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AND TOTALLY REAL SUBMANIFOLDS
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1. Introduction

In this paper we get two comparison theorems for the mean curvature of a
tubular hypersurface around a complex hypersurface and around a totally
real submanifold in a Kihler manifold. The models for these comparisons are
tubular hypersurfaces around the complex hyperquadric and the real projec-
tive space embedded in a complex projective space. Getting comparisons for
the mean curvature of tubular hypersurfaces around submanifolds P of
Riemannian manifolds M has become a useful tool to get bounds on several
geometric invariants related to the volume and the Laplace operator of the
ambient manifold (see for instance the books [Ch], [Gr3], the paper [MP2]
and the references therein). In fact we shall apply our results to get
comparison theorems for the relative volume, the first Dirichlet eigenvalue
and the mean exit time.

This note is also a continuation of our paper [MP2], where we have got
comparison theorems taking as a model tubular hypersurfaces around the
complex projective space embedded as a totally geodesic submanifold in a
complex projective space.
The plan of the paper is the following. In Section 2 we set up some

notation and recall some definitions and known facts that we shall need later.
Sections 3 and 4 are devoted to prove the comparison theorems. The main
results are Theorems 3.1 and 4.1. In Section 5 we show the applications to
the relative volume, the first Dirichlet eigenvalue and the mean exit time
(Theorems 5.1 to 5.5). Finally in Section 6 we discuss what happens when
equality is attained in the theorems of Sections 4 and 5. Here we get only
partial results: we prove that equality implies many properties (Theorems 6.2
and 6.4) on the tubular hypersurfaces, but we have been unable to see if it
characterizes the model spaces.
By doing the proofs of Theorems 3.1 and 4.1, we also answer partially a

technical question stated in [MP2] (see also the introduction of the book
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[Gr3]). It is about the equivalence of Jacobi and Riccati equation methods to
get comparison theorems. Although these methods are theoretically equiva-
lent, we were compelled in [MP2] to use Jacobi equation method to get
results with weaker hypothesis on the bounds of curvatures (instead of taking
bounds on some curvatures, we consider bounds on the sum of them). In the
proof of Theorems 3.1 and 4.1 we have developed a Riccati equation method
that gives results as general as Jacobi equation method. The answer is partial
because it does not give all possible results.

2. Notation and background

From now on, M will denote a connected, complete, Kihler manifold of
real dimension 2n, with riemannian metric ( ), and almost complex
structure J. By P we shall denote a connected closed complex hypersurface
or a totally real submanifold (of dimension n) of M. We shall denote by Pr
the tube of radius r around P, and by 0Pr its boundary, i.e., the tubular
hypersurface of radius r around P. For the curvature and the Riemann
Christoffel tensor R of M we shall adopt the following convention sign

R(X,Y)Z -[Vx,Vv]Z + Vtx, v1Z and Rxrzw=(R(X,Y)Z,W).

Given a point p M, a vector X .TpM and a totally real subspace II of
TpM of real dimension n 1 and orthogonal to X and JX, the totally real
ricci curvatures K(X, II) and Kc(X, II) of X at II are defined by

n-1 n-1

Kr( X, l-I)

_
Rxeixei and Kc( X, II) E RxJeiXJei,

i=1 i=1

where {e1, e2,..., en_l} is an orthonormal basis of 1-I. These curvatures
depend only on X and II, and satisfy Kr(X, II) + Kc(X, II) + KI4(X)IXI z

p(X, X), where p(X, X) is the Ricci curvature of M and KI4(X) is the
holomorphic sectional curvature of the plane generated by X and JX.
We shall denote by (5P)/FP the (unit) normal bundle of P in M, and by

FpP (resp. SP) the fibre of’P (resp. SFP) over p P. Let AP(t) denote
the set {" AP; I’1 t}.
For every N SP, Lu will denote the Weingarten map of P associated

to N.
If ’ is a subset of TM, exp will denote the restriction of the exponential

map to ’.
Given any fibre bundle B on P and p P, B, will denote the fibre of B

over p P.
We shall use’ to denote indistinctly the ordinary and the covariant

derivative. Its exact meaning will be clear from the context.
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Given p P and N o’drpP, let YN(t) be the geodesic such that /N(0) p
and yv(0) N. Let

f(N) inf{t > 0/rank exp.,ret),tN < 2n 1}.

For every t ]0, f(N)[, S(t) will denote the Weingarten map of the tubular
hypersurface of radius t about P, with respect to the unit normal vector
y’lv(t). S(t) satisfies the Riccati differential equation ([Grl, Lemma 4.1] or
[Gr3, page 37])

(2.1) S’(t) S2(t) + R(t)

where S’(t) V,tS(t) and R(t)" Tvo OP Tvo OP is defined by

R(t)U R(T’N(t), U)T(t) for every U T3,(t) OPt.

