1,))* onto IX(l,).

Note that [} is a L,-space containing a 1-complemented sublattice isomor-
phic to a [(T') space, defined on an index set I' which has cardinality 2°¢,
where ¢ is the cardinality of the continuum (I' = BN). We obtain thus that
1(')X1,) embeds isomorphically as a complemented subspace E in X** =
L, ® L(T) ® L(S).

Let (e, ,)yer ,en be the L(I')l,) basis in X**. For each y €T, let
E, = spanle, ,],.,. We also denote by Q the given projection X** — E,
and by P, (resp. P, P,) the natural projections X** — L(T) (resp. X** —
LJS), X** —» L (Q)). For all £ > 0, there exists y, € E, with |ly, [l = 1 and
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1QP,y, Il <&, IQP,y, Il < &:if not, e.g., QP; would be an isomorphism into.
In particular P;: E, > P\E, and Q: P,(E,) - QP(E,) are isomorphisms;
let J be the inverse isomorphism of the last one.

QP(E,) is a hilbertian subspace of E, where E is isomorphic to I,(l,):
hence it contains a further space Z, which is complemented in E, by a
projection 7. Then JZ would be a hilbertian subspace of Pl(Ey), hence of
L(T), and would be complemented in X**, and a fortiori in L,(T), by the
projection JarQ; this is impossible. The same reasoning works with P, in
place of P;.

Then we have

Y(a,), € RD,

Q(P, +P®)(zy‘,a7yy)

< sZIayl <eC
y

Z Ay Yy
5
where C is the equivalence constant of E with /,(/,). Hence

jor(z2)

> (1—-¢€C)

La,y,
"
(since Qy, =y, Vy)). Then

> (1-¢0)lQl™!

2

ZayPOyy
Y

PO( Xy:ayyy)

Ya,y,
Y

ie., (Pyy,), spans a subspace of L (Q) isomorphic to /(T"). If (&7, u) is
countably generated as measure algebra, this is impossible, since the density
character of L‘P(Q) is at most ¢, while that of /,(T") is 2¢. In the general case,
we can find a sub-o algebra # of &7, such that (&, ) is countably
generated, and such that the elements of the (1,(1,))-basis in L (Q, &, u) are

H-measurable. 0O
Remark. The same result is true (with same proof) for M, in place of L.

Proof of Theorem 14. 1If L, is reflexive, then L, =M, and L (,) =
L(1,) = M(1,), hence the assertions (ii)—(iv) are the same, and in fact a
consequence of [LT2], prop. 2d4.

Conversely, suppose that one of the conditions (ii), (iii), or (iv) is verified.
We show first that ¢ verifies the condition A% (i.e., is equivalent to a
p-convex Orlicz function, for some p > 1). If not, then by [L] there exists a
complemented subspace F of L, (resp. M¢) isomorphic to /, and spanned
by disjoint positive functions (f;)7_; (in fact, indicator functions). There is a
positive projection P with range F. If (¢,); denotes the natural basis of /,,
then (f; ® ¢;); span in L[I,] (resp. M,(l,)) a subspace E isomorphic to
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I(1)), and P ® id,, defines a projection from L(l,) (resp M,(l,)) onto E.
The boundedness of P ® 1d is a consequence of the positivity of P: if
(h)); © L with (Z;|h,|)/? € L , then

1/2 1/2
(ZiPnl) "=V Tamm= _V  PRams<P(ThE)
i Z |ai|2 <1 i Z |111|2 <1 i i

a;€Q a,;€Q
hence 1,(1,) appears as a complemented subspace of L, (resp M,), which is
impossible.
If now ¢ does not verify the A,-condition, then M, contains ¢, as
complemented sublattice spanned by disjoint elements (again indicator func-

tions) and L, contains I, as complemented sublattice; again with positive
projection. Then:

co(l2) gM(p(lZ)’ L[1,] §L¢[lz]’ I(L,) EL¢(12)
and we deduce
co(l2) M, or L[] CL,, or I(L)CL,

Dualizing and using the fact that [X(l,) c (I[,D* and < (I(,))*, we
obtain

W) SME =L, or IX(L)CLi=L, &Ly(S).