Moreover ([Grl, page 210] or [Gr3, page 38]),

(2.2) lim S(t) LN.
t0+

Given p P, N SapP and a totally real subspace H of TpM contained in
TpP, orthogonal to JN and of dimension n- 1, let us denote by H the
parallel transport of H along Ts(t). Let {el,...,e_l} be an orthonormal
basis of H and let Ei(t) be the unit parallel vector fields along 3,N(t) such
that E(0) e. Let us observe that

Ht =<{El(t),...,En_l(t)}>,

the vector space generated by {El(t),..., En_l(t)}.
Let {Y/(t)}/2=i-1 be the unit vector fields defined by Y/(t)---El(t) and

Y+i- JEi for 1,...,n- 1, and Y2n- JT’(t). If we consider the
functions

fi(t) =(S(t)Yi(t),Yi(t)>, i= 1,...,2n- 1,

using (2.1) and the Cauchy-Schwarz inequality, we get

f[(t) =( S’(t)Yi(t), Yi(t)> =( S2(t)Yi(t) + R(t)Yi(t), Yi(t))
>- ( S(t)Yi(t), Yi(t)> 2 + ( R(t)Yi(t), Yi(t))
=f/2(t) +(R(t)Yi(t),Yi(t)), i= 1,...,2n- 1,

and, using the inequality between the square of the arithmetic mean and the
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mean of the squares, we have the differential inequalities

(2.3)
1 n- 1

n 1 fi > fi
i=

n--1
i=1

1 n-1

n 1 E (R(t)Yi(t), Yi(t))
i--1

n-1 f/ +
i--

1
n 1Kr(7(t)’ Ht)’

(2.4) I’,+n- 1
i=n

n- 1
i=n

1 K(7,N(t ) Ht )n-1

and

(2.5) fn-1 f22n-1 or- KH(7’N(t))

We shall also need the following result.

2.1 LEMMA ([Gr2, Lemmas 5.1, 5.2] or [Gr3, pp. 174, 175]). Letf: ]0, tl[
R be a differentiable real valued function.

(i) Suppose f’ >_ f2 + A on ]0, tl[, and limt_, o f(t)= -. Then, for 0 <
t < tl,

(2.6) f(t) >
tan(v-t)

(ii) Suppose f’ > f2 + A on ]0, tl[, and limt_, 0 f(t) f(O) R. Then, for
O<t<t1,

(2.7)
sin(1/-t) + f(0) cos(v/-t)

f(t) >’

cos(vC-t) f(O) sin(vt)

f(O) sin(v-t) > O.(2.8) cs(Vr-t) V-
2.2 LEMMA. Let F be a C real function defined on ]a, b[ X R and let

f, g :[a, b[-> R be functions which are C on ]a, b[ and continuous on a, b[
satisfying:

(i) f’(x) > F(x, f(x)) and g’(x) F(x, g(x)) for x e ]a, b[, and
(ii) eitherf(a) > g(a), orf(a) g(a) and there exist , ’1 > 0 such that for

every x ]a, a + [ the function y f(x, y) defined on ]g(a) r/, g(a)
+ l[ is not increasing.
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Then

(2.9) f(x) > g(x) forallx [a,b[.

Proof The proof is like that of Theorem 7 in [BR, page 29].
We end this section by recalling that a P-Jacobi field along a geodesic

YN(t) is a Jacobi field Z(t)such that Z(0) 0 and Z’(0) pP or Z(0) TpP
and Z’(0)+ LNZ(O)= 0. The operator S(t) acting on these Jacobi fields
satisfies the equation

(2.10) S(t)Z(t) -Z’(t),

where’ denotes the covariant derivative respect to y’N(t) (see [Va, (120)] or
[Ka, (1.2.6)], and [CV] for P a point).

3. The comparison theorem for complex hypersurfaces

Along all this section, P will be a complex hypersurface of M. When
M cpn(A), the complex projective space of constant holomorphic sectional
curvature 4A, and P , the complex hyperquadric in CP"(A), the operator
S(t) will be denoted by e(t). Given /3 and Sa, let
{Yl,..., -, JYa,..., Jn-1} be a J-orthonormal basis of Tp’ that diagonal-
izes the Weingarten map of ’ (Zf. V[--.i and L?Jfil J.i). Let
,g(t) be the geodesic such that (0) =/5 and ;/..(0) N. Then, if Ei(t) are
parallel unit vector fields along ;/?(t) such that Ei(O) .i, 0,..., n 1,
we have ([Gr2, (4.3)] or [Gr3, page 138])