Px

The first assertion is impossible by Prop. 15, and the second one also, by the
proof of Prop. 15. O

5. On the isomorphism X(/,) = X for g-concave r.i. spaces (g < 2)

The main result of this section is the following:

THEOREM 16. Let X be a g-concave (q < 2) rearrangement invariant space
over Q = [0, 1]. Then X(1,) is isomorphic to X iff X has non-trivial lower Boyd
index (py > 1).

The following criterion will be used:

LemMMma 17. Let Y be an r.i. space (over Q =1[0,1] or [0,x]); G a

normalized Gaussian variable (defined on the probability space (S, 3, P)).
Denote by Z the space of measurable functions f € Ly(Q)) such that f ® G
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belongs to Y"(Q) X S). Then Y has nontrivial upper Boyd index iff it is
(algebraically) included in Z.

Proof. (a) Suppose that Y has non trivial upper Boyd index g, < . Let
U.={k < |G| <k +1}.

Then P(U,) < P[IG| = k]l < C-e %72 Let f € Y; then Vp < 1, Vg > gy,
ID,flly < C,p'/?lflly (where D, is the usual dilation operator: D,f(t) =
f(¢/p)). Hence

_ 2
IIf ® lUk“Y(QXS) < Ce* /24| fll ycay

and L, f ® (1,,G) converges in Y(Q X S); ie., f® G € Y(Q X S).
Conversely suppose that [|fllz < Clliflly for all fe€Y. To prove that

gy < o, it suffices to prove that ||D,lly_y < 1 for some a > 0. But setting
ak = P(Uk)9

1 C
1D, flly = lIif ® 1y lly < ZIIf ® Glly < Zlflly;
hence for sufficiently large k, we are done. O

To prove Theorem 16, we are led to use the following proposition, the
proof of which is inspired from that of Theorem 5.6 of [JMST], relative to r.i.
spaces (over [0, 1]) which embed complementably in a given g-concave T.i.
function space. Recall that a quasi-norm || | on a space X verifies
llx, + x,ll < y(lx.ll + llx,l) for some y > 0 and all x,, x, € X.

ProrosiTioN 18. Let X be a %-convex, 1-concave quasi-Banach r.i. func-
tion space, over [0,1], Y a (Banach) r.i. function space (over [0,1]). We
suppose that the 2-convexified spaces X® and Y® are in duality (X® is the
Kéthe dual of Y®). Let Z be another (Banach) r.i. function space, alge-
braically included in Y. Suppose that there exist positively linear bounded
operators

T:Y,»Z, and S:X,—- X,

such that for every fin Y, and g in X, ((Tf)'/%,(Sg)V/?) = (f1/?, g/?),
and T is order continuous. Then Y = L, or Y = Z.

Before proving Prop. 18, we state several lemmas.

LemMA 19. Let X(Q) be a concave (quasi-Banach) Kéthe function space
over a finite measure space (), &, u), containing algebraically L,(Q), and T:
L}(8) » X, (Q) be a positively linear bounded operator. Then there exists a



238 YVES RAYNAUD

measurable p-a.e. positive function s defined on Q) such that T factorizes
through L (¢) = L(Q, , § - n), i.e.,

VfeL{(S), [w:Tfdu<C[fdp,

and
VeeLi(¥), lgllx<C[y-gdn.

We thus have T = io T, where i: L,(¥) — X is the identity map and T:
Lf— L) acts as T.

LemMa 20. Let Y =Y(Q) be a (Banach) Koithe function space over
Q, o, 1), and T: Y, (Q) - LF(S) be an order continuous positively linear
bounded operator. There exists an element ¢ of Y' such that T factorizes
through L (¢), i.e.,

VieY,, ITfli<C- [¢ fdp <CIfly.

We have thus T = T o j, where j: Y — L,(¢) is the identity map, and T:
L} (Q) » L} is formally the same operator as T (i.e., coincides with T on
Y, (Q)).

Lemma 19 and 20 are special cases of Krivine factorization theorem, and
the proof of Lemma 19 is close to that of Lemma 5.7 of [JMST].

To obtain Lemma 19, we suppose ||T]l < 1 — & and separate in the space
L (Q) the convex sets L7 (Q) (which has non empty interior) and C, — C,,
where

C,={fel(Q)/f<Tz+h,zeL{(S),lzli <1, h e Li(Q), Il < ¢}
and
C, = {fe L Q) nX,/lflx>v)

(y is the quasi-norm constant), by a positive element of L¥. To obtain
Lemma 20, the same reasoning works, if || 7]l < 1, now with C; = LI (Q) N
By (By is the unit ball of Y) and C, = {f € L} (Q) N Y, /lITfll, > 1}. We
use the order continuity of T to pass from the case f € L} (Q) NY, to the
case feY,.
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Lemma 21. Let Y,Z be r.i. (Banach) function spaces over [0,1], with
Z # L ([0, 1]). Suppose that there exists a positively linear bounded operator T
Y,»Z, Foral n>1 and i, 1 <i <2", set x, ;= 1;_1).5-n;.2-n and
Y, = max, _; con Ix, ;. Suppose inf, lly,1, sR,llz > O for some R. Then the
Y-norm dominates the Z-norm; i.e., there exists a constant V such that
VieynZ lfllz < Viflly.

This lemma is the positive analog of Lemma 5.2 of [JMST], with plainly
analogous proof.

Finally we shall use the following positive version of Thm. 2.1 of [JMST].

Lemma 22.  Let Z be an m-concave Banach lattice (with constant M). For
every finite positively K-symmetric sequence (y,)"_, in Z ., and every choice of
positive scalars (a)?_,, we have

1/m 1
(E ”maxla,,(,)YJH ) "

i=1

n
<K Z ai)’iﬂ
i=1

(where D = D(K, m, M) does not depend on the sequence (y,),).

(By E_. we mean the average for 7 belonging to the group S,, of permuta-
tions over {1..., n}; the sequence (y,); is said to be positively K-symmetric if
there exists C such that for every nonnegative reals a;, i = 1,...n, and each
permutation 7 € S, we have [|Xa,y, |l < KlXa,y;D.

This lemma can be proven following the method of the proof of Thm. 2.1
of [JMST], or it can also be formally deduced by applying this theorem in
L,(Z®), where Z® is the 2-convexification of Z, to the sequence (g; ® y}/?),
where the ¢; are independent Bernouilli variables, and using Maurey-
Khintchine inequalities [LT2, 1.d.6].

Proof of Proposition 18. (A) The first step is an interpolation procedure,
as in the proof of Thm. 5.6 in [JMST] (but we cannot dualize the operators
now).

Let j, be the natural injection from L ([0, 1]) onto X. We apply Lemma
19 to the operator S jy: L — X and obtain a measurable function ¢ > 0
(a.e. on [0,1] such that S: L — L;(¢) is bounded and the identity map:
Ju, x* L}(¥) > X is also bounded. This implies that the identity map:

L,(¢) > X@ is bounded, and so is its conjugate Y® — L,(1/i); hence the
identity map iy, ,,: Y = L,(1/4) is bounded. A fortiori the identity map
iz1,4: Z — L{(1/4) is bounded. We apply now Lemma 20 to the operator