(3.1) (t)i(t) (t)i(t), i= 1,...,n- 1

e( t ) Jffi( ) v( ) JJi( )

(t)J/fo( ) rl( t)J/( t),

i= 1,...,n- 1

where

sin(vt) + cos(yr’-t)
(t) v/-

cos(v/--t) sin(v’t)
sin(v/-t) cos(yr,-t)

v(t) cos(v-t) + sin(v’t)
r/(t) 2V- cot(2V-t)

Given p P and N SapP, let {el,..., en_ 1} be a family of principal
vectors with non-negative principal curvatures {a,..., ,_a}, and let Ei(t),
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1,..., n- 1 be parallel vectors along YN(t) such that Ei(O)= ei. We
define the transplanted operator See. T/N(t) te T/N(t) OPt, of ee(t) in (e, M)
by

(3.2) See(t)Ei(t) t(t)Ei(t), i= 1,...,n- 1,

See(t)JEi(t) i(t)JEi(t), i= 1,...,n- 1,

See(t)Jy’N(t) rl(t)JY’N(t ).

We shall denote by/ee(t) the operator R(t)when (P, M) (, cen(A)).
We define the transplanted operator Ree(t)of fie(t)to (P, M)along YN(t)
as we did with Se.
Now, let H be the totally real subspace of TpM generated by {el,..., en_l}.

Let H be defined from H as in Section 2.

3.1 THEOREM. Let M be a Kiihler manifold and P a complex hypersurface of
M. Let us assume that, for every p P and every N SpP, one has

p(7’N(t),7’N(t)) > (2n + 2)A, Kr(7’N(t),Ht) > (n 1)A,

Kc(Y’N(t),Ht) > (n- 1)A

for every t [0, r(N)[, r(N) <_ f(N), and

1 n--1

n-1 E Ig’i vI--"
i=1

Then

trS(t) > trSee(t) foreveryt [0, r(N)].

Proof. First, let us suppose that

r(N) <min 4v/-,f(N)
Let Y/(t)i2__n-1 be defined from the {ei} as in Section 2. It is obvious that See

and Re(t) also satisfy equation (2.1). Then, using (2.1), we have

(3.3)
(S See) S2 + R Seel Ree

(S See) 2 + (R -Ree) + (S See)See + See(S See).
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Thus

(3.4) <(s s-)Y/, Y,) =((s s-)’Y/, Y,)

((S S)2Y/, Y/) + ((R R)Y, Y/)
+ 2((S S)Yi, SYi)

for 1,..., 2n 1. Therefore

2n )E ((s s),)
i--1

2n-1

i1

2n-1 n-1

+ E ((R -R’)Y/,Y> + 2B(t) E ((S S)Y,Y/)
i=1 i=1

2n -2

+ 2v(t) ((S S)Y/,Y/) + 2/(t)((S Set)Y2n_l,SetY2n_l)
i=n

2n 2n

E ((S S’)2Y/,Y/) "" E ((g R)Y/,Y)
i--1 i--1

2n-1

+ 2/(t) E ((S S#)2Y/, Y/)
i=1

n-1

+ 2(6(t) rt(t)) E ((S S)Y/,Y/)
i--1

2n-2

+ 2(u(t) n(t)) E ((S S)Y/,Y/).
i=n

Notice that

2n-1

E ((R Ra)Y/,Y/) > O,
i--1

because p(y’lv(t), 7’N(t)) >_ (2n + 2)A.
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On the other hand, from the hypotheses on Kr(y(t),Ht),
Kc(y(t), Ht), and the inequalities (2.3) and (2.4), we have

and

1
(SY/,) > (SY/,Y) + A,n- 1

i=1
n- 1

i=l

(sYi Yi> > E (sY, Yi>rl- 1
i=n i=n

Moreover, since P is a complex submanifold, {Jel,.o. Jen_l} are eigenvec-
tots of Lv with eigenvalues {-K1,..., -Kn-1}" Then, using (2.2) and apply-
ing Lemma 2.1 (ii) to the above inequalities, we have

1 1 n-1

n- 1 (t)-- n-1 (SY/,Y/}
i--1

(1 K COS(V-t)sin.vt. + n 1
i=1> =- a(t) > 0

(1 nl Ki) sin(v-t)COS(Yr’-t)- n- 1i=
1 1

n 1 st(t) -= n--1

2n -2

V- sin(v/-t) (1 nl ) cos(Vr_t )n-- l
i=l

i

COS(V-t) +(1 nl/(i)sin(v-t)n--li=

=- fl(t).

Now, let us observe that from the hypothesis

1 n-1

n-1
i--1

it follows that

a(t) > /(t) n 1 ( Yi, Yi)(t),
i=1
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and

’ + n- i i sin(2v-t)
o(t) -I- fl(t) V/ i--1

( n )21)tCOS2(/) ’/_ 1i=1 :i sin2(f-/)

> (t) + v(t)= v sin(4vt)
cos(2vq-t) >0

on the interval [0, r/(4f-)].
Since 6(t) > v(t) > 0 on [0, r/(4f)], we have

8(t) r/(t) > v(t) r/(t)

COS3(Vt) sin3(v/t)
sin(v/At) cos2(Vt) + sin2(v/t) cos(vt)

Then

(6(t) r/(t))((t) (n 1)(t))
+(v(t) r/(t))(’(t) (n 1)v(t))
> (n 1){(6(t) r/(t))(a(t)

+(v(t) rl(t))( (t) v(t)))
(n- 1){(- r/)(a+fl- (6+ v))

+(a- n- (,,- n))(, + a)} >_ o.

Therefore we have

2n-1

(3.5) ] ((S S)Y/, Y/)
i=1

2n-1 2n-1_, ((S S)2Y, Yi ) + 2r/(t) Y’ ((S Se)Y/, Y/)
i=1 i=1

2n 2n

E ((s s)r/r,) + 2rt(t) E ((S S)Y/, Y/).
i=1 i=1



LOWER BOUNDS FOR MEAN CURVATURE 517

Then

1 (2n- 1

2n \

E ((s
i=1

2n- 1

2n-1 )2 1((S S)Y/,Y/) + 2(t) 2n 1
i--1

2n-1

E ((s
i--1

Let

1 2n-1

b(t) 2n- 1 E ((S-S)Y/,Y/).
i=1

Then

1
b(t) 2n 1 (tr S(t) tr S(t)),

and we get the ,differential inequality

(3.6) b’(t) >_ b2(t) + 2rl(t)b(t ).

From (2.2) and the fact that both P and ’ are complex submanifolds (then
minimal), it follows that b(0)= 0. Then Lemma 2.2 applied to inequality
(3.6) gives b > 0 in ]0, r(N)[.
Now, let us show that

f(N) <
44-"

Let {Zi(t)}i2=n be a basis of P-Jacobi fields along YN(t) such that IZ(0)I 1
for 1 < < 2n 2 and Z2n_l(0) 0. From b(t) > 0 and (2.10), we have

(3.7), - In 1-I IZil

_
2 S(t) IZl’lZl/=1 /=1 IZil i=1

where

d
-tr S(t) < -tr Se(t) In a(t),

a(t) (cos(V-t)- sin(yr’-t)) n-l(cos(v/--t) + sin(v-t))"-1 sin(2v/t).

From the initial conditions on Zi[, we have lim 0 ((I-In"= [Zi(t)l)/a(t))---
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1, which, together with (3.7), shows that

2n-1

I-I Izi(t)l < a(t)
i=1 (for every t min f(N), 4

Since f(N) and r/(4v/-) are, respectively, the first zero of I"I/2n-1 IZi(t)l and
of a(t), we have f(N) < 7r/(4x/), and the proof is finished.

4. The comparison theorem for totally real submanifolds

In this section P will be a totally real submanifold of M of dimension n.
When (P, M) (RPn, CPn(A)), with RP" embedded as a totally geodesic

submanifold in CPn(A), the operators S(t) and R(t)will be denoted by
Re"(t) and lle"(t) respectively.

Given/5 RP" and N 5aRPn, let {J?, 1,..., n-1} be an orthonor-
mal basis of TRP. Let 9(t)be the geodesic such that /g(0)=/5 and
(0) =/ -J2n-1. Then, if Fi(t) are parallel unit vector fields along
o(t) such that Ei(O) Yi, 1,..., n 1, we have (see [CR])

(4.1) Re"(t)li(t) VC-tan(vt)ffi(t), i= 1,...,n- 1,

gIlt’"( t)jff, ( t) cot(v/-t)Jffi( t),
le"(t)j/(t) 2x/" tan(2f-t)J/c(t).

i= 1,...,n- 1,

Given p P and N SapP, let Ei(t), 1,..., n 1 be defined from an
orthonormal basis {JN, el,..., e_ 1} of TpP as before. Then, we define the
transplanted operators

sP"(t), RIP"(t)" TvN(t OP TvNt OPt,

of Re"(t),/Re"(t) to (P, M) as we did with S.
We shall define the Y/(t) from the El(t) as in section 2.
Let h, k" Sa4P R be the functions defined by