240 YVES RAYNAUD

iz1,9°T: Y,— L{(1/4) and obtain a measurable function ¢ > 0 on [0,1]
such that T: L;(¢) = L{(1/¢) is bounded, and the same for the identity
map: iy ,: Y - L (). There exists a measurable subset E of [0, 1], such that
¢ is bounded from above and below (i.e., 1/M < ¢ < M) on E. The spaces
Y(E) and X(E) (consisting of functions of Y, resp. X, with support in E) are
lattice isomorphic to Y, resp. X, by the same dilation operator D (f |E| = a
we may suppose E = [0, a] and take Df(¢) = f(at), Vt € [0,1]). That D is
bounded on X(E) is a consequence of the 3-convexity of X. This same
operator takes L,(¢XE) = L,(E) onto L([0,1]). Replacing T and S by
a~'2To D! resp. a~'/2S o D! (this normalization conserves the “duality
inequality”), we may suppose that E = [0,1] and L,(¢) = L,([0, 1]). We have
then the following commutative diagrams:

Y, — Z, Ly = Li(¥)
iyl liz, 1/¢ and jxl l]’w,x
T
Li — L{(1/4) X, = x,

Fix 0 < 6 < 1; we introduce the Calderén-Lozanovski interpolation spaces:

Y, =Y, L], Z, =12, L1/, Y, =Y, L1/,
Xa = [X’ Ll]{)’ Xg = [X, Ll((ﬁ)]g.

As is well known (this is an easy application of the formula x%y!=% =
inf, . o (1 — 6)t°x + 6:~"~Py)) T is bounded as an operator from Y, into
Zs, and so is S: X;— X, .

The 2-convexified spaces X ® and Y@ are in duality; for, we have
XP=[X,L, 1P =[X?, L,], and similarly Y@ = [Y®, L,],, and by [Lo],

Yo(z)’ - [Y(Z), L2]’0 = [Y(Z)’, le]e = [X(?'), L2]9 = X‘;Z).

Similarly X2 and Y,® are in duality. The inequality {(Tf)'/2,(Sg)'/2) >
(f1/2,g1/?) extends to the case where f € Y;", g € X,": use the fact that

Tf = T(sup{f'If" simple, 0 < f* < f}) = sup{Tf’|f" simple, 0 < " < f}

and similarly for Sg.
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We deduce that [|Tfllz, > 8,llflly, for all f € Yy For, if f € Y, we can
find g € X7 with llgllx, =1 and {f'/%,g'/?) > (1 - e)llfl/zllyt;z) =(1-
3)||f||1/2 We have

(g'7%,8"% <{((T£)"/*,(52)"?) <) *[l5pll(Sg)" " |xp
<[l 2lzpll(se)' * e = 1711, 1Sg1¥,?

1/2 1/2 1/2
< ||Tf||zg ||S||Xg—»xa||g||xé >

hence [|Tfllz, = (1 — £)?lISllx, - x,/Iflly,-

We thus have [|Tfllz, = lflly, for all f€ Y, (but T need not to be an
isomorphism for the metric structures of Y, and Z;).

(B) We are now in position to apply either Lemma 21 to T: Y —» Z or
Lemma 22 to Z,. We suppose first that Z # L. Then the reasoning is very
similar to that of [IMST], Thm 56. For n>1and 1 <i<2"sety,;=
1 172 and z, = sup?’, Ty, ;- Note that z, < T1.

Case 1. There exists R such that inf,, 11, _ zz, |I z> 0. Then by Lemma 21,
there exists K such that Vfe Z, || fllz < Kllflly; the converse inequality
holds by hypothesis, hence Y = Z.

Case II. There exist sequences n, -  and R, — o such that
III(Z <RyZnllzz = 0 on [ — . Then, after extracting if necessary, z, — 0
a.e. as | — . Since z, < T1e L/p), we have lim, . Iz, |, 4 = 0 by
Lebesgue’s Theorem.