1 n--1

h(N) n- 1 -" (LNei’ el) and
i=1

k(N) (LNJN, JN)

We shall also define the operator

SI ( ) T,/u(t) OP T,/u(t) OP
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(4.2) S(t)Ei(t) f-co(t)Ei(t),
S(t)JEi( t ) cot(ff-t)JEi( t ),

S(t)JT}(t) 2V-cr (t)JT}(t),

i= 1,...,n- 1,

i= 1,...,n- 1,

where

V- sin(v/-t) + h(N) cos(v/’’t)
cos(v’t) h(N) sin(x/--t)

and

2VC sin(2v-t) + k(N) cos(2x/t)tr(t) 2V- cos(2v-t) k(N) sin(2vt)

Here H will denote the subspace of TpP orthogonal to JN, and, then, H
will the totally real subspace of T (t)M generated by {Yl(t),..., Y_l(t)} i.e.
the parallel transport along y(t of the subspace of TpP generated by
{el,..., e_l}.

4.1 THEOREM. Let M be a Kiihler manifold and P a totally real submanifold
of dimension n in M. Let us assume that, for everyp P and N SaArp P,

p(’y’N(t), "y(t)) > (2n + 2)A,
Kr(’y’(t),Ht) > (n 1)A and KH(7(t)) > 4A

for every t [0, r(N)], with r(N) < f(N). Then

trS(t) > trSg(t) foreveryt ]0, r(N)].

Proof A straightforward computation shows that the operators S(t) and
RiPen(t) also satisfy equation (2.1). From (2.1), it follows that formula (3.4) is
also valid when we replace S and F by SRe and Rle respectively. Using
this formula and the fact that

2n-1

E ((R Re)Yi,Yi) > 0
i--1
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(which follows from the hypothesis p(y(t), y’(t)) > (2n + 2)h)we have

(4.3)
2n-1

E ((s s),
i=1

2n-1 n-1

E ((S Sp)2Y/, Y/)+ 2v/-o(t) E ((S Sg)Y/,Y)
i=1 i=1

2n -2

2v/- cot(v/-t) 2 ((S S)Y/,
i=n

+ 4vcr(t)((S Sg)Y2n_I,Y2n_I)
2n-1 2n-1

E ((S SpR)y/,Y/) 2- 2f-cot(x/t) E ((S Sg)Y,Y)
i=1 i=1

n-1

+ 2v/-(o(t) + cot(V-t)) E ((S Sg)Y,Y)
i=1

+ 2vc(2cr(t) + cot(v/-t))((S Sg)Y2n_l, Y2n-1)
Then, using inequalities (2.3) and (2.5), the hypotheses on the curvatures K
and K/4, and Lemma 2.1, we have

1 ( 2n-1 )’E ((s slY/,Y)(4.4) 2n- 1
i=1

1 2n-1 )2>- 2n- 1 2 ((S-S)Y/,
i=1

1
cotv^t) 2n 1

2n-1

E ((s splY,Y)
i=1

If we put

1
b= 2n_ 1

2n-1

E ((s -.slY, Y),
i---

inequality (4.4) becomes

b’> b2- 2V-cot(V-t)b
and the proof follows as for Theorem 3.1.
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4.2 COROLLARY.
geodesic in M. Then

Let M and P be as in Theorem 4.1, but with P totally

trS(t) >trsgP"(t) for every ]O, r( N)

5. Comparison theorems for the relative volume, the mean exit time
and the first Dirichlet eigenvalue

In this section we give some applications of Theorems 3.1 and 4.1. We shall
state them without giving the proof, and only indicate the references where
the necessary arguments can be found.
For every p P, N S"pP, let c(N) sup{t > 0; distance(P, 3,N(t)) t}.
From Theorems 3.1 and 4.1, using arguments like those in [Gi, Theorem

3.3] or [Gr3, pp. 91-92], one gets:

5.1 THEOREM. (a) LetM and P be as in Theorem 3.1, with the hypothesis on
the bounds of the curvatures valid for [0, c(N)[, then we have

volume(P)
volume(M)

> volume(’)
volume(Cpn(h))"

(b) Let M and P be as in Corollary 4.2, with the hypothesis on the bounds of
the curvatures value for t [0, c(N)[, then we have

volume(P)
volume(M)

> volume(Ren(A) )
volume(Cen( A))"

In the next remark, [(n 1)/2] will denote the integer part of the number
(n 1)/2, e will be a number defined by

0, if n- 1odd,
e=

-1, if n- 1even.