Then, by the interpolation inequality, llz,llz, >0 as [ —>o. If y =
¥2" b, Y,,; is a simple nonnegative dyadic functlon the norm of Ty in Z, is
estimated by applying Lemma 22 to the 1/6-concave lattice Z, and to the
finite sequence (7y, ;), .;.,» (which is positively equivalent to (yn),.)1 <i<am
hence positively symmetric), we obtain

ylly, < C[lIyllollz, Nz, V Iyl o, 1p]

where the constant does not depend on n. For a fixed dyadic function y, we
make n = n; and let [ - », deducing that [lylly, < Cllyll;, which implies that

Lo, 1]) (algebralcally) Dualizing, we obtain L, =[L,Y]=
[Lm, Y'], = (the 1/0-convexification of Y'); hence Y’ L., thus
Y=L,

(C) We left aside in the preceding the case Z = L. In this case we may
replace in the hypotheses the space Z by the interpolation space [Y, Z], 2=
Y@, We conclude that either Y = Y®, which implies that Y=L_, i
contradiction with the hypothesis, or Y =L,. O
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Proof of Theorem 16. The “if” part of Thm. 16 results from [LT2, Prop.
2d4]. Conversely, let X be a g-concave (g < 2) r.i. space over ) = [0, 1], and
suppose that X(I,) embeds into X as a complemented subspace. Denote by
X, 2, Xi,, the 1/2-concavifications of X and X'; note that X, ,, is a
1/2-convex, concave quasi-Banach space, while Xj , is convex (up to
renorming we may suppose that the quasi-norm on Xj ,, is a norm). Let Z
be the r.i. Banach function space over [0, 1] defined by f € Z iff f® G* €
Xj /5, where, as before, G is a normal gaussian variable defined on the
probability space (S, 3, P), equipped with the norm ||fllz = lIf ®
G’llx; ,axs)- As conditional expectation operators are defined on the r.i.
space X ,,, we see that Z C X| ,, (with Ifllz = (EIG]) - ”f“Xi/z)' We shall
construct two bounded, positively linear operators S: X;,, > X;,, and T:
X {jz — Z* verifying the “duality inequality”

Vfe Xt Vee X5, ((Tf)'% (5)' /%) = (f1/2, 8%

(since T is order continuous). An application of Prop. 18 then shows that
Z =Xi,,; hence X' =Z®, and, by Lemma 17, X’ has nontrivial upper
Boyd index. By [LT2], Prop. 2b2, X has a non-trivial lower Boyd index.

(A) Construction of S. Let

X() 5 x s x(1,)

be a C-representation of X(/,) as a complemented subspace of X. For all n,
we denote by (x; ,);_, . ,» the dyadic partition of [0, 1] of order n, x, , =
[G=127",i27"], and by (e,) the natural basis of /,. Let X, be the
sublattice of X((Q) generated by the x; ,, i =1,...2".

Let us first remark that in X, the unit ball of any hilbertian subspace H is
necessarily X-equiintegrable. For, if not, there exist a norm one sequence
(y,) in H, a disjoint sequence (y;) in X, and a real § > 0, with |y, | < |y.|
and |ly,ll > 8. Let A4, be the support of y}. Since H is reflexive, we may
suppose (up to extracting) that

Vi —-—>k:':m ¥., (weakly);
then
2} =Yg = Yo — 0,
and zj = 1, z, verifies liminf, _,, [Iz;|lx > &; so we can suppose w.L.o.g.

w
s
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hence (after extraction) that (y,) is equivalent to the /,-basis. Then
| Eawvi]l =B Eawervi|| <|[E| Zarerr]|

<E, Zakekyk” ~ (Z'“k'z)l/z

but by g-concavity of X,

||Zaky;c

which is a contradiction since g < 2.

For fixed i and n, the sequence (V(x; , ® e,));, ., generates a subspace
E; , of X which is complemented and isomorphic to /,. By the preceding, the
unit ball of E; , is X-equiintegrable, and in particular the L,-norm and the
X-norm are equivalent on this subspace. Thus there exist in the unit ball of
E; , a sequence (u]",),, which converges w.c.d. to a (non-zero) conditionally
Gaussian variable A4; , ® G. Doing the same for each i = 1,...2", we find
2" sequences (u}",),,, each converging w.c.d. to a variable 4; , ® G. Hence
we have the following joint w.c.d. convergence:

2 ¢ Tllagyill %) = ¢,8( Tl 1)

um 2" wed
( i,n)i=1 My >0 My ;.. Myn—®

(Ai,n ® Gi)?=1

where now the G; are independent normal gaussian variables. Reasoning as
in §3, we obtain 2" sequences (v/"),,. 1, i = 1,...2", in X(Q X §) which are
jointly equimeasurable with the sequences (A4 in® G"),, 1 and generating a
C-representation of X,(/,) as a complemented subspace of X(Q X §). Again
an argument using a measure preserving transform of () X § allows to
replace the (v",),, .1 1<i<o by the (4; , ® G/"). We have thus a factoriza-
tion of the identity of X,(l,):

X,(1) = X(2 % 8) = X,(1)
with j,(x; , ®e,) =A4,,® G and ||l =, <C.
There is no relation between the systems (A, ,);_; . ,» for different values

of n. However j, induces naturally a C-representation of X, _;(/,) in X(Q X
S),

k, o,
X,_1(l)) — X(A X S) — X, _«(L,),

with k, =j,°i,, 0, = q,°m,, where i, is the natural injection of X, _,(/,)
into X,(/,), and ¢, the expectation projection from X,(/,) onto X, _,(l,).
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Then
k(X n—1 ® ) =Jjn((¥2i-1,0 + X21,0) ®€)
=As_1,,® Ghi_1 + Ay, ® G
Hence the sequence (k,(x; , | ®e,),, i =1,...2", is jointly equimeasur-
able with (A4 | ® G'”) where AE",)l L= (Az, n T A3 )2 Again

(with a measure-preserving transform on ) X S), we deduce another C-rep-
resentation of X, _,(/,) given by

]nl

X, (1) = X (@ x S) = X,(1,)

with j(x; ,_; ®e,)=A")_ ® G (m > 1,i=1,...2"""). In the same
way we recursively deﬁne ],‘c”), M, for each k < n, g1v1ng a C-representation
of X,(l,) as a complemented subspace of X(Q X ).

We claim that for fixed k,i,m, the sequence (j{"(x; K®e ))n> =
(A, ® G™,,.  is X-equiintegrable. For each n, A{") ® G/" is equimeasur-
able with

ugj',)c = Z Aj,,, ® G}'
(—-12"*<j2 n<i2™k

which by construction is the wed limit of a sequence (V(f2)),, -, where the
elements f,: are disjoint in the lattice X(/,) but verify |If,;ll2(0) = x; (@)
a.e. In fact we may even suppose that f,, € X(H,,), where H,, = spanle,];c ;»

and L} < L% < --- are successive disjoint intervals of N. If the sequence
(u(”)) is not X-equiintegrable, it is possible to find sequences n; < -+ <
n,<n,+l <+ and m < -+ <m;<m;,, < -+ such that the se-

quence (V(f,,), is not X-equiintegrable, while (f,;1), is disjoint in the lattice
X(l,). But then

”;“:f;ﬁf 2(60) = (;a,z)l/zxi,k(w) a.e.

hence (f,,)); is equivalent in X to the /,-basis; so is (V(f,;));, which is then
X-equiintegrable by a preceding remark, a contradiction which proves our
claim.

The sequence (j{"™(x, , ® e ))n> « defines an element ji(x; , ® e,,) of the
ultrapower X = X(Q X S )N/OZJ in fact of X°9. Similarly the sequence
(A, » « (which is a fortiori X-equiintegrable) defines an element A, , of
X = X(Q)N/OQ/ in fact of X 9. We identify as usual X = X(Q, o7, p,) We
have a natural isometric embedding ©: X({} X §) — X¢9: if feXxes is



COMPLEMENTED HILBERTIAN SUBSPACES 245

defined by the sequence (f,), and g € L.(S), then O( f®g) is simply
the element of X defined by the sequence ( f. ® 8),. We have clearly
@(A,k®G )—]k(x,k®e ).