We shall also use the function

(t, a,/3) cos(2v/-t) E n--1 (COS(r-t))n-l-2j 2j sin(v/-t)
/=o

2j a V-

sin(2v/-t) [(n-1)/2]+e 2j+1

and by z+(q) we shall mean the first positive zero of the function q(t, a,/3).
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5.2 Remark. If we do not have the condition that P is totally geodesic in
part (b) of Theorem 5.1 and assume that a is an upper bound of Ihl and/3 is
an upper bound of Ikl, we get the inequality

volume(M) _< g( a,/3 )volume(P),
where

g(a,/3)= vlume(Sn-1)fz+()q(t’ao fl)( sin(vr-t)v- )n-1
But now, unlike Theorem 5.1, there is no totally real submanifold ’ of
CP(A) such that g(a, ) is the quotient volume(CP(A))/volume(’),
because this would imply that the tube around ’ has three different
constant principal curvatures, and then ’ has to be RPn(A)(see [CR, Th.4]
and [Ki, Prop. 3.4]).

Let /zf (respectively -lex
/, j be the first eigenvalue of the Dirichlet problem

Af Izf, flo,-- 0 (respectively fle; 0)
Let/Zl(ft) be the first eigenvalue of the first Dirichlet eigenvalue problem on
any domain f M.

Let c(P) inf{c(N); N damP}. From now on r [0, c(P)[.
From Theorems 3.1 and 4.1, using arguments like those in [MP2, Theo-

rems 4.4 and 4.8] and in [Le], having account that RP(A) is the set of cut
points of t in CP(A) at distance r/(4V-), one gets:

5.3 THEOREM. (a) Let P and M be as in 5.1(a). Then

I( P,) <- Ir and I(M

(b) Let P and M be as in 5.1(b). Then

pner) <-- ana er) >-

Let Ere, Fr, Ef and Ern denote the mean exit time functions from
M- Pr, r and RPrn respectively. From Theorems 3.1 and 4.1, using argu-
ments like those in [MP2, Theorems 4.2 and 4.8] and having account that
Rpn(A) is the set of cut points of ’ in cpn(A) at distance r/(4-), one
gets:

5.4 THEOREM. (a) Let P and M be as in 5.1(a). Let ’f P, --, R be the
function defined by

8"f(x) =E:(d(P,x))
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and let a M Pr - R be the function defined by

[

r( X) E /4vfff 4V
r d(OPr,x) ).

Then

8"re(X) < El(x) and F( x) < r( X)"

(b) Let P and M be as in 5.1(b). Let ’f P - R be the function defined by

g’f(x) Errt(d(P,x))

and let 9r M Pr - R be the function defined by

Y;r(X) (EOrl4V/-)_r 4VC-
Then

$’f(x) <El(x) and Fr(x) <r(X).

As in the comparison for the relative volume, it is still possible to get
bounds for/I(P) and Ef in part (b) of Theorems 5.3 and 5.4 without the
condition that P is totally geodesic, although in this case the bounds are not
the eigenvalues nor the mean exit time function of any tube around a totally
real submanifold of CPn(A), as we describe now.

Let a and /3 be, as above, the upper bounds of Ihl and Ikl respectively.
Let to(a, t) (resp. tr(/3, t)) be the function defined like to(t) (resp. tr(t)) in
Section 4, but changing h(N) (resp. k(N)) by -a (resp. -/3).

Let /x,,a be the first eigenvalue of the following Dirichlet eigenvalue
problem on [-r, r]:

-f"(t) + {(n- 1)Vto(a, t) -(n- 1)vr cot(vet-t)
+2x/-o’(,t)}f’(t) Ixf(t),

f(-r) f(r) O.

Let 8’,,. a be the solution of the following Poisson equation with Dirichlet
condition:

-8",t(t) + {(n- 1)yr’-to(a, t) -(n- 1)v/- cot(V-t)
+2/-o’( fl t ) }$’ l ( t ) 1,

=0.
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The same methods used to prove Theorems 5.3(b) and 5.4(b) allow us to
get the following result from Theorem 4.1.

5.5 THEOREM.
M. Then we have

Let P andM be as in 5.1(b), but with P not totally geodesic in

]1(er) _< ].l,a,/3 and ,,(x) < ErP(x).

6. Some remarks about the equality case

In this section we shall discuss what happens when equality is attained in
Theorem 3.1 or Corollary 4.2. We think that it must characterize the pairs
(, CPn) and (RPn, cpn), but we have only got partial results, which are
contained in Theorems 6.2 and 6.3 below.
We shall use the following well known technical lemma. A proof of it can

be found, for instance, in [MP2].

6.1 LEMMA. For every (p, N)owlP and every r R, the kernel of
expre,(p, rlV is the set of vectors (c’(0), r’(0)) T, rU P tangent(p, r/14 tocurves
(c(s), r(s)) in MP with (c(0), :(0)) (p, N) and such that the P-Jacobi field
Y(t) along Yu(t) satisfying Y(O) c’(O) and Y’(O) (V/dt)(O) also satisfies
r(r) O.