Now define #,: X = X,(I,) by (k) =w — lim, o 7w{"(h,) when & is
defined by the sequence (h,),. We now have a C-factorization of the identity
of X,(I,) through Xeq:

X, (L) 25 X0 I X (1)

In fact we can replace Xea by X @ x9), replacing j, by ® !0 j, and 7, by
7 © ©. But from

1/2
AP = (A(Zr?zl,k-*-l + A% ), Ynz=k+1

we get

- - - 1/2
— (42 2
A= (A2i—1,k+1 +A2i,k) .

Since these A, & live in a separable sublattice of X()), we can find a new
family (A, k)k>1 i=1,...2¢ in X(Q), jointly equimeasurable with (A, )i x> and
sharing the same propertles So (writing A; j in place of A, x) We are back to
our starting point, i.c., we have a family (A, ik such that (4,, ®
G")pm>1.1<i <ok generates a complemented subspace of X(Q X §) isomor-
phic to X, (/,), but we gained the compatibility condition

Vk,Vi,1 <i<?2*, A%,k=A%i—1,k+1+A%i,k+1~
We define the operator S on positive dyadic functions by
2% 2k
f= AZIA%xi,k = S(f) = .z:lf\%A%,k
ie i=

Due to the compatibility condition, S(f) does not depend on the way of
writing f as a simple dyadic function. We have

S 172 2
= Z)‘iAi,k) ~

X

1/2 2
(Zw4z.) " e

i X

=H Z/\%xi,k
i

“S( Z/\%xi,k)

Xy1,2

ivi, k 5

= H Z)‘iA',
i Xi1/2
thus |ISfllx,,, ~ lIfllx,,, for every positive dyadic function f. Note that
ISf — Sgl| < S(fv g) — S(f A g)=S(f — gl), by positivity of S; thus S is
lipschitzian on the cone of positive dyadic functions, and it extends by density
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to a positively linear operator X, ,, - X ,,, with again ||Sfllx, , ~ lIfllx, ,
for all f.
(B) Construction of T. For each k > 1, we have a projection

P X(QAXS) > E = Span[Ai,k ® Gim]mzl,i=1,...2"‘

From now on, we suppose that (2, o) is generated by the variables (G/"), ,,.
We consider the action of the group G, , = O(n)? on the space X(Q X §),
defined by

(U - U) (@, (GT) (G ) - (G, (G o)

= £(@, UF (GT) s U (GEY s+ UF(G) 15 (Gt -+

where, as in §2, O(n) acts on RN by Ulxy, ..., %, X,1q...) =
(U(xy,...x,),x,,q...). The subspace E, is invariant under the action of
G,, (in fact each “fiber” E, ;= span[A4,, ® G"], ., is invariant). The
reasoning of Proposition 6 gives us a projection R,: X(Q X §) — E, which
is invariant under the action of all the groups G, ,; the method of Proposi-

n,p’

tion 6 shows that R, takes necessarily the form

ka=2k Z <f’Bi,k®Gim>Ai,k®Gim

1<i<2k
mx=1

with B, ® G" € X' and A, ,, B, ;) = 27*.

Since (B; ; ® G), ,, is biorthogonal to (B; ;, ® G/"), ,,, which is equiva-
lent to (x, , ® e,,); ,, and spans a complemented subspace of X({ X §), and
since {B; ;, A; > = 27% = (x; , x; 1), we see that

m
H Y a; B, ®G; “ ~ “ Yo, X, ®e,
i,m X' i,m X'(y)

Again there is a priori no relation between the systems (B; ;),_; . ,« for
different values of k, so we modify them to have a compatibility condition.
The method we used for the (A; ;) does not work here because X’ has no
more non trivial concavity. However we set

k _ 2 2 1/2
B, = (Bji_1,x + B} ;)
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and note that (B{Y) ® G™),,,. | | <;<,«-1 span an isomorph of X;_,(l,) in X’
(with no loss on the equivalence constant), and that

(BX 1 Ay = (Baioy i + B2s) ™ (B + A43,)7)
2 (By;_1,k» Agi—y 1) + (Boy i Agy ) = 27¢7D

Similarly we recursively define B,.(v",}, p < k, which satisfies

k m
Z ai,mBi(,} ® G|
1<i<?2?
mx=1

Z ai,mxi,p ® em
1<i<2?
m=1

(with equivalence constants independent from k, p) and

(B®), A; ) =277,

Lp?

The sequence (B{*)*) is bounded in the lattice X ,, which is a dual lattice
(since it is r-convex, r > 1, and a maximal r.i. space, Xj,=Z* with
Z = (X],)). We define B?, = w* — lim, o, B®)*>. We have B, , € X' and
in

fact B; , ® G € X', with B?, ® G> = w* — lim,_, B*)* ® G2 Thus

1,2
A 52
|Z o nbiso o] -|(Zetnt) o0
i,m X' i,m

X’

1/2

2 R2 2
“ Zai’mBi,p ® G
i,m

Xi,2

1/2

IA

lim “ Y a2, BY? @ G
lim ] X o B}

Xi,2

lmHZ%m$2®Gﬂ
k,% i,m 4

1

N Z ai,mxi,p ® €m
i,m X'(lz)

Set C; , = w* — lim, o, B), where now the w*-limit is relative to o(X’, X).
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We have C; , < B, ,, as is well known; hence, for nonnegative reals «; ,,

< Z ai,mﬁi,p ® Gi,m’ ZBj,lAj,p ® G}>

i,m it

Z ai,mﬁi,m<Bi,p’ "lli,p>

i,m
2 Zai,mBi,m<Ci,p’Ai,p>
i,m
= lim Y a, B nS B, A1) 2277 L B

i,m i,m

< L mXip ® €y 2By 1%, ® e,>
i,m il
And since

J,p ®e

2

X(1,)

we have

HZ“:‘,msz®G zilZai,mxi,I,‘&em‘
i,m i,m

X'(13)

Since we have, by construction, B*)?* = B{? ., + BSZ | for k>p + 1,

we obtain, by passing to the limit, the compatibility condition
B BZt—l p+1 +B21 p+1-

We can now define 7f for a nonnegative dyadic function f = Y27 a? x;
by Tf = £ ,a?B?,, and we have
"(Tf) ® G2"Xi/2 ~ ”f”Xi/z

and

<(Tf)1/2,(Sg)1/2> > <f1/2, g1/2>

for every nonnegative dyadic f and g.

Let Z be the space {f € Lylf ® G € X] ,,}. We can extend (by density) the
operator T to an operator E — Z, where E is the closure of dyadic
functions in Xj , which is also the closure of L, in Xj, (since Xj , # L.,
ie. X#L).If feX|,and f,€E,, f,1f ae., we have

Vn, 17, ]z < Clif, llx; , < Clifllxg ,
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hence F = sup, Tf, belongs to Z", with norm [|Fllz < Cllfllx; ,. This ele-
ment F does not depend on the sequence f, 1 f, since if 0 < g,, 1 f we have:
g&n N fo1 f, a.e. and in the norm of E, hence T(g,, A f,) = Tf, as m - »
and sup,, 7g,, = sup,, , T(g,, A f,) = sup, Tf,. We set Tf = F. The operator
T is then positively additive and order continuous, and, choosing (f,) such
that ||f, Il = IIfll, we have

ITfllz = supllTF,llz ~ supllf,llx;,, = Ifllxs,,-

n n
This ends the proof of Theorem 16. O
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