6.2 THEOREM. Let P and M be as in 3.1. ff tr S(t)= tr Se(t) for every
p P, N 5dlrpP and [0, f(N)[.

(a) The principal curvatures ofP have only the values and V.
(b) On the open sets of OP where OP is a regular submanifold of M, the

distributions H and JH are integrable, and satisfy:
(b.i) The distribution H is the one defined by the eigenspace of S(t) of

eigenvalue 6( ). Its leaves have constant sectional curvature

2A
1 sin(2vr-t)

(b.ii) The distribution JH is the one defined by the eigenspace of S(t) of
eigenvalue v(t). Its leaves have constant sectional curvature

2A
1 + sin(2vt)

(b.iii) The leaves of the distribution dtr defined as the orthogonal complement
ofH JH in TOP are geodesics in OPt.

(c) For r < c(P), the leaves ofH and JH are compact and the leaves ofd"
are closed geodesics.
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Proof. From the proof of 3.1 it follows that the equality tr S(t) tr Se(t)
implies that S(t)= se(t) and R(t)= Re(t). Then (2.2) implies that Ls
L, where L denotes the Weingarten map of ’ in CPn (observe that this
means that H is the eigenspace corresponding to the eigenvalue / v- of
Ls). This proves (a). From these facts and (2.10), we have that the P-trans-
verse Jacobi fields along the normal geodesic ys(t) satisfy the same equation
and the same initial conditions in (P, M) that in (, cpn(A)), then a basis of
them has the form

(6.1) Zi(t ) (-sin(v-t) + cos(v/-t))Ei(t), i= 1,...,n 1,

Zn_l+i (t ) (sin(x/-t) / cos(ft))JEi(t ),

sin(2V-t)Z2n-l(t)= 2X/- JT(t),

i= 1,...,n- 1,

where {Ei(t)}_l are defined as in Section 3. This expression of the P-Jacobi
fields implies that f(N) 7r/(4x/-) for every NSSYP. Let th" OPr -’* M be
defined by

qb ( YN ( r ) ) ")’N
4v/-

Then, defining

/Z ://P(r) -.4p
4V

as the canonical isomorphism

( p, rN) p
4x/-

N

we have

Then

b expere(r) e Pere() /Z.

X ),o/z,.b, exprp(r)* e P:re

Using this equality and the fact that exp is a local diffeomorphism, we have

-1 (Ker exp )).(6.2) Ker b, exp, (/z, ,
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To determine Ker exp,(p, r/4 /r) we shall use Lemma 6.1. The condition
Z(r/4/) 0 for a P-Jacobi field Z, and the formulae (6.1) imply that

and

n-1

Z(O) E otiei - Hi=l

i--n-1 n-1

Z’(O) E oiZ(O) E liei -LNZ(O).
i=1 i=1

Then the condition Z’(0)= (V/dt)(O) is equivalent to Vc,0) 0, and
Lemma 6.1 gives

(6.3)

Ker exp, (p, =/4Vr) c’ (0), 4Vt-’ ’ (0) (0) V+ and Vc,0 : 0

From (6.2) and (6.3) it is easy to see that

Ker (, 3tN<r) n ({El(r),..., En_l( r) })
{g - Z,N<r)oger" S(r)X= 6(r)X}.

Obviously Ker b, defines an integrabIe foliation on OPr. The sectional
curvature of the leaves of this foliation is computed as follows: Let ,+ be a
leaf of Ker b, passing through q OPr. Then b(f)=y OP,/4, be-
cause Tq+ Ker b, q. Let

/kt" U’_--> Sn-1 C TyM

be defined by

(m) "INr(m 4V r

where N is the unit vector field normal to the tubular hypersurface OP
pointing outward and yCr(m is the geodesic starting from rn with tangent
vector Nr(m). Then if f(r)= -sin(v/r)+ cos(V-r), for i= 1,...,n- 1,
we have

1 1
a!*m(Ei(r)) f(r) *m(f(r)Ei(r)) f(r) aYkt*m(Zi(r))’
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where the Zi(t) are the P-Jacobi fields along YN(t) (with N Tr(m)(-r))
defined by (6.1). Then

where ci(s) is a curve in P such that ci(O)= TNr(m)( r) and c’i(O)= ei.

Therefore

1
o tN(c(s)))a,m(Ei(r))= f(r)"’I’,m( fl= eXpc(s)

f(r) s =o(XIt(expc() rN(c(s)))

f(r) Ei(4v- )
Let g be the standard metric on Sn-1 - TyM and let be the metric on
S- for which , m is an isometry. Then

2A
f2(r)g

and, therefore the sectional curvature of is

2A
1 sin(2v/-r)

This proves (b.i).
In order to prove (b.ii), let us define b- oP M by

Then, by arguments similar to those used before, it is possible to see that

Ker th-, Tt(r) JH ({JEl(r),..., JEn_(r)})
{X TT(r o3Pr; S(r)X v(r)X}

and that the leaves of JH have sectional curvature

2A
1 + sin(2v/-r)
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Since T.... OP H JHr ({JN}), the foliation 1 on OP is given by
rN(

rn JNr(m. Since LN LN, if D is the riemannian connection on OPr, the
Gauss equation gives DjNrJN 0, and the integral curves ofCare geodesics
in OPr. This proves (b.iii).
Now, if r < c(P), OP is a complete manifold then the leaves of H and

JH are complete (see [Rh, page 143]), then compact, because they have
positive sectional curvature.
On the other hand, it is easy to see that c(s) expp r(cos sN + sin sJN),

p P and N 5p are the integral curves of" if r < c(P), which shows
that they are closed.
From this theorem, using known arguments (see [Gi], [Gr3], [MP1, 2] and

[GM2]) and the results of Section 5, the following corollary is obvious.

6.3 COROLtRY. Let us suppose that we have equality in 5.1(a), or that
/1(M- Pr) f4Vff)-r in 5.3(a) or that F(x) r(X) in 5.4.(a). Then for
every p P and N SIP, we have c(N) f(N) r/(4v/-) and the state-
ments (a), (b) and (c) in Theorem 6.2 hold.

6.4 THEOREM. Let P and M be as in 4.2. If tr S(t) tr sRP"(t) for every
p P, N S’P and [0, f(N)[.

(a) On the open sets of OP where OP is a regular submanifold of M, the
distributions H and JH are integrable, and satisfy:

(a.i) The distribution H is the one defined by the eigenspace of S(t) of
eigenvalue tan(v-t). Its leaves have constant sectional curvature

2)t

1 COS(2V/’-t)

(a.ii) The distribution JH is the one defined by the eigenspace of S(t) of
eigenvalue V cot(f-t). Its leaves have constant sectional curvature

1 + cos(2v/--t)

(a.iii) The leaves of the distribution " defined as the orthogonal complement
ofH JH in TOP are geodesics in OPt.

(b) For r < c(P), the leaves ofH and JH are compact and the leaves of
are closed geodesics.

Proof From the proof of 4.1 it follows that the equality tr S(t) tr SIe"(t)
implies that S(t) sRe"(t) and R(t) RIe"(t). From these facts and (2.10),
we have that the P-transverse Jacobi fields along the normal geodesic %v(t)
satisfy the same equation and the same initial conditions in (P, M) that in
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(RP", CPn()O), then a basis of them has the form

(6.4) Zi(t) cos(f-t)Ei(t), 1,..., n 1,

sin(v/-t) JE ( )Zn_l+i(t )

Z2n_l( t) COS(2V/-t)Jr’N( t),

i= 1,...,n- 1,

where {Ei(t)}in=-i are defined as in Section 4. This expression of the P-Jacobi
fields implies that f(N) 7r/(4x/) for every N 551P. Let " OPr - M be
defined by

ch ( Yu ( r) ) YU ’4X/- exp"re ( ( "rr/4v/- )N )

The formulae (6.4) imply that rank b, vu() rank exprp(r/4 v/-), N 2n 2
for every N S’P. Then, from the constant rank theorem, there is an open
set W of OP containing Yu(r) such that (h(W) is a complex hypersurface of
M. Obviously, W is an open set of 04)(W)(,,/4vr;)_ and, in the common
points, H H(/4 vff)-r (where Ht denotes the distribution H of Theorem
6.2). Then the Weingarten map of b(W) in the direction of --y’N(r) is

S(t)l<o,, g,_> L’.

Then for the points in W, Pr is like oe(qr/4 7r’)_r in the proof of Theorem
6.2, and Theorem 6.e follows from Theorem 6.2 and the fact that sRP"(t)
-Sa((Tr/4V) t).
As before, the next result follows from this theorem.

6.5 COROLLARY. Let us suppose that we have equality in 5.1(b), or that
/Zl(M- Pr) /X(=/4Vff)-r in 5.3(b) or that Fr(X) orr(X) in 5.4(b). Then for
every p P and N SaArpP, we have c(N) f(N) 7r/(4x/) and the state-
ments (a) and (b) in Theorem 6.4 hold.
